UH - Math 3330 - Dr. Heier - Spring 2014 HW 5 - Solutions to Selected Homework Problems by Angelynn Alvarez

2. (Section 2.5, Problem 17) Find a solution $x \in \mathbb{Z} 0 \leq x<n$, for the following congruence.

$$
25 x \equiv 31(\bmod 7)
$$

Solution. Because $\operatorname{gcd}(25,7)=1$, we know there exists $s, t \in \mathbb{Z}$ such that $1=25 s+7 t$. Using the Division Algorithm yields

$$
25=7(3)+4, \quad 7=4(1)+3, \quad 4=3(1)+1, \quad 3=1(3)
$$

Thus,

$$
4=25-7(3), \quad 3=7-4(1), \quad 1=4-3(1)
$$

When we substitute, we get

$$
\begin{aligned}
1 & =4-3(1) \\
& =4-(7-4(1))(1) \\
& =4(2)+7(-1) \\
& =(25-7(3))(2)+7(-1) \\
& =25(2)+7(-7)
\end{aligned}
$$

So $1=25(2)+7(-7)$. Multiplying by 31 gives us

$$
31=25(62)+7(-217)
$$

Therefore, $31 \equiv(25)(62)(\bmod 7)$, so $x=62$ is a solution. Note that we need $0 \leq x<7$. Because $[62]_{7}=[6]_{7}$, we have that $x=6$ is the solution.
3. (Problem 2.5, Section 32) Prove or disprove that if n is odd, then $n^{2} \equiv 1(\bmod 8)$.

Solution. This statement is indeed true.

Proof. Assume n is odd. So $\exists k \in \mathbb{Z}$ such that $n=2 k+1$. Therefore

$$
n^{2}-1=(2 k+1)^{2}-1=4 k^{2}+4 k+1-1=4 k^{2}+4 k=4 k(k+1)
$$

Consider two cases: (1) k is odd, and (2) k is even. If k is odd, then $k+1$ is even. Thus, $k(k+1)$ is even. If k is even, then $k+1$ is odd. Thus $k(k+1)$ is again even. Thus, in both cases, $k(k+1)$ is even. Therefore, $\exists m \in \mathbb{Z}$ such that $k(k+1)=2 m$. Hence, $n^{2}-1=4 k(k+1)=4(2 m)=8 m$. Therefore, $8 \mid\left(n^{2}-1\right)$ and $n^{2} \equiv 1(\bmod 8)$.
4. (Section 2.5, Problem 53b) Solve the following system of congruences.

$$
\begin{aligned}
& x \equiv 4(\bmod 5) \\
& x \equiv 2(\bmod 3)
\end{aligned}
$$

Solution. From the first congruence, $x \equiv 4(\bmod 5)$, we have that $\exists k \in \mathbb{Z}$ such that $x=4+5 k$. Substituting this into the second congruence yields

$$
4+5 k \equiv 2(\bmod 3) \Leftrightarrow 1+2 \equiv 2(\bmod 3) \Leftrightarrow 2 k \equiv 2-1(\bmod 3)=1(\bmod 3)
$$

Hence, $k=2(\bmod 3)$. Therefore, $x=4+5(2)=14$, and $x \equiv 14(\bmod 5 \cdot 3)$ gives all solutions to the system of congruences.
6. (Section 2.5, Problem 53g) Solve the following system of congruences.

$$
\begin{aligned}
& x \equiv 2(\bmod 3) \\
& x \equiv 2(\bmod 5) \\
& x \equiv 4(\bmod 7) \\
& x \equiv 3(\bmod 8)
\end{aligned}
$$

Solution. From the first congruence, $x \equiv 2(\bmod 3)$, we know that $\exists k \in \mathbb{Z}$ such that $x=2+3 k$. Substituting this for x into the second congruence, $x \equiv 2(\bmod 5)$, gives us

$$
2+3 k \equiv 2(\bmod 5) \Leftrightarrow 3 k \equiv 0(\bmod 5) \Leftrightarrow k \equiv 0(\bmod 5)
$$

