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1. (Section 3.3, Problem 14g) Prove that the following subset H of M>(R) is a subgroup of the group G
of all invertible matrices in Ms(R) under multiplication.

(8)
H:{[‘; H |ad—bc:1}

Proof. First note that when a = d =1 andb = ¢ = 0, the matrix { (1) (1) } isin H, so H # ().
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Now let A= | ¢ b and B = a/ b, be in H. This means that ad —bc = 1 and a/d’ — b'c’ = 1.
c d d d
Usual matrix multiplication yields
| ad’ +b  ad + bd'
AB = { ca' +dd b +dd }

Note that (aa’ 4 bc')(eb’ + dd’) — (ab’ +bd’)(ca’ + dc’) = (ad — be)(a'd'b'¢’) = (1)(1) = 1. Hence, AB € H
and H is closed under multiplication.
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Lastly, for any A = { e d } € H, its inverse is A7" = ——- [ e a | where da — (be) = 1,
due to the commutativity of the reals. Hence A~ € H. Therefore, H is a subgroup of Ms(R). O

3. (Section 3.3, Problem 17) (a) For any group G, the set of all elements that commute with every element
of G is called the center of G and is denoted by Z(G):

Z(G) ={a € G| ax = za for every z € G}
Prove that Z(G) is a subgroup of G.

(b) Let R be the equivalence relation on G defined by xRy if and only if there exists an element
a € G such that y = a~'za. If z € Z(G), find [z], the equivalence class containing z.

Solution.
(a) Z(G) is a subgroup of G.

Proof. First note that Z(G) is nonempty because e € Z(G). Now let a,b € Z(G) and let x € G be
arbitrary. Due to the associativity of G and the fact that ax = xa and bz = xb, we have

(ab)(z) = a(bz) = a(xb) = (ax)(b) = (za)(b) = x(ab)
Thus, ab € Z(G) and Z(G) is closed under multiplication. Now let a~! be the inverse of a € Z(G). Then

a 'z =atze=a'2(aa™t) = a " (za)a”

So, a™! € Z(G) and Z(G) is a subgroup of G. O

1 1

=a Yaz)a™ = (a V) (ax)a™! = za?



(b) Let a € Z(G). The equivalence class containing z is

] ={yeGly=a’

za,a € G}
={yeG|ly=atax,a € G}
={yeGly=ex,ac G}
={yeCGly=a}

Thus, [z] = {z}.

4. (Section 3.3, Problem 24) Let G be an abelian group. For a fixed positive integer n, let
G, ={a € G|a=z" for some x € G}
Prove that G, is a subgroup of G.

Proof. Since e = €', e € G,,—s0 G # (). Now assume a,b € G,,. This means that 3 z,y € G such that
a = 2" and b = y". Consider ab~!. Then ab~! = z"(y")~1. Because (z")~! = (271)", we have that
ab=t = z"(y™)~L. Since G is abelian, ab=! = (xy~1)". Thus, ab~! € G,, and by Theorem 3.10, G,, is a
subgroup of G. O

5. (Section 3.4, Problem 23c, d) Let G = (a) be a cyclic group of order 24. List all the elements having
each of the following orders in G.

Solution.
(c) We want to list the elements which have order 4. Because G has order 24. we have that a?* = e.
So (a%)* = a** = e. Thus, a has order 4. Also, (a!®)* = a™ = (a®*)3 = €® = e. Thus, a'® has order 4.

Hence, the elements | a® and a'® have order 4 ‘

(d) We are asked to list the elements which have order 10. Because 10 does not divide 24, there
is ’ no element in G with order 10 ‘

6. (Section 3.4, Problem 33) If G is a cyclic group, then the equation 2> = e has at most two
distinct solutions in G.

Proof. First note that e is a solution to the given equation. If there is no other solution, then we are done.
So, suppose b and ¢ are two nontrivial solutions. Because G is cyclic, we know that 3 @ € G such that
G = {(a). Thus, 3 integers k,l € Z such that b = a* and ¢ = a!. Because, they are both solutions to the
given equation, we know that (a*)? = e and (a')? = e. This means that the order of b is 2 and that the
order of c is also 2. Thus, b and ¢ each generate a subgroup of order 2. In particular, (b) = (a*) = {e, a*}
and {c¢) = (a') = {e,a'}. But because G is cyclic, there is only one subgroup of each order. Thus (b) = (c),
and a® = a'. Hence, there is at most one nontrivial solution. Thus, the equation 2 = e has at most two
distinct solutions in G. O



