UH - Math 3330 - Dr. Heier - Spring 2014 HW 6 - Solutions to *Selected* Homework Problems by Angelynn Alvarez

3. (Section 3.1, Problem 15) Determine whether \mathbb{Z} is a group with respect to *, and whether it is an abelian group. State which, if any conditions fail to hold. *Solution.* (\mathbb{Z} , *), where x + y + 1, is a abelian group.

Proof. We must check for closedness, associativity, existence of an identity element, and that every element has an inverse.

Let $x, y \in \mathbb{Z}$. Then by definition, $x * y = x + y + 1 \in \mathbb{Z}$. Thus, \mathbb{Z} is closed under *.

Now let $x, y, z \in \mathbb{Z}$. Then

$$x * (y * z) = x * (y + z + 1) = x + (y + z + 1) + 1 = (x + y + 1) + z + 1 = (x * y) + z + 1 = (x * y) * z + 1 = (x * y) + (x *$$

So * is associative.

Let $x \in \mathbb{Z}$. Then x * (-1) = x + -1 + 1 = x + 0 = x, and (-1) * x = -1 + x + 1 = 0 + x = x. Thus, the identity element of $(\mathbb{Z}, *)$ is e = -1.

Lastly, let $x \in \mathbb{Z}$ be arbitrary. We need to find an element y such that x * y = -1 and y * x = -1. Let y = -x - 2. We see that

$$x * (-x - 2) = x + (-x - 2) + 1 = -1$$
, and $(-x - 2) * x = (-x - 2) + x + 1 = -1$

Thus, $y = -x - 2 = x^{-1}$, and every element in \mathbb{Z} has an inverse with respect to *. To check commutativity, let $x, y \in \mathbb{Z}$. Using the commutativity of addition in \mathbb{Z} , we have

$$x * y = x + y + 1 = y + x + 1 = y * x$$

Thus, (Z, *) is an abelian group.

4. (Section 3.1 Problem 27) (a) Let $G = \{[a] \mid [a] \neq 0\} \subseteq \mathbb{Z}_n$. Show that G is a group with respect to multiplication in \mathbb{Z}_n if and only if n is prime. State the order of G.

Proof. \implies For sake of contradiction, assume G is a group w.r.t. multiplication in \mathbb{Z}_n but n is not prime. If n is not prime, then there exists a nontrivial factorization, n = ab, where 1 < a, b < n. Considering the equivalence classes, we have $[a], [b] \in G$. Then

$$[a][b] = [ab] = [n] = [0] \notin G$$

This means G is not closed under multiplication, contradicting the fact that it is a group. \notin Thus, n must be prime.

 \leftarrow This direction is very similar to proving the converse.

The order of G is

 $#G = #\{$ nonzero elements in $\mathbb{Z}_n, n \text{ prime}\} = n - 1$

(b) Construct a multiplication table for the group G for all nonzero elements in \mathbb{Z}_7 and identify the inverse of each element.

Solution.

×	[1]	[2]	[3]	[4]	[5]	[6]
[1]	[1]	[2]	[3]	[4]	[5]	[6]
[2]	[2]	[4]	[6]	[1]	[3]	[5]
[3]	[3]	[6]	[2]	[5]	[1]	[4]
[4]	[4]	[1]	[5]	[2]	[6]	[3]
[5]	[5]	[3]	[1]	[6]	[4]	[2]
[6]	[6]	[5]	[4]	[3]	[2]	[1]

We have that [1] is the inverse of itself, [6] is the inverse of itself, [2] and [4] are inverses of each other, and [3] and [5] are inverses of each other.

6. (Section 3.2, Problem 14) Let *a* and *b* be elements of a group *G*. Prove that *G* is abelian if any only if $(ab)^{-1} = a^{-1}b^{-1}$.

Proof. \implies Assume G is abelian. This means that $\forall a, b, \in G, ab = ba$. By Theorem 3.4(d) in the text, we know that $(ab)^{-1} = b^{-1}a^{-1}$. Since G is abelian, $(ab)^{-1} = b^{-1}a^{-1} = a^{-1}b^{-1}$. \implies Now assume that $(ab)^{-1} = a^{-1}b^{-1}$. Using Theorem 3.4(d) again yields $(ab)^{-1} = a^{-1}b^{-1} = (ba)^{-1}$.

Taking the inverse of both sides gives us

$$((ab)^{-1})^{-1} = ((ba)^{-1})^{-1}$$

Thus ab = ba, and G is abelian.

8. (Section 3.2, Problem 20) Prove or disprove that every group of order 3 is abelian.

Solution. This statement is true.

Proof. Let $G = \{a, b, e\}$ be an arbitrary group of order 3. We already know that ea = ae = a and eb = be = b. All to show now is that ab = e = ba.

For sake of contradiction, assume that $ab \neq e$ —say ab = a. Then multiplication by the inverse of a gives us $a^{-1}ab = a^{-1}a = e$. This means that b = e, which means G has an order less than 3. $\frac{1}{2}$ Similarly, if we let ab = b, we get that a = e, which again contradicts the order of G being 3. Because G is a group, it must be closed. So if $ab \neq a$ and $ab \neq b$, then we must have ab = e.

Now assume that ab = e. Then multiplication by a^{-1} on both sides yields

$$a^{-1}ab = a^{-1}e \iff (a^{-1}a)b = a^{-1}e \iff b = a^{-1}$$

Multiplication by a on both sides gives us

$$ba = a^{-1}a \iff ba = e$$

Thus, ab = e = ba, and G is abelian.

9. (Section 3.3, Problem 2) Decide whether each of the following sets is a subgroup of $G = \{1, -1, i, -i\}$ under multiplication. If a set is not a subgroup, give a reason why it is not.

(a) The set $\{1, -1\}$ is indeed a subgroup of G.

Proof. First note that $\{1, -1\}$ is nonempty. It is also closed under multiplication. Also, the inverse of 1 is itself, and the inverse of -1 is also itself. Therefore, by Theorem 3.9, it is a subgroup.

(b) The set $\{1, i\}$ is not a subgroup of G because $i \times i = i^2 = -1 \notin \{1, i\}$. Thus, it is not closed.

(c) The set $\{i, -i\}$ is not a subgroup of G because $i \times i = i^2 = -1 \notin \{i, -i\}$. Thus, it is not closed.

(d) The set $\{1, -i\}$ is not a subgroup of G because $(-i) \times (-i) = i^2 = -1 \notin \{1, -i\}$. Thus, it is not closed.