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2. (Section 2.5, Problem 17) Find a solution x ∈ Z 0 ≤ x < n, for the following congruence.

25x ≡ 31(mod7)

Solution. Because gcd(25, 7) = 1, we know there exists s, t ∈ Z such that 1 = 25s+ 7t. Using the Division
Algorithm yields

25 = 7(3) + 4, 7 = 4(1) + 3, 4 = 3(1) + 1, 3 = 1(3)

Thus,

4 = 25− 7(3), 3 = 7− 4(1), 1 = 4− 3(1)

When we substitute, we get

1 = 4− 3(1)

= 4− (7− 4(1))(1)

= 4(2) + 7(−1)

= (25− 7(3))(2) + 7(−1)

= 25(2) + 7(−7)

So 1 = 25(2) + 7(−7). Multiplying by 31 gives us

31 = 25(62) + 7(−217)

Therefore, 31 ≡ (25)(62)(mod7), so x = 62 is a solution. Note that we need 0 ≤ x < 7. Because

[62]7 = [6]7, we have that x = 6 is the solution.

3. (Problem 2.5, Section 32) Prove or disprove that if n is odd, then n2 ≡ 1(mod8).

Solution. This statement is indeed true.

Proof. Assume n is odd. So ∃ k ∈ Z such that n = 2k + 1. Therefore

n2 − 1 = (2k + 1)2 − 1 = 4k2 + 4k + 1− 1 = 4k2 + 4k = 4k(k + 1)

Consider two cases: (1) k is odd, and (2) k is even. If k is odd, then k + 1 is even. Thus, k(k + 1) is
even. If k is even, then k + 1 is odd. Thus k(k + 1) is again even. Thus, in both cases, k(k + 1) is even.
Therefore, ∃ m ∈ Z such that k(k + 1) = 2m. Hence, n2 − 1 = 4k(k + 1) = 4(2m) = 8m. Therefore,
8 | (n2 − 1) and n2 ≡ 1(mod8). �

4. (Section 2.5, Problem 53b) Solve the following system of congruences.

x ≡ 4(mod5)

x ≡ 2(mod3)

Solution. From the first congruence, x ≡ 4(mod5), we have that ∃ k ∈ Z such that x = 4+5k. Substituting
this into the second congruence yields

4 + 5k ≡ 2(mod3)⇔ 1 + 2 ≡ 2(mod3)⇔ 2k ≡ 2− 1(mod3) = 1(mod3)



Hence, k = 2(mod3). Therefore, x = 4 + 5(2) = 14, and x ≡ 14(mod5 · 3) gives all solutions to the

system of congruences.

6. (Section 2.5, Problem 53g) Solve the following system of congruences.

x ≡ 2(mod3)

x ≡ 2(mod5)

x ≡ 4(mod7)

x ≡ 3(mod8)

Solution. From the first congruence, x ≡ 2(mod3), we know that ∃ k ∈ Z such that x = 2 + 3k.
Substituting this for x into the second congruence, x ≡ 2(mod5), gives us

2 + 3k ≡ 2(mod5)⇔ 3k ≡ 0(mod5)⇔ k ≡ 0(mod5)

Therefore, x ≡ 2(mod15) solves the first two congruences. Now we pair the solution with congruence (3).
So our system of congruences becomes

x ≡ 2(mod15)

x ≡ 4(mod7)

From the solution to the first two congruences, we know that ∃ l ∈ Z such that x = 2 + 15l. Substituting
this into the third congruence gives us

2 + 15l ≡ 4(mod7)⇔ 15l ≡ 2(mod7)⇔ l ≡ 2(mod7)

Hence x = 2 + 15(2) = 32, and x ≡ 32(mod7 · 15) solves the first three congruences. Finally, pairing this
solution with the last congruence, x ≡ 3(mod8), gives us

x ≡ 32(mod7 · 15)

x ≡ 3(mod8)

From the solution to the first three congruences, we know that ∃ m ∈ Z such that x = 32 + 105m.
Substituting this into the fourth congruence yields

32 + 105k ≡ 3(mod8)⇔ 0 + k ≡ 3(mod8)

Hence, x = 32 + 105(3) = 347. Therefore, x ≡ 347(mod840) solves the system of congruences.

7. (Section 2.6, Problem 11) Solve the following system of equations in Z7.

[2][x] + [y] = [4], [2][x] + [4][y] = [5]

Solution. Subtracting the top equation from the bottom equation results in us eliminating [x] and the

equation
[4][y]− [y] = [5]− [4]

which simplifies to [3][y] = [1].
Thus y = [1][3]−1. Now we must find that [3]−1 is in Z7. To do so, we use the Division Algorithm on the
numbers 3 and 7. This gives us

7 = 3(2) + 1, 3 = 3(1)

Solving for the nonzero remainder yields 1 = 7 − 3(2) = 3(−2) + 7. Thus, [3][−2] = [1], and
[3]−1 = [−2] = [5] in Z7. Thus, y = [1][3]−1 = [1][5] = [5].

Now we must solve for [x]. Substituting [y] = [5] into the first equations yields

[2][x] + [5] = [5]⇐⇒ [2][x] = [4]− [5] = [−1] = [6]



Thus, x = [2]−1[6]. Because [2]−1 = [4] in Z7, we have that x = [2]−1[6] = [4][6] = [24] = [3] Therefore,

the solution to the system is [x] = [3] and [y] = [5] .

9. (Section 2.6, Problem 20) Let p be a prime integer. Prove that [1] and [p − 1] are the only
elements in Zp that are their own multiplicative inverses.

Proof. Assume p is a prime integer. Then

[1][1] = [1], and [p− 1][p− 1] = [−1][−1] = [1]

in Zp, Thus [1] and [p− 1] are their own inverses.

Now we must show that these two are the only elements that are their own inverses. Let x ∈ Zp.
Assume that x is its own inverse—that is,

[x][x] = [x2] = [1]

Thus,
[x2]− 1 = [0]⇔ [x2 − 1] = [0]⇔ [(x + 1)(x− 1] = [0]⇔ [x + 1][x− 1] = [0]

Because p is prime, Zp has no zero divisors. Thus, if [x + 1][x − 1] = [0], then either [x + 1] = [0] or
[x − 1] = 0. So [x] = [−1] = [p − 1] or [x] = [1]. Hence, the only elements in Zp which are their own
multiplicative inverses are [1] and [p− 1]. �


