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2. (Section 4.2, Problem 1) Write out the elements of a group of permutations that is isomorphic to G
and exhibit and isomorphism from G to this group: Let G be the additive group Z3.

Solution. The elements of Z3 are Z3 = {[0], [1], [2]}. For [a] ∈ Z3, define a map f[a] : Z3 → Z3

by f[a]([b]) = [a] + [b]. Thus, we have,

f[0]([0]) = [0] f[1]([0]) = [1] f[2]([0]) = [2]
f[0]([1]) = [1] f[1]([1]) = [2] f[2]([1]) = [0]
f[0]([2]) = [2] f[1]([2]) = [0] f[2]([2]) = [1]

Thus, our group of permutations can be defined by H = {f[0], f[1].f[2]}. Define a map, ϕ : Z3 → H by
ϕ([a]) = f[a]. This is the desired isomorphism.

5. (Section 4.2, Problem 8) For each a in the group G, define a mapping ha : G → G by ha(x) = xa for
all x ∈ G.

(a) Prove that ha is a permutation on the set of elements in G.
(b) Prove that H = {ha | a ∈ G} is a group with respect to mapping composition.
(c) Define φ : G→ H by φ(a) = ha for each a ∈ G. Determine whether φ is always an isomorphism.

Solution.
(a) The map ha is a permutation on G.

Proof. Assume that for x, y ∈ G, ha(x) = ha(y). Then xa = ya. Multiplication by a−1 yields x = y.
So ha is one-to-one. Now, let y ∈ G. The pre-image of y under ha is ya−1 ∈ G. We check this:
ha(ya−1) = yaa−1 = y. So, ha is onto and thus is a permutation on G. �

(b) H = {ha | a ∈ G} is a group with respect to mapping composition.

Proof. Let ha and hb be in H. Then for x ∈ G, we have

(hahb)(x) = ha (hb(x)) = ha(xb) = xba = x(ba) = hba(x)

Thus, (hahb) = hba ∈ H. So H is closed. H is also associative under mapping composition. The identity
element of H is he, where e is the identity element of G. Note that hahe = heha = ha, as desired. Lastly,
for each ha ∈ H, the inverse element is (ha)−1 = ha−1 . We check this: haha−1 = he = ha−1ha. Thus, H
is a group. �

(c) The map φ : G→ H, a 7→ ha, is not always an isomorphism, because φ is not always a homomorphism.
Let a, b ∈ G. Then

φ(ab) = hab = (hb)(ha) = φ(b)φ(a)

Hence, φ(ab) 6= φ(a)φ(b). Note that φ is a homomorphism if G is abelian.

7. (Section 4.4, Problem 4a) Let H = {(1), (2, 3)} of S3. Find the distinct left cosets of H in
S3, write out their elements, and partition S3 into left cosets of H.



Solution. The distinct left cosets of H are

H itself, (1, 3)H = {(1, 3), (1, 3, 2)}, and (1, 2)H = {(1, 2), (1, 2, 3)}

Thus, S3 can be partitioned as S3 = H ∪ (1, 3)H ∪ (1, 2)H.

8. (Section 4.4, Problem 8) Let H be a subgroup of a group G.

(a) Prove that gHg−1 is a subgroup of G for any g ∈ G. We say that gHg−1 is a conjugate of H
and that H and gHg−1 are conjugate subgroups.

(b) Prove that if H is abelian, then gHg−1 is abelian.
(c) Prove that if H is cyclic, then gHg−1 is cyclic.
(d) Prove that H and gHg−1 are isomorphic.

Solution.
(a) For any g ∈ G, gHg−1 is a subgroup of G.

Proof. Let e be the identity element in G. Then, the identity element in gHg−1 is geg−1 and gHg−1

is nonempty. Now let x, y ∈ gHg−1. This means that there exist h, h′ ∈ H such that x = ghg−1 and
y = gh′g−1. Note that y−1 = gh′−1g−1. So

xy−1 = (ghg−1)(gh′−1g−1) = ghh′−1g−1 = gĥg−1 ∈ H

because hh′ = ĥ ∈ H due to H being a subgroup. Thus, by Theorem 3.10, gHg−1 is a subgroup of G. �

(b) If H is abelian, then gHg−1 is abelian.

Proof. Assume H is abelian and let x, y ∈ H. This means that there exist h, h′ ∈ H such that x = ghg−1

and y = gh′g−1. Then

xy = (ghg−1)(gh′g−1) = g(hh)′g−1 = g(h′h)g−1 = gh′ehg−1 = (gh′g−1)(ghg−1)) = yx

So, gHg−1 is abelian. �

(c) If H is cyclic, then gHg−1 is cyclic.

Proof. Assume H is cyclic—that is, ∃ h ∈ H such that H = 〈h〉. Claim that gHg−1 = 〈ghg−1〉. Let
x ∈ gHg−1 be arbitrary. This means that there exists h′ ∈ H such that x = gh′g−1. Because h′ ∈ H and

H is cyclic, there exists k ∈ Z such that h′ = hk. Thus, x = gh′g−1 = g(hk)g−1 =
(
ghg−1

)k
. So gHg−1

is cylcic. �

(d) H and gHg−1 are isomorphic.

Proof. Define a map ϕ : H → gHg−1 by ϕ(h) = ghg−1. We must show that this map is indeed an
isomorphism.

Let h, h′ ∈ H and let e be the identity element in H. Then

ϕ(hh′) = g(hh′)g−1 = gheh′g−1 = (ghg−1)(gh′g−1) = ϕ(h)ϕ(h′)

So, ϕ is a homomorphism. Now assume that ϕ(h) = ϕ(h′). This means that ghg−1 = gh′g−1, and that
h = h′. So ϕ is one-to-one. Also, let ghg−1 ∈ gHg−1 has a pre-image of h ∈ H—that is, ϕ(h) = gHg−1.
Thus, ϕ is onto. Hence, ϕ is an isomorphism and H ∼= gHg−1. �



9. (Section 4.4, Problem 19) If H and K are arbitrary subgroups of G, prove that HK = KH if and only
if HK is subgroup of G.

Proof. ⇒ Assume HK = KH. Because H and K are subgroups, they both contain the identity element,
e. Thus, e = e(e) ∈ HK. So HK 6= ∅. Now let x, y ∈ HK. This means there exists h, h′ ∈ H and
k, k′ ∈ K such that x = hk and y = h′k′. Then, using the fact that HK = K ′, we have

xy−1 = (hk)(h′k′)−1 = hkk′−1h′−1 = hh′−1kk′−1 ∈ HK
Thus, by Theorem 3.10, HK is a subgroup of G.

⇐ Now assume that HK is a subgroup of G. Let x ∈ HK. Because HK is a subgroup, x−1

exists and is given by x−1 = hk, for some h ∈ H and k ∈ K. Then x = (x−1)−1 = k−1h−1 ∈ KH. Hence,
HK ⊂ KH. Similarly, we have that KH ⊆ HK. Thus, HK = KH. �


