UH - Math 3330 - Dr. Heier - Spring 2014 HW 8 - Solutions to Selected Homework Problems by Angelynn Alvarez

3. (Section 3.5, Problem 26) Prove that any infinite cyclic group is isomorphic to \mathbb{Z} under addition.

Proof. Let $G=\langle a\rangle$ be any infinite cyclic group. Then $G=\left\{a^{n} \mid n \in \mathbb{Z}\right\}$. Define a map

$$
\varphi: \mathbb{Z} \rightarrow G, \quad \varphi(n)=a^{n}
$$

We claim that this map is an isomorphism.
Let $n, m \in \mathbb{Z}$. Then, $\varphi(m+n)=a^{m+n}=a^{m} \cdot a^{n}=\varphi(m) \cdot \varphi(n)$. Thus, φ is a homomorphism.
Now let $a^{k} \in G$. Then, a^{k} has a pre-image in \mathbb{Z} - namely $k \in \mathbb{Z}$. So, φ is onto. Lastly, assume $\varphi(m)=\varphi(n)$. Then, $a^{m}=a^{n}$. Taking the inverse of a^{n} on both sides, we have $a^{m} \cdot a^{-n}=e \Longleftrightarrow a^{m-n}=a^{0}$. Thus, $m-n=0 \Longleftrightarrow m=n$. So, φ is one-to-one. Hence, φ is an isomorphism and $G \cong \mathbb{Z}$.
4. (Section 3.5, Problem 33) if G and H are groups and $\varphi: G \rightarrow H$ is an isomorphism, prove that a and $\varphi(a)$ have the same order, for any $a \in G$.

Proof. Let e_{G} and e_{H} denote the identity of G and H, respectively. Let $a \in G$ and let $\operatorname{order}(a)=n$. This means that $a^{n}=e_{G}$. Then because φ is an isomorphism, $\varphi\left(a^{n}\right)=\varphi\left(e_{G}\right)=e_{H}$. Also, we have that $\varphi\left(a^{n}\right)=[\varphi(a)]^{n}$. Thus, $[\varphi(a)]^{n}=e_{H}$.

Now we must show that n is the smallest integer n such that $[\varphi(a)]^{n}=e_{H}$. For sake of contradiction, assume that there exists another integer $m \in \mathbb{Z}^{+}$such that $m<n$ and $[\varphi(a)]^{m}=e_{H}$. Then $[\varphi(a)]^{m}=\varphi\left(a^{m}\right)=\varphi\left(e_{G}\right)$. Because φ is injective, we must have that $a^{m}=e_{G}$. But we already assumed that n is the least positive integer such that $a^{n}=e_{G}$. Thus, we have a contradiction. $\&$
5. (Section 3.6, Problem 4) Consider the additive group \mathbb{Z} and the multiplicative group $G=\{1, i,-1,-i\}$ and define $\varphi: \mathbb{Z} \rightarrow G$ by $\varphi(n)=i^{n}$. Prove that φ is a homomorphism and find $\operatorname{ker} \varphi$. Is φ an epimorphism? Is φ a monomorphism?

Solution. Let $m, n \in \mathbb{Z}$. Then $\varphi(m+n)=i^{m+n}=i^{m} \cdot i^{n}=\varphi(m) \cdot \varphi(n)$. So, φ is a homomorphism.

By definition, $\operatorname{ker} \varphi=\{n \in \mathbb{Z} \mid \varphi(n)=1\}$. Recall that $i^{4}=1$. Thus, $\operatorname{ker} \varphi=\{4 k \mid k \in \mathbb{Z}\}$. We verify this as follows: $\varphi(4 k)=i^{4 k}=\left(i^{4}\right)^{k}=1^{k}=1$.

Let $i^{m} \in G$. Then there exists a pre-image in \mathbb{Z}-namely $m \in \mathbb{Z}$, such that $\varphi(m)=i^{m}$. Thus, φ is onto and is an epimorphism.

Note that φ is not one-to one because $\varphi(4)=1=\varphi(8)$, but $4 \neq 8$. So φ is not a monomorphism.
8. (Section 4.1, Problem 1e) Express the following permutation as a product of disjoint cycles and the the orbits of each permutation.

Solution: Given

$$
\left[\begin{array}{lllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 \\
3 & 4 & 5 & 6 & 1 & 2 & 7
\end{array}\right]
$$

The permutation can be written as: $(135)(246)(7)$.
The orbits of the permutation are $\{135\}\{246\}\{7\}$
9. Express the permutation in the previous problem as a product of transpositions.

Solution. The permutation in Problem 1e can be written as the following product of transpositions: $(15)(13)(26)(24)$
10. (Section 4.1, Problem 9b) Compute f^{2}, f^{3}, f^{-1} for

$$
f=(2,7,4,3,5)
$$

Solution.

$$
\begin{aligned}
f^{2} & =(27435)(27435) \\
& =(24573) \\
f^{3} & =(37542) \\
f^{-1} & =(53472)
\end{aligned}
$$

