UH - Math 3330 - Dr. Heier - Spring 2014 HW 2 - Solutions to Selected Homework Problems by Angelynn Alvarez

3. (Section 1.5, Problem 1b, 1c, 1 g) For each of the following mappings $f: \mathbb{Z} \rightarrow \mathbb{Z}$, exhibit a right inverse of f with respect to the mapping composition whenever one exists.

Solution. We will use Lemma 1.25 in the textbook: A mapping f is onto $\Longleftrightarrow f$ has a right inverse.
(b) The mapping $f(x)=3 x$ is not onto since $\nexists x \in \mathbb{Z}$ such that $f(x)=1$. Thus, a right inverse does not exist.
(c) The map $f(x)=x+2$ is onto. Let $g(x)=x-2$. Then $(f \circ g)(x)=f[g(x)]=f(x-2)=(x-2)+2=x$. Hence $g(x)=x-2$ is the right inverse of g.
(g) The map $f(x)=\left\{\begin{array}{ll}x, & \text { if } x \text { is even } \\ 2 x-1, & \text { if } x \text { is odd }\end{array}\right.$ is not onto since $\nexists x \in \mathbb{Z}$ such that $f(x)=3$. Therefore, f does not have a right inverse.
4. (Section 1.5, Problem 2b, 2c, 2g) For each of the following mappings $f: \mathbb{Z} \rightarrow \mathbb{Z}$, exhibit a left inverse of f with respect to the mapping composition whenever one exists.

Solution. We will use Lemma 1.24 in the textbook: A mapping f is one-to-one $\Longleftrightarrow f$ has a left inverse.
(b) The mapping $f(x)=3 x$ is one-to-one because $f(x)=f(y) \Longleftrightarrow 3 x=3 y \Longrightarrow x=y$. Thus, a left inverse exists. Define $g: \mathbb{Z} \rightarrow \mathbb{Z}$ by

$$
g(x)= \begin{cases}\frac{x}{3}, & \text { if } x \text { is a multiple of } 3 \\ 1, & \text { if otherwise }\end{cases}
$$

Then $(g \circ f)(x)=g[f(x)]=g(3 x)=\frac{(3 x)}{3}=x$. Hence, g is the left inverse of f.
(c) The map $f(x)=x+2$ is one-to-one because $f(x)=f(y) \Longleftrightarrow x+2=y+2 \Longleftrightarrow x=y$. Thus, f has a left inverse. Define $g: \mathbb{Z} \rightarrow \mathbb{Z}$ by $g(x)=x-2$. Then $(g \circ f)(x)=g[f(x)]=g(x+2)=(x+2)-2=x$. So g is the left inverse of f.
(g) Let us first determine if the map $f(x)=\left\{\begin{array}{ll}x, & \text { if } x \text { is even } \\ 2 x-1, & \text { if } x \text { is odd }\end{array}\right.$ is one-to-one. We consider the following cases:

Case 1: x and y are both even. $f(x)=f(y) \Longleftrightarrow x=y$. So f is injective.
Case 2: x and y are both odd. $f(x)=f(y) \Longleftrightarrow 2 x-1=2 y-1 \Longleftrightarrow x=y$. So f is injective.
Case 3: x is even and y is odd. $f(x)=f(y) \Longleftrightarrow x=2 y-1$, which cannot hold since the left-hand side will always be an odd number, $\forall y \in \mathbb{Z}$, and thus can never equal the right-hand side (an even number). Therefore, we do not consider this case when determining the injectivity of f.

Because f is injective in the first two cases, we know that a left inverse exists. Define $g: \mathbb{Z} \rightarrow \mathbb{Z}$ by

$$
g(x)= \begin{cases}x, & \text { if } x \text { is even } \\ \frac{x+1}{2}, & \text { if } x \text { is odd }\end{cases}
$$

We now check that g is the left inverse of f. When x is even, we have $(g \circ f)(x)=g[f(x)]=g(x)=x$. When x is odd, we have $(g \circ f)(x)=g[f(x)]=g(2 x-1)=\frac{(2 x-1)+1}{2}=x$. In both cases, we see that $(g \circ f)=i d_{\mathbb{Z}}$. So g is the left inverse of f.
5. (Section 1.5, Problem 4) Let $f: A \rightarrow A$, where A is nonempty. Prove that f has a left inverse if and only if $f^{-1}(f(S))=S$ for every subset S of A.

Proof. \Longrightarrow Assume that f has a left inverse, denoted by f^{-1}. This means for every subset S of A, $f^{-1}(f(S))=\left(f^{-1} \circ f\right)(S)=i d_{A}(S)=S$. Thus $f^{-1}(f(S))=S$.
\Longleftarrow Now assume that $f^{-1}(f(S))=S$ for every subset S of A. This implies that $\left(f^{-1} \circ f\right)=i d_{A}$. Hence f has a left inverse.
7. (Section 1.7, Problem 1) The relations in parts (a), (b), (d), and (e) are all relations because each element $a \in A$ gets mapped to a unique $b \in A$ such that (a, b) is in the relation. The relation is part (c) is not a mapping because the element 1 is related to three different values, i.e. $1 R 1,1 R 3$, and $1 R 5$. The relation in part (f) is not a mapping because 5 is related to three different values, i.e. $5 R 1,5 R 3$, and $5 R 5$.
8. (Section 1.7, Problem 2a, 2c, 2g) In each of the following parts, a relation R is defined on the set \mathbb{Z}. Determine in each case whether or not R is reflexive, symmetric, or transitive. Justify your answers.

Solution.
(a) $x R y$ if and only if $x=2 y$
R is not reflexive because if $x=1$, then $1 \neq 2(1)$.
R is not symmetric. Let $x=4$ and $y=2$. We have that $4=2(2)$, but $2 \neq 2(4)$.
R is not transitive. Let $x=4, y=2$ and $z=1$. Then $4=2(2)$ and $2=2(1)$. But $4 \neq 2(1)$.
(c) $x R y$ if and only if $y=x k$ for some $k \in \mathbb{Z}$
R is reflexive. We have that $x=x \cdot 1$, where $k=1$.
R is not symmetric. Let $x=1$ and $y=3$. Then $x R y$ because $3=1 \cdot 3$. But there cannot exist $k \in \mathbb{Z}$ such that $1=3 k$.
R is transitive. Assume $x R y$ and $y R z$. This means that $\exists k, k^{\prime} \in \mathbb{Z}$ such that $y=x k$ and $z=y k^{\prime}$. Then $z=x\left(k k^{\prime}\right)$, and $x R z$.
(g) $x R y$ if and only if $|x| \leq|y+1|$
R is not reflexive. Let $x=-2$. Then $|-2| \leq|-2+1|$ is a false statement.
R is not symmetric. Let $x=2$ and $y=4$. Then $x R y$ because $|2| \leq|4+1|$. But $|4|$ is not less than or equal to $|2+1|$.
R is not transitive. Let $x=4, y=3$, and $z=2$. Then $x R y$ and $y R z$ because $|4| \leq|3+1|$ and $|3| \leq|2+1|$. But 4 is not less than or equal to $|2+1|$.

