UH - Math 3330 - Dr. Heier - Spring 2014 HW 3 - Solutions to Selected Homework Problems by Angelynn Alvarez

1. (Section 1.7, Problem 8) Prove that
$x R y$ if and only if $x+3 y$ is a multiple of 4
is an equivalence relation.
Proof. To prove R is an equivalence relation, we must show that it is reflexive, symmetric, and transitive.
Reflexive: $x+3 x=4 x$, which is a multiple of 4 . So $x R x$, and R is reflexive.
Symmetric: Assume $x R y$-that is $x+3 y$ is a multiple of 4 . This means that $\exists k \in \mathbb{Z}$ such that $x+3 y=4 k$. So $x=4 k-3 y$. Thus,

$$
y+3 x=y+3(4 k-3 y)=12 k-8 y=4(4 k-2 y)
$$

Because $(4 k-2 y) \in \mathbb{Z}, y+3 x$ is a multiple of 4 . Hence, $y R x$ and R is symmetric.
Transitive: Assume $x R y$ and $y R z$. This means that $\exists k, m \in \mathbb{Z}$ such that $x+3 y=4 k$ and $y+3 z=4 m$. Then $x+3 y+y+3 z=4 k+4 m$, which implies

$$
x+3 z=4 k+4 m-4 y=4(k+m-y)
$$

Because $4(k+m-y) \in \mathbb{Z}, x+3 z$ is a multiple of 4 . So $x R z$ and R is transitive.
5. (Section 2.2, Problem 39) Prove that $1+2 n<2^{n}$, for all integers $n \geq 3$.

Proof. When $n=3$, the LHS becomes $1+2(3)=7$, and the RHS becomes $2^{3}=8$. Because $7<8$, the given statement is true for $n=3$.

Now assume that the statement holds true for $n=k$ - that is, $1+2 k<2^{k}$ holds true $\forall k \geq 3$. Now we must prove that the statement holds when $n=k+1$. We have

$$
\begin{aligned}
1+2(k+1)=1+2 k+2 & <2^{k}+2 \quad(\text { by our assumption }) \\
& <2^{k}+2^{k} \quad(\text { because } k \geq 3) \\
& =2\left(2^{k}\right) \\
& =2^{k+1}
\end{aligned}
$$

Therefore, $1+2 n<2^{n}, \forall n \geq 3$.
6. (Section 2.2, Problem 45) Show that if the statement

$$
1+2+2^{2}+\cdots+2^{n-1}=2^{n}
$$

is assumed to be true for $n=k$, then it can be proved to be true for $n=k+1$. Is the statement true for all positive integers n ? Why?

Solution. Assume that the statement holds true for $n=k$ - that is

$$
1+2+2^{2}+\cdots+2^{k-1}=2^{k}
$$

is true. So adding 2^{k} to both sides of the equation above yields

$$
1+2+2^{2}+\cdots+2^{k-1}+2^{k}=2^{k}+2^{k}=2\left(2^{k}\right)=2^{k+1}
$$

Thus, the statement is true for $n=k+1$.
No, the statement is not true for all positive integers n. When $n=1$, the LHS is $2^{1-1}=2^{0}=1$, and the RHS is $2^{1}=2$. Because $1 \neq 2$, the statement is not true.
8. (Section 2.3, Problem 14) With $a=-5316$ and $b=171$, find the q and r that satisfy the conditions in the Division Algorithm.

Solution. Using the Division Algorithm for $a_{0}=5316$ and $b=171$, we get

$$
5316=171(31)+15
$$

Now, for $a=-5316$ and $b=171$, we simply multiply both sides of the equation above by (-1). This gives us

$$
-5316=171(-31)+(-15)
$$

Note that the Division Algorithm requires that $0 \leq r<b$. So, to obtain an expression with positive remainder, we add and subtract 171 to the RHS of the equation. This yields

$$
-5316=171(-31)+(-15)=171(-31)+171(-1)+(-15)+171=171(-32)+156
$$

Therefore, $q=-32$ and $r=156$ are the values of q and r which satisfy the conditions of the Division Algorithm.
9. (Section 2.3, Problem 25) Let a, b, c be integers. Prove or disprove that $a \mid b c$ implies $a \mid b$ or $a \mid c$.

Solution. This statement is false. We will disprove this using a counterexample: Let $a=10, b=5$, and $c=2$. We have that $10 \mid(5 \cdot 2)$, but $10 \nmid 5$ and $10 \nmid 2$.

