UH - Math 3330 - Dr. Heier - Spring 2014 HW 1 - Solutions to Selected Homework Problems by Angelynn Alvarez

4. (Section 1.1, Problem 34) Prove or disprove that $A \cup B=A \cup C$ implies $B=C$.

Solution. This statement is false. A counterexample is as follows: Let $A=\{0,1\}, B=\{0\}$, and $C=\{1\}$. Then $A \cup B=\{0,1\} \cup\{0\}=\{0,1\}$, and $A \cup C=\{0,1\} \cup\{1\}=\{0,1\}$. Thus $A \cup B=A \cup C$, but $B \neq C$.
5. (Section 1.1, Problem 35) Prove or disprove that $A \cap B=A \cap C$ implies $B=C$.

Solution. This statement is false. A counterexample is as follows: Let $A=\{0\}, B=\{0,1\}$, and let $C=\{0,2\}$. Then $A \cap B=\{0\} \cap\{0,1\}=\{0\}$, and $A \cap C=\{0\} \cap\{0,2\}=\{0\}$. Thus $A \cap B=\{0\}=A \cap C$, but $B \neq C$.
6. (Section 1.2, Problem $4 \mathrm{c}, \mathrm{h}$) Directions say to prove all answers for this problem.
(c) The map, $f: \mathbb{Z} \rightarrow \mathbb{Z}, f(x)=x+3$, is both one-to-one and onto.

Proof. Let $x, y \in \mathbb{Z}$ and assume that $f(x)=f(y)$. Then $x+3=y+3$ implies that $x=y$. So f is one-to-one. Now let $b \in \mathbb{Z}$ be arbitrary. For f to be onto, we need to find an $x \in \mathbb{Z}$ such that $f(x)=b$. Let $x=b-3$. Then $f(x)=f(b-3)=(b-3)-3=b$, as desired. Thus f is also onto.
(h) The map, $f: \mathbb{Z} \rightarrow \mathbb{Z}, f(x)=\left\{\begin{array}{ll}x, & \text { if } x \text { is even } \\ x-1, & \text { if } x \text { is odd }\end{array}\right.$, is neither onto nor one-to-one.

Proof. $f(0)=0=f(1)$, but $0 \neq 1$. Thus f is not one-to-one. Also, if f were onto, $\mathbb{Z}=\operatorname{range}(f)$, but $\nexists x \in \mathbb{Z}$ such that $f(x)=1$. So f is not onto.
7. (Section 1.2, Problem 7d) The map $f: A \rightarrow B, f(x)=|x|$, where $A=\mathbb{Z}-\{0\}$ and $B=\mathbb{Z}^{+}$, is onto but not one-to-one.

Proof. $f(3)=f(-3)=3$, but $3 \neq-3$. Thus f is not one-to-one. Now let $b \in \mathbb{Z}^{+}$be arbitrary. Since $f(b)=|b|=b, f$ is onto.
10. (Section 1.4, Problem 2b) Determine whether the operation is commutative or associative and whether there is an identity element. Find the inverse of each invertible element.
(b) The binary operation " $x * y=x$ " is associative, but not commutative. There is no identity element.

Proof. Let $x, y, z \in \mathbb{Z}$. Then $(x * y) * z=x * z=x$ and $x *(y * z)=x * y=x$. Thus $*$ is commutative. This operation is not commutative. For instance, let $x=1$ and $y=2$. Then $1 * 2=1$ but $2 * 1=2$. Lastly, if an identity element, say e, were to exist, it would satisfy $e * x=x$ and $x * e=x, \forall x \in \mathbb{Z}$. But $e * x=e$. Thus there does not exist an identity element.

