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2. (Section 2.5, Problem 17) Find a solution z € Z 0 < z < n, for the following congruence.
25z = 31(mod7)

Solution. Because ged(25,7) = 1, we know there exists s, ¢ € Z such that 1 = 25s + 7¢t. Using the Division
Algorithm yields
25=7(3)+4, 7=4(1)+3, 4=3(1)+1, 3=1(3)
Thus,
4=25-7(3), 3=7—4(1), 1=4-3(1)
When we substitute, we get
1=4-3(1)

=4—(T-4(1))(1)

=4(2)+7(-1

=(25-"7(3))(2) +7(-1)

=25(2) +7(=7)
So 1 =25(2) + 7(—7). Multiplying by 31 gives us

31 = 25(62) + 7(—217)
Therefore, 31 = (25)(62)(mod7), so & = 62 is a solution. Note that we need 0 < z < 7. Because
[62]7 = [6]7, we have that is the solution.

3. (Problem 2.5, Section 32) Prove or disprove that if n is odd, then n? = 1(mod8).
Solution. This statement is indeed true.

Proof. Assume n is odd. So 3 k € Z such that n = 2k + 1. Therefore
n?—1=02k+1)2 -1 =4k +4k+ 1 — 1 = 4k> + 4k = 4k(k + 1)

Consider two cases: (1) k is odd, and (2) k is even. If k is odd, then k + 1 is even. Thus, k(k + 1) is
even. If k is even, then k + 1 is odd. Thus k(k + 1) is again even. Thus, in both cases, k(k + 1) is even.
Therefore, 3 m € Z such that k(k + 1) = 2m. Hence, n? — 1 = 4k(k + 1) = 4(2m) = 8m. Therefore,
8| (n? —1) and n? = 1(mod8). O

4. (Section 2.5, Problem 53b) Solve the following system of congruences.
x = 4(mod5)
z = 2(mod3)

Solution. From the first congruence, x = 4(mod5), we have that 3 k € Z such that x = 445k. Substituting
this into the second congruence yields

44 5k =2(mod3) & 1+ 2 = 2(mod3) & 2k =2 — 1(mod3) = 1(mod3)



Hence, k = 2(mod3). Therefore, x = 4 4+ 5(2) = 14, and ’x = 14(mod5 - 3) ‘ gives all solutions to the
system of congruences.

6. (Section 2.5, Problem 53g) Solve the following system of congruences.

= 2(mod3)
x = 2(mod5)
x = 4(mod7)
x = 3(mody)

Solution. From the first congruence, z = 2(mod3), we know that 3 k& € Z such that x = 2 + 3k.
Substituting this for z into the second congruence, x = 2(mod5), gives us
2 + 3k = 2(mod5) < 3k = 0(modb) < k = 0(modb)

Therefore, x = 2(mod15) solves the first two congruences. Now we pair the solution with congruence (3).
So our system of congruences becomes

z = 2(mod15)

x = 4(mod7)
From the solution to the first two congruences, we know that 31 € Z such that x = 2 4 15[. Substituting
this into the third congruence gives us

2 4+ 151 = 4(mod7) < 151 = 2(mod7) < | = 2(mod7)
Hence z = 2 4 15(2) = 32, and = 32(mod7 - 15) solves the first three congruences. Finally, pairing this
solution with the last congruence, z = 3(mod8), gives us
x = 32(mod7 - 15)
x = 3(mod8)
From the solution to the first three congruences, we know that 94 m € Z such that x = 32 + 105m.
Substituting this into the fourth congruence yields

32 4+ 105k = 3(mod8) < 0+ k = 3(mod8)

Hence, x = 32 + 105(3) = 347. Therefore, ’a: = 347(mod840) ‘ solves the system of congruences.

7. (Section 2.6, Problem 11) Solve the following system of equations in Z7.
2)[x] + [y] = [4], [2][z] + [4][y] = [5]

Solution. Subtracting the top equation from the bottom equation results in us eliminating [z] and the

equation

which simplifies to [3][y] = [1].
Thus y = [1][3]~!. Now we must find that [3]7! is in Z7. To do so, we use the Division Algorithm on the
numbers 3 and 7. This gives us

T=3(2)+1, 3=3(1)
Solving for the nonzero remainder ylelds 1 =7-32) = 3(-2)+ 7. Thus, [3][-2] = [1], and
3171 = [~2] = [5] in Z7. Thus, y = [1][3]~" = [1][5] = [5].
Now we must solve for [z]. Substituting [y] = [5] into the first equations yields

2][z] + [5] = [5] <= [2l[2] = [4] - [5] = [-1] = [6]



Thus, = [2]7![6]. Because [2]~! = [4] in Z;, we have that z = [2]71[6] = [4][6] = [24] = [3] Therefore,
the solution to the system is ’ [z] = [3] and [y] = [5] ‘

9. (Section 2.6, Problem 20) Let p be a prime integer. Prove that [1] and [p — 1] are the only
elements in Z, that are their own multiplicative inverses.

Proof. Assume p is a prime integer. Then

[t = [1], and [p—1][p—1] = [-1][-1] = [1]

in Z,, Thus [1] and [p — 1] are their own inverses.

Now we must show that these two are the only elements that are their own inverses. Let x € Z,.
Assume that x is its own inverse—that is,

[#][2] = [+%] = [1]
Thus,
(7] =1=[0] & [+* = 1] = [0] & [(z + 1)(z = 1] = [0] & [+ 1][z — 1] = [0]
Because p is prime, Z, has no zero divisors. Thus, if [z + 1][z — 1] = [0], then either [x + 1] = [0] or
[x—1] =0. So [z] = [-1] = [p— 1] or [z] = [1]. Hence, the only elements in Z, which are their own

multiplicative inverses are [1] and [p — 1]. O



