UH - Math 3330 - Dr. Heier - Spring 2014
 HW 10 - Solutions to Selected Homework Problems by Angelynn Alvarez

1. (Section 4.5, Problem 2) Show that

$$
H=\left\{\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right],\left[\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right]\right\}
$$

is a normal subgroup of the multiplicative group G of invertible matrices in $M_{2}(\mathbb{R})$.
Proof. First note that H contains the identity element, is closed under matrix multiplication, and contains the inverse of each of its elements. Thus, it is a subgroup of G. Now let $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ be an invertible matrix-that is, $a d-b c \neq 0$. Then

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]^{-1}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \in H
$$

Similarly,

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right]\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]^{-1}=\left[\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right] \in H
$$

Thus, H is a normal subgroup.
4. (Section 4.5, Problem 22) The center $Z(G)$ of a group G is defined as

$$
Z(G)=\{a \in G \mid a x=x a, \forall x \in G\}
$$

Prove that $Z(G)$ is a normal subgroup of G,
Proof. We already know from previous homework problem (Section 3.3, Problem 17 in Homework 7) that $Z(G)$ is a subgroup. Thus, all we need to show is normality: Let $x \in G$ and $a \in Z(G)$. Then, $a x=x a, \forall x \in G$. Right-multiplication by x^{-1} yields $a=x a x^{-1}$. But we already assumed $a \in Z(G)$. Thus $x a x^{-1} \in Z(G)$, and thus $Z(G)$ is normal.
5. (Section 4.5, Problem 25) Suppose H is a normal subgroup of order 2 of a group G. Prove that H is contained in $Z(G)$.

Proof. Because H is of order 2, we know that $H=\{a, e\}$ where $a \in G$ and e is the identity element of G. We already know $e \in Z(G)$, so now we need to show $a \in Z(G)$. Since H is assumed to be normal, then $g a g^{-1} \in H$, for all $g \in G$. Because $H=\{a, e\}$, we have either $g a g^{-1}=a$ or $g a g^{-1}=e$. If $g a g^{-1}=e$, we get that $g a=e g$-implying that $a=e$. This contradicts H having order 2. Thus, $g a g^{-1}=a$, and $g a=a g$. Hence $a \in Z(G)$, and $H \subset Z(G)$.
6. (Section 4.6, Problem 5) Given the Alternating group $G=A_{4}$, and

$$
H=\{(1),(12)(34),(13)(24),(14)(23)\}
$$

find the order of the quotient group G / H. Write out the distinct elements of G / H and construct a multiplication table of G / H.

Solution. The distinct elements of A_{4} / H are

$$
A_{4} / H=\{H,(123) H,(234) H\}
$$

Thus, $\operatorname{ord}(G / H)=3$. The multiplication table for G / H is

	\mathbf{H}	$\mathbf{(1 2 3) H}$	$\mathbf{(2 3 4) \mathbf { H }}$
\mathbf{H}	H	$(123) \mathrm{H}$	$(234) \mathrm{H}$
$\mathbf{(\mathbf { 1 2 3 }) \mathbf { H }}$	$(123) \mathrm{H}$	$(234) \mathrm{H}$	H
$(\mathbf{2 3 4} \mathbf{H}$	$(234) \mathrm{H}$	H	$(123) \mathrm{H}$

8. (Section 4.6, Problem 13a) Let $G=S_{3}$. For each H that follows, show that the set of all left cosets of H does not for a group with respect to a product defined by $(a H)(b H)=(a b) H$.

Solution. (a) When $H=\{(1),(12)\}$, we have

$$
G / H=\{H,(13) H,(23) H\}
$$

But $((13) H)((23) H))=((13)(23)) H=(132) H \notin G / H$. Thus, G / H is not closed with respect to the given product. Hence, G / H is not a group.
10. (Section 4.6, Problem 22) Let H be a normal subgroup of the group G. Prove that G / H is abelian if and only if $a^{-1} b^{-1} a b \in H$, for all $a, b \in G$.

Proof. \Longrightarrow Assume G / H is abelian. This means that $\forall a, b \in G$,

$$
(a H)(b H)=(b H)(a H) \Longleftrightarrow(a b) H=(b a) H
$$

Left-multiplication by inverses yields: $\left(a^{-1} b^{-1} a b\right) H=H$. Hence, $a^{-1} b^{-1} a b \in H$.
\Longleftarrow Now assume that $a^{-1} b^{-1} a b \in H$. Because $a^{-1} b^{-1}=(b a)^{-1}$, we have that $(b a)^{-1}(a b) \in H$. Thus, $(b a)^{-1}(a b) H=H$, and $(a b) H=(b a) H$. Since $(a b) H=(a H)(b H)$ and $(b a) H=(b H)(a H)$, we can conclude that $(a H)(b H)=(b H)(a H)$. Therefore, G / H is abelian,

