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1. (Section 3.3, Problem 14g) Prove that the following subset H of M2(R) is a subgroup of the group G
of all invertible matrices in M2(R) under multiplication.

(g)

H =

{[
a b
c d

]
| ad− bc = 1

}

Proof. First note that when a = d = 1 andb = c = 0, the matrix

[
1 0
0 1

]
is in H, so H 6= ∅.

Now let A =

[
a b
c d

]
and B =

[
a′ b′

c′ d′

]
be in H. This means that ad − bc = 1 and a′d′ − b′c′ = 1.

Usual matrix multiplication yields

AB =

[
aa′ + bc′ ad′ + bd′

ca′ + dc′ cb′ + dd′

]
Note that (aa′ + bc′)(cb′ + dd′)− (ab′ + bd′)(ca′ + dc′) = (ad− bc)(a′d′b′c′) = (1)(1) = 1. Hence, AB ∈ H
and H is closed under multiplication.

Lastly, for any A =

[
a b
c d

]
∈ H, its inverse is A−1 = 1

ad−bc

[
d −b
−c a

]
, where da − (bc) = 1,

due to the commutativity of the reals. Hence A−1 ∈ H. Therefore, H is a subgroup of M2(R). �

3. (Section 3.3, Problem 17) (a) For any group G, the set of all elements that commute with every element
of G is called the center of G and is denoted by Z(G):

Z(G) = {a ∈ G | ax = xa for every x ∈ G}

Prove that Z(G) is a subgroup of G.

(b) Let R be the equivalence relation on G defined by xRy if and only if there exists an element
a ∈ G such that y = a−1xa. If x ∈ Z(G), find [x], the equivalence class containing x.

Solution.
(a) Z(G) is a subgroup of G.

Proof. First note that Z(G) is nonempty because e ∈ Z(G). Now let a, b ∈ Z(G) and let x ∈ G be
arbitrary. Due to the associativity of G and the fact that ax = xa and bx = xb, we have

(ab)(x) = a(bx) = a(xb) = (ax)(b) = (xa)(b) = x(ab)

Thus, ab ∈ Z(G) and Z(G) is closed under multiplication. Now let a−1 be the inverse of a ∈ Z(G). Then

a−1x = a−1xe = a−1x(aa−1) = a−1(xa)a−1 = a−1(ax)a−1 = (a−1)(ax)a−1 = xa−1

So, a−1 ∈ Z(G) and Z(G) is a subgroup of G. �



(b) Let a ∈ Z(G). The equivalence class containing x is

[x] = {y ∈ G | y = a−1xa, a ∈ G}
= {y ∈ G | y = a−1ax, a ∈ G}
= {y ∈ G | y = ex, a ∈ G}
= {y ∈ G | y = x}

Thus, [x] = {x}.

4. (Section 3.3, Problem 24) Let G be an abelian group. For a fixed positive integer n, let

Gn = {a ∈ G | a = xn for some x ∈ G}
Prove that Gn is a subgroup of G.

Proof. Since e = e1, e ∈ Gn—so G 6= ∅. Now assume a, b ∈ Gn. This means that ∃ x, y ∈ G such that
a = xn and b = yn. Consider ab−1. Then ab−1 = xn(yn)−1. Because (xn)−1 = (x−1)n, we have that
ab−1 = xn(yn)−1. Since G is abelian, ab−1 = (xy−1)n. Thus, ab−1 ∈ Gn and by Theorem 3.10, Gn is a
subgroup of G. �

5. (Section 3.4, Problem 23c, d) Let G = 〈a〉 be a cyclic group of order 24. List all the elements having
each of the following orders in G.

Solution.
(c) We want to list the elements which have order 4. Because G has order 24. we have that a24 = e.
So (a6)4 = a24 = e. Thus, a6 has order 4. Also, (a18)4 = a72 = (a24)3 = e3 = e. Thus, a18 has order 4.

Hence, the elements a6 and a18 have order 4 .

(d) We are asked to list the elements which have order 10. Because 10 does not divide 24, there

is no element in G with order 10 .

6. (Section 3.4, Problem 33) If G is a cyclic group, then the equation x2 = e has at most two
distinct solutions in G.

Proof. First note that e is a solution to the given equation. If there is no other solution, then we are done.
So, suppose b and c are two nontrivial solutions. Because G is cyclic, we know that ∃ a ∈ G such that
G = 〈a〉. Thus, ∃ integers k, l ∈ Z such that b = ak and c = al. Because, they are both solutions to the
given equation, we know that (ak)2 = e and (al)2 = e. This means that the order of b is 2 and that the
order of c is also 2. Thus, b and c each generate a subgroup of order 2. In particular, 〈b〉 = 〈ak〉 = {e, ak}
and 〈c〉 = 〈al〉 = {e, al}. But because G is cyclic, there is only one subgroup of each order. Thus 〈b〉 = 〈c〉,
and ak = al. Hence, there is at most one nontrivial solution. Thus, the equation x2 = e has at most two
distinct solutions in G. �


