UH - Math 3330 - Dr. Heier - Spring 2014 HW 4 - Solutions to *Selected* Homework Problems by Angelynn Alvarez

1. (Section 2.4, Problem 3 (d) and (e)) Find the great common divisor (a, b) and integers m and n such that (a, b) = am + bn.

(d)
$$a = 52, b = 124$$
.
Solution. Note that $a = 52 = 4 \times 13$ and $b = 124 = 4 \times 31$. Thus, $(52, 124) = 4$.
Using the Divsion Algorithm, we have

$$124 = 52(2) + 20$$
, $52 = 20(2) + 12$, $20 = 12(1) + 8$, $12 = 8(1) + 4$, $8 = 4(2)$

Thus,

$$4 = 12 - 8$$

= 12 - (20 - 12)
= 2(12) - 20
= 2(52 - 2(20)) - 20
= 2(52) - 5(20)
= 2(52) - 5(124 - 52(2))
= 12(52) - 5(124)

Thus, m = 12 and n = -5.

(e) a = 414, b = -33Solution. Note that a = 414 = 2(3)(3)(23), and b = -33 = 3(-11). Thus, (414, -33) = 3By the Division Algorithm, we have

$$414 = (-33)(-12) + 18, -33 = 18(-2) + 3, 18 = 3(6)$$

Thus,

$$3 = -33 + 18(2)$$

= -33 + (414 - 33(12))(2)
= -25(33) + 2(414)
= 25(-33) + 2(414)

Thus, m = 2 and n = 25.

4. (Section 2.4, Problem 8) Let a, b, and c be integers such that $a \neq 0$. Prove that if $a \mid bc$, then $a \mid c \cdot (a, b)$.

Proof. We know that there exists $m, n \in \mathbb{Z}$ such that (a, b) = am + bn. Multiplying both sides by c yields $c \cdot (a, b) = cam + cbn = acm + bcn$

Because $a \mid bc, \exists k \in \mathbb{Z}$ such that bc = ak. After substituting , we have

$$c \cdot (a,b) = acm + akn = a(cm + kn)$$

Since $cm + kn \in \mathbb{Z}$, $a \mid c \cdot (a, b)$.

5. (Section 2.4, Problem 11) Prove that if d = (a, b), $a \mid c$ and $b \mid c$, then $ab \mid cd$.

Proof. Assume that $a \mid c$ and $b \mid c$. This means that $\exists k, l \in \mathbb{Z}$ such that c = ak and c = bl. Also, because d = (a, b), then $\exists m, n \in \mathbb{Z}$ such that d = am + bn. Therefore,

$$cd = c(am + bn)$$

= cam + bcn
= bl(am) + ak(bn)
= ab(lm + kn)

Thus, $ab \mid cd$.

7. (Section 2.4, Problem 21) Let (a, b) = 1. Prove $(a^2, b^2) = 1$.

Proof. Let $d = (a^2, b^2)$ and assume (a, b) = 1. For sake of contradiction, assume that $d \neq 1$. Because it is not equal to 1, then there exists a prime $p \in \mathbb{Z}$ such that $p \mid d$. Because $p \mid d$ and $d \mid a^2$, then transitivity implies that $p \mid a^2$. Thus, $p \mid a$. Similarly, because $p \mid d$ and $d \mid b^2$, then $p \mid b^2$. So $p \mid b$. Hence, $p \mid a$ and $p \mid b$. Because $1 = (a, b), p \mid 1 \iff p = 1$ —but we assumed p is prime. \notin Thus, $d = (a^2, b^2) = 1$.

9. (Section 2.5, Problem 7) Find a solution $x \in \mathbb{Z}, 0 \le x < n$ for the following congruence ax = b(modn). Note that a and n are relatively prime.

$$8x \equiv 1 \pmod{21}$$

Solution. First note that 8 and 21 are relatively prime, i.e. (8, 21) = 1. Thus, $\exists m, n \in \mathbb{Z}$ such that 1 = 8m + 21n. Using the Division algorithm, we have

$$21 = 8(2) + 5$$
, $8 = 5(1) + 3$, $5 = 3(1) + 2$, $3 = 2(1) + 1$, $2 = 1(2)$

Solving for the remainders yields

$$5 = 21 - 8(2), 3 = 8 - 5(1), 2 = 5 - 3(1), 1 = 3 - 2(1)$$

Therefore, we get

$$1 = 3 - 2(1)$$

= 3 - [5 - 3(1)](1)
= 3(2) + 5(-1)
= [8 - 5(1)](2) + 5(-1)
= 8(2) + 5(-3)
= 8(2) + [21 - 8(2)](-3)
= 8(8) + 21(-3)

Hence, $21 \mid (1 - 8(8))$, and $1 \equiv 8(8) \pmod{21}$. So x = 8.