Therefore, $x \equiv 2(\bmod 15)$ solves the first two congruences. Now we pair the solution with congruence (3). So our system of congruences becomes

$$
\begin{gathered}
x \equiv 2(\bmod 15) \\
x \equiv 4(\bmod 7)
\end{gathered}
$$

From the solution to the first two congruences, we know that $\exists l \in \mathbb{Z}$ such that $x=2+15 l$. Substituting this into the third congruence gives us

$$
2+15 l \equiv 4(\bmod 7) \Leftrightarrow 15 l \equiv 2(\bmod 7) \Leftrightarrow l \equiv 2(\bmod 7)
$$

Hence $x=2+15(2)=32$, and $x \equiv 32(\bmod 7 \cdot 15)$ solves the first three congruences. Finally, pairing this solution with the last congruence, $x \equiv 3(\bmod 8)$, gives us

$$
\begin{gathered}
x \equiv 32(\bmod 7 \cdot 15) \\
x \equiv 3(\bmod 8)
\end{gathered}
$$

From the solution to the first three congruences, we know that $\exists m \in \mathbb{Z}$ such that $x=32+105 m$. Substituting this into the fourth congruence yields

$$
32+105 k \equiv 3(\bmod 8) \Leftrightarrow 0+k \equiv 3(\bmod 8)
$$

Hence, $x=32+105(3)=347$. Therefore, $x \equiv 347(\bmod 840)$ solves the system of congruences.
7. (Section 2.6, Problem 11) Solve the following system of equations in \mathbb{Z}_{7}.

$$
[2][x]+[y]=[4], \quad[2][x]+[4][y]=[5]
$$

Solution. Subtracting the top equation from the bottom equation results in us eliminating $[x]$ and the equation

$$
[4][y]-[y]=[5]-[4]
$$

which simplifies to $[3][y]=[1]$.
Thus $y=[1][3]^{-1}$. Now we must find that $[3]^{-1}$ is in \mathbb{Z}_{7}. To do so, we use the Division Algorithm on the numbers 3 and 7 . This gives us

$$
7=3(2)+1, \quad 3=3(1)
$$

Solving for the nonzero remainder yields $1=7-3(2)=3(-2)+7$. Thus, $[3][-2]=[1]$, and $[3]^{-1}=[-2]=[5]$ in \mathbb{Z}_{7}. Thus, $y=[1][3]^{-1}=[1][5]=[5]$.

Now we must solve for $[x]$. Substituting $[y]=[5]$ into the first equations yields

$$
[2][x]+[5]=[5] \Longleftrightarrow[2][x]=[4]-[5]=[-1]=[6]
$$

Thus, $x=[2]^{-1}[6]$. Because $[2]^{-1}=[4]$ in \mathbb{Z}_{7}, we have that $x=[2]^{-1}[6]=[4][6]=[24]=[3]$ Therefore, the solution to the system is $[x]=[3]$ and $[y]=[5]$.
9. (Section 2.6, Problem 20) Let p be a prime integer. Prove that [1] and $[p-1]$ are the only elements in \mathbb{Z}_{p} that are their own multiplicative inverses.

Proof. Assume p is a prime integer. Then

$$
[1][1]=[1], \text { and }[p-1][p-1]=[-1][-1]=[1]
$$

in \mathbb{Z}_{p}, Thus [1] and $[p-1]$ are their own inverses.
Now we must show that these two are the only elements that are their own inverses. Let $x \in \mathbb{Z}_{p}$. Assume that x is its own inverse - that is,

$$
[x][x]=\left[x^{2}\right]=[1]
$$

Thus,

$$
\left[x^{2}\right]-1=[0] \Leftrightarrow\left[x^{2}-1\right]=[0] \Leftrightarrow[(x+1)(x-1]=[0] \Leftrightarrow[x+1][x-1]=[0]
$$

Because p is prime, \mathbb{Z}_{p} has no zero divisors. Thus, if $[x+1][x-1]=[0]$, then either $[x+1]=[0]$ or $[x-1]=0$. So $[x]=[-1]=[p-1]$ or $[x]=[1]$. Hence, the only elements in \mathbb{Z}_{p} which are their own multiplicative inverses are [1] and $[p-1]$.

