UH - Math 3330 - Dr. Heier - Spring 2014
 HW 6 - Solutions to Selected Homework Problems by Angelynn Alvarez

3. (Section 3.1, Problem 15) Determine whether \mathbb{Z} is a group with respect to $*$, and whether it is an abelian group. State which, if any conditions fail to hold.
Solution. $(\mathbb{Z}, *)$, where $x+y+1$, is a abelian group.

Proof. We must check for closedness, associativity, existence of an identity element, and that every element has an inverse.
Let $x, y \in \mathbb{Z}$. Then by definition, $x * y=x+y+1 \in \mathbb{Z}$. Thus, \mathbb{Z} is closed under $*$.

Now let $x, y, z \in \mathbb{Z}$. Then

$$
x *(y * z)=x *(y+z+1)=x+(y+z+1)+1=(x+y+1)+z+1=(x * y)+z+1=(x * y) * z
$$

So $*$ is associative.
Let $x \in \mathbb{Z}$. Then $x *(-1)=x+-1+1=x+0=x$, and $(-1) * x=-1+x+1=0+x=x$. Thus, the identity element of $(\mathbb{Z}, *)$ is $e=-1$.

Lastly, let $x \in \mathbb{Z}$ be arbitrary. We need to find an element y such that $x * y=-1$ and $y * x=-1$. Let $y=-x-2$. We see that

$$
x *(-x-2)=x+(-x-2)+1=-1, \quad \text { and } \quad(-x-2) * x=(-x-2)+x+1=-1
$$

Thus, $y=-x-2=x^{-1}$, and every element in \mathbb{Z} has an inverse with respect to $*$.
To check commutativity, let $x, y \in \mathbb{Z}$. Using the commutativity of addition in \mathbb{Z}, we have

$$
x * y=x+y+1=y+x+1=y * x
$$

Thus, $(Z, *)$ is an abelian group.
4. (Section 3.1 Problem 27)
(a) Let $G=\{[a] \mid[a] \neq 0\} \subseteq \mathbb{Z}_{n}$. Show that G is a group with respect to multiplication in \mathbb{Z}_{n} if and only if n is prime. State the order of G.

Proof. \Longrightarrow For sake of contradiction, assume G is a group w.r.t. multiplication in \mathbb{Z}_{n} but n is not prime. If n is not prime, then there exists a nontrivial factorization, $n=a b$, where $1<a, b<n$. Considering the equivalence classes, we have $[a],[b] \in G$. Then

$$
[a][b]=[a b]=[n]=[0] \notin G
$$

This means G is not closed under multiplication, contradicting the fact that it is a group. $\&$ Thus, n must be prime.
\Longleftarrow This direction is very similar to proving the converse.

The order of G is

$$
\# G=\#\left\{\text { nonzero elements in } \mathbb{Z}_{n}, n \text { prime }\right\}=n-1
$$

(b) Construct a multiplication table for the group G for all nonzero elements in \mathbb{Z}_{7} and identify the inverse of each element.
Solution.

\times	$[1]$	$[2]$	$[3]$	$[4]$	$[5]$	$[6]$
$[1]$	$[1]$	$[2]$	$[3]$	$[4]$	$[5]$	$[6]$
$[2]$	$[2]$	$[4]$	$[6]$	$[1]$	$[3]$	$[5]$
$[3]$	$[3]$	$[6]$	$[2]$	$[5]$	$[1]$	$[4]$
$[4]$	$[4]$	$[1]$	$[5]$	$[2]$	$[6]$	$[3]$
$[5]$	$[5]$	$[3]$	$[1]$	$[6]$	$[4]$	$[2]$
$[6]$	$[6]$	$[5]$	$[4]$	$[3]$	$[2]$	$[1]$

We have that [1] is the inverse of itself, [6] is the inverse of itself, [2] and [4] are inverses of each other, and [3] and [5] are inverses of each other.
6. (Section 3.2, Problem 14) Let a and b be elements of a group G. Prove that G is abelian if any only if $(a b)^{-1}=a^{-1} b^{-1}$.

Proof. \Longrightarrow Assume G is abelian. This means that $\forall a, b, \in G, a b=b a$. By Theorem 3.4(d) in the text, we know that $(a b)^{-1}=b^{-1} a^{-1}$. Since G is abelian, $(a b)^{-1}=b^{-1} a^{-1}=a^{-1} b^{-1}$.
\Longleftarrow Now assume that $(a b)^{-1}=a^{-1} b^{-1}$. Using Theorem 3.4(d) again yields $(a b)^{-1}=a^{-1} b^{-1}=(b a)^{-1}$. Taking the inverse of both sides gives us

$$
\left((a b)^{-1}\right)^{-1}=\left((b a)^{-1}\right)^{-1}
$$

Thus $a b=b a$, and G is abelian.
8. (Section 3.2, Problem 20) Prove or disprove that every group of order 3 is abelian.

Solution. This statement is true.

Proof. Let $G=\{a, b, e\}$ be an arbitrary group of order 3 . We already know that $e a=a e=a$ and $e b=b e=b$. All to show now is that $a b=e=b a$.

For sake of contradiction, assume that $a b \neq e$-say $a b=a$. Then multiplication by the inverse of a gives us $a^{-1} a b=a^{-1} a=e$. This means that $b=e$, which means G has an order less than 3 . \& Similarly, if we let $a b=b$, we get that $a=e$, which again contradicts the order of G being 3. Because G is a group, it must be closed. So if $a b \neq a$ and $a b \neq b$, then we must have $a b=e$.

Now assume that $a b=e$. Then multiplication by a^{-1} on both sides yields

$$
a^{-1} a b=a^{-1} e \Longleftrightarrow\left(a^{-1} a\right) b=a^{-1} e \Longleftrightarrow b=a^{-1}
$$

Multiplication by a on both sides gives us

$$
b a=a^{-1} a \Longleftrightarrow b a=e
$$

Thus, $a b=e=b a$, and G is abelian.
9. (Section 3.3, Problem 2) Decide whether each of the following sets is a subgroup of $G=\{1,-1, i,-i\}$ under multiplication. If a set is not a subgroup, give a reason why it is not.
(a) The set $\{1,-1\}$ is indeed a subgroup of G.

Proof. First note that $\{1,-1\}$ is nonempty. It is also closed under multiplication. Also, the inverse of 1 is itself, and the inverse of -1 is also itself. Therefore, by Theorem 3.9, it is a subgroup.
(b) The set $\{1, i\}$ is not a subgroup of G because $i \times i=i^{2}=-1 \notin\{1, i\}$. Thus, it is not closed.
(c) The set $\{i,-i\}$ is not a subgroup of G because $i \times i=i^{2}=-1 \notin\{i,-i\}$. Thus, it is not closed.
(d) The set $\{1,-i\}$ is not a subgroup of G because $(-i) \times(-i)=i^{2}=-1 \notin\{1,-i\}$. Thus, it is not closed.

