UH - Math 3330 - Dr. Heier - Spring 2014 HW 7 - Solutions to Selected Homework Problems by Angelynn Alvarez

1. (Section 3.3, Problem 14 g) Prove that the following subset H of $M_{2}(\mathbb{R})$ is a subgroup of the group G of all invertible matrices in $M_{2}(\mathbb{R})$ under multiplication.
(g)

$$
H=\left\{\left.\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \right\rvert\, a d-b c=1\right\}
$$

Proof. First note that when $a=d=1$ and $b=c=0$, the matrix $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ is in H, so $H \neq \emptyset$.
Now let $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ and $B=\left[\begin{array}{ll}a^{\prime} & b^{\prime} \\ c^{\prime} & d^{\prime}\end{array}\right]$ be in H. This means that $a d-b c=1$ and $a^{\prime} d^{\prime}-b^{\prime} c^{\prime}=1$. Usual matrix multiplication yields

$$
A B=\left[\begin{array}{cc}
a a^{\prime}+b c^{\prime} & a d^{\prime}+b d^{\prime} \\
c a^{\prime}+d c^{\prime} & c b^{\prime}+d d^{\prime}
\end{array}\right]
$$

Note that $\left(a a^{\prime}+b c^{\prime}\right)\left(c b^{\prime}+d d^{\prime}\right)-\left(a b^{\prime}+b d^{\prime}\right)\left(c a^{\prime}+d c^{\prime}\right)=(a d-b c)\left(a^{\prime} d^{\prime} b^{\prime} c^{\prime}\right)=(1)(1)=1$. Hence, $A B \in H$ and H is closed under multiplication.

Lastly, for any $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] \in H$, its inverse is $A^{-1}=\frac{1}{a d-b c}\left[\begin{array}{cc}d & -b \\ -c & a\end{array}\right]$, where $d a-(b c)=1$, due to the commutativity of the reals. Hence $A^{-1} \in H$. Therefore, H is a subgroup of $M_{2}(\mathbb{R})$.
3. (Section 3.3, Problem 17) (a) For any group G, the set of all elements that commute with every element of G is called the center of G and is denoted by $Z(G)$:

$$
Z(G)=\{a \in G \mid a x=x a \text { for every } x \in G\}
$$

Prove that $Z(G)$ is a subgroup of G.
(b) Let R be the equivalence relation on G defined by $x R y$ if and only if there exists an element $a \in G$ such that $y=a^{-1} x a$. If $x \in Z(G)$, find $[x]$, the equivalence class containing x.

Solution.
(a) $Z(G)$ is a subgroup of G.

Proof. First note that $Z(G)$ is nonempty because $e \in Z(G)$. Now let $a, b \in Z(G)$ and let $x \in G$ be arbitrary. Due to the associativity of G and the fact that $a x=x a$ and $b x=x b$, we have

$$
(a b)(x)=a(b x)=a(x b)=(a x)(b)=(x a)(b)=x(a b)
$$

Thus, $a b \in Z(G)$ and $Z(G)$ is closed under multiplication. Now let a^{-1} be the inverse of $a \in Z(G)$. Then

$$
a^{-1} x=a^{-1} x e=a^{-1} x\left(a a^{-1}\right)=a^{-1}(x a) a^{-1}=a^{-1}(a x) a^{-1}=\left(a^{-1}\right)(a x) a^{-1}=x a^{-1}
$$

So, $a^{-1} \in Z(G)$ and $Z(G)$ is a subgroup of G.
(b) Let $a \in Z(G)$. The equivalence class containing x is

$$
\begin{aligned}
{[x] } & =\left\{y \in G \mid y=a^{-1} x a, a \in G\right\} \\
& =\left\{y \in G \mid y=a^{-1} a x, a \in G\right\} \\
& =\{y \in G \mid y=e x, a \in G\} \\
& =\{y \in G \mid y=x\}
\end{aligned}
$$

Thus, $[x]=\{x\}$.
4. (Section 3.3, Problem 24) Let G be an abelian group. For a fixed positive integer n, let

$$
G_{n}=\left\{a \in G \mid a=x^{n} \text { for some } x \in G\right\}
$$

Prove that G_{n} is a subgroup of G.
Proof. Since $e=e^{1}, e \in G_{n}$-so $G \neq \emptyset$. Now assume $a, b \in G_{n}$. This means that $\exists x, y \in G$ such that $a=x^{n}$ and $b=y^{n}$. Consider $a b^{-1}$. Then $a b^{-1}=x^{n}\left(y^{n}\right)^{-1}$. Because $\left(x^{n}\right)^{-1}=\left(x^{-1}\right)^{n}$, we have that $a b^{-1}=x^{n}\left(y^{n}\right)^{-1}$. Since G is abelian, $a b^{-1}=\left(x y^{-1}\right)^{n}$. Thus, $a b^{-1} \in G_{n}$ and by Theorem $3.10, G_{n}$ is a subgroup of G.
5. (Section 3.4, Problem 23c, d) Let $G=\langle a\rangle$ be a cyclic group of order 24. List all the elements having each of the following orders in G.

Solution.
(c) We want to list the elements which have order 4. Because G has order 24 . we have that $a^{24}=e$. So $\left(a^{6}\right)^{4}=a^{24}=e$. Thus, a^{6} has order 4. Also, $\left(a^{18}\right)^{4}=a^{72}=\left(a^{24}\right)^{3}=e^{3}=e$. Thus, a^{18} has order 4 . Hence, the elements a^{6} and a^{18} have order 4 .
(d) We are asked to list the elements which have order 10. Because 10 does not divide 24, there is no element in G with order 10 .
6. (Section 3.4, Problem 33) If G is a cyclic group, then the equation $x^{2}=e$ has at most two distinct solutions in G.

Proof. First note that e is a solution to the given equation. If there is no other solution, then we are done. So, suppose b and c are two nontrivial solutions. Because G is cyclic, we know that $\exists a \in G$ such that $G=\langle a\rangle$. Thus, \exists integers $k, l \in \mathbb{Z}$ such that $b=a^{k}$ and $c=a^{l}$. Because, they are both solutions to the given equation, we know that $\left(a^{k}\right)^{2}=e$ and $\left(a^{l}\right)^{2}=e$. This means that the order of b is 2 and that the order of c is also 2. Thus, b and c each generate a subgroup of order 2. In particular, $\langle b\rangle=\left\langle a^{k}\right\rangle=\left\{e, a^{k}\right\}$ and $\langle c\rangle=\left\langle a^{l}\right\rangle=\left\{e, a^{l}\right\}$. But because G is cyclic, there is only one subgroup of each order. Thus $\langle b\rangle=\langle c\rangle$, and $a^{k}=a^{l}$. Hence, there is at most one nontrivial solution. Thus, the equation $x^{2}=e$ has at most two distinct solutions in G.

