UH - Math 3330 - Dr. Heier - Spring 2014 HW 4 - Solutions to Selected Homework Problems by Angelynn Alvarez

1. (Section 2.4, Problem 3 (d) and (e)) Find the great common divisor (a, b) and integers m and n such that $(a, b)=a m+b n$.
(d) $a=52, b=124$.

Solution. Note that $a=52=4 \times 13$ and $b=124=4 \times 31$. Thus, $(52,124)=4$.
Using the Divsion Algorithm, we have

$$
124=52(2)+20, \quad 52=20(2)+12, \quad 20=12(1)+8, \quad 12=8(1)+4, \quad 8=4(2)
$$

Thus,

$$
\begin{aligned}
4 & =12-8 \\
& =12-(20-12) \\
& =2(12)-20 \\
& =2(52-2(20))-20 \\
& =2(52)-5(20) \\
& =2(52)-5(124-52(2)) \\
& =12(52)-5(124)
\end{aligned}
$$

Thus, $m=12$ and $n=-5$.
(e) $a=414, b=-33$

Solution. Note that $a=414=2(3)(3)(23)$, and $b=-33=3(-11)$. Thus, $(414,-33)=3$
By the Division Algorithm, we have

$$
414=(-33)(-12)+18, \quad-33=18(-2)+3, \quad 18=3(6)
$$

Thus,

$$
\begin{aligned}
3 & =-33+18(2) \\
& =-33+(414-33(12))(2) \\
& =-25(33)+2(414) \\
& =25(-33)+2(414)
\end{aligned}
$$

Thus, $m=2$ and $n=25$.
4. (Section 2.4, Problem 8) Let a, b, and c be integers such that $a \neq 0$. Prove that if $a \mid b c$, then $a \mid c \cdot(a, b)$.

Proof. We know that there exists $m, n \in \mathbb{Z}$ such that $(a, b)=a m+b n$. Multiplying both sides by c yields

$$
c \cdot(a, b)=c a m+c b n=a c m+b c n
$$

Because $a \mid b c, \exists k \in \mathbb{Z}$ such that $b c=a k$. After substituting, we have

$$
c \cdot(a, b)=a c m+a k n=a(c m+k n)
$$

Since $c m+k n \in \mathbb{Z}, a \mid c \cdot(a, b)$.
5. (Section 2.4, Problem 11) Prove that if $d=(a, b), a \mid c$ and $b \mid c$, then $a b \mid c d$.

Proof. Assume that $a \mid c$ and $b \mid c$. This means that $\exists k, l \in \mathbb{Z}$ such that $c=a k$ and $c=b l$. Also, because $d=(a, b)$, then $\exists m, n \in \mathbb{Z}$ such that $d=a m+b n$. Therefore,

$$
\begin{aligned}
c d & =c(a m+b n) \\
& =c a m+b c n \\
& =b l(a m)+a k(b n) \\
& =a b(l m+k n)
\end{aligned}
$$

Thus, $a b \mid c d$.
7. (Section 2.4, Problem 21) Let $(a, b)=1$. Prove $\left(a^{2}, b^{2}\right)=1$.

Proof. Let $d=\left(a^{2}, b^{2}\right)$ and assume $(a, b)=1$.For sake of contradiction, assume that $d \neq 1$. Because it is not equal to 1 , then there exists a prime $p \in \mathbb{Z}$ such that $p \mid d$. Because $p \mid d$ and $d \mid a^{2}$, then transitivity implies that $p \mid a^{2}$. Thus, $p \mid a$. Similarly, because $p \mid d$ and $d \mid b^{2}$, then $p \mid b^{2}$. So $p \mid b$. Hence, $p \mid a$ and $p \mid b$. Because $1=(a, b), p \mid 1 \Longleftrightarrow p=1$-but we assumed p is prime. \& Thus, $d=\left(a^{2}, b^{2}\right)=1$.
9. (Section 2.5, Problem 7) Find a solution $x \in \mathbb{Z}, 0 \leq x<n$ for the following congruence $a x=b(\operatorname{modn})$. Note that a and n are relatively prime.

$$
8 x \equiv 1(\bmod 21)
$$

Solution. First note that 8 and 21 are relatively prime, i.e. $(8,21)=1$. Thus, $\exists m, n \in \mathbb{Z}$ such that $1=8 m+21 n$. Using the Division algorithm, we have

$$
21=8(2)+5, \quad 8=5(1)+3, \quad 5=3(1)+2, \quad 3=2(1)+1, \quad 2=1(2)
$$

Solving for the remainders yields

$$
5=21-8(2), \quad 3=8-5(1), \quad 2=5-3(1), \quad 1=3-2(1)
$$

Therefore, we get

$$
\begin{aligned}
1 & =3-2(1) \\
& =3-[5-3(1)](1) \\
& =3(2)+5(-1) \\
& =[8-5(1)](2)+5(-1) \\
& =8(2)+5(-3) \\
& =8(2)+[21-8(2)](-3) \\
& =8(8)+21(-3)
\end{aligned}
$$

Hence, $21 \mid(1-8(8))$, and $1 \equiv 8(8)(\bmod 21)$. So $x=8$.

