UH - Math 3330 - Dr. Heier - Spring 2014 HW 9 - Solutions to Selected Homework Problems by Angelynn Alvarez

2. (Section 4.2, Problem 1) Write out the elements of a group of permutations that is isomorphic to G and exhibit and isomorphism from G to this group: Let G be the additive group \mathbb{Z}_{3}.

Solution. The elements of \mathbb{Z}_{3} are $\mathbb{Z}_{3}=\{[0],[1],[2]\}$. For $[a] \in \mathbb{Z}_{3}$, define a map $f_{[a]}: \mathbb{Z}_{3} \rightarrow \mathbb{Z}_{3}$ by $f_{[a]}([b])=[a]+[b]$. Thus, we have,

$$
\begin{array}{lll}
f_{[0]}([0])=[0] & f_{[1]}([0])=[1] & f_{[2]}([0])=[2] \\
f_{[0]}([1])=[1] & f_{[1]}([1])=[2] & f_{[22}([1])=[0] \\
f_{[0]}([2])=[2] & f_{[1]}([2])=[0] & f_{[2]}([2])=[1]
\end{array}
$$

Thus, our group of permutations can be defined by $H=\left\{f_{[0]}, f_{[1]} \cdot f_{[2]}\right\}$. Define a map, $\varphi: \mathbb{Z}_{3} \rightarrow H$ by $\varphi([a])=f_{[a]}$. This is the desired isomorphism.
5. (Section 4.2, Problem 8) For each a in the group G, define a mapping $h_{a}: G \rightarrow G$ by $h_{a}(x)=x a$ for all $x \in G$.
(a) Prove that h_{a} is a permutation on the set of elements in G.
(b) Prove that $H=\left\{h_{a} \mid a \in G\right\}$ is a group with respect to mapping composition.
(c) Define $\phi: G \rightarrow H$ by $\phi(a)=h_{a}$ for each $a \in G$. Determine whether ϕ is always an isomorphism.

Solution.
(a) The map h_{a} is a permutation on G.

Proof. Assume that for $x, y \in G, h_{a}(x)=h_{a}(y)$. Then $x a=y a$. Multiplication by a^{-1} yields $x=y$. So h_{a} is one-to-one. Now, let $y \in G$. The pre-image of y under h_{a} is $y a^{-1} \in G$. We check this: $h_{a}\left(y a^{-1}\right)=y a a^{-1}=y$. So, h_{a} is onto and thus is a permutation on G.
(b) $H=\left\{h_{a} \mid a \in G\right\}$ is a group with respect to mapping composition.

Proof. Let h_{a} and h_{b} be in H. Then for $x \in G$, we have

$$
\left(h_{a} h_{b}\right)(x)=h_{a}\left(h_{b}(x)\right)=h_{a}(x b)=x b a=x(b a)=h_{b a}(x)
$$

Thus, $\left(h_{a} h_{b}\right)=h_{b a} \in H$. So H is closed. H is also associative under mapping composition. The identity element of H is h_{e}, where e is the identity element of G. Note that $h_{a} h_{e}=h_{e} h_{a}=h_{a}$, as desired. Lastly, for each $h_{a} \in H$, the inverse element is $\left(h_{a}\right)^{-1}=h_{a^{-1}}$. We check this: $h_{a} h_{a^{-1}}=h_{e}=h_{a^{-1}} h_{a}$. Thus, H is a group.
(c) The map $\phi: G \rightarrow H, a \mapsto h_{a}$, is not always an isomorphism, because ϕ is not always a homomorphism. Let $a, b \in G$. Then

$$
\phi(a b)=h_{a b}=\left(h_{b}\right)\left(h_{a}\right)=\phi(b) \phi(a)
$$

Hence, $\phi(a b) \neq \phi(a) \phi(b)$. Note that $\phi \underline{\text { is }}$ a homomorphism if G is abelian.
7. (Section 4.4, Problem 4a) Let $H=\{(1),(2,3)\}$ of S_{3}. Find the distinct left cosets of H in S_{3}, write out their elements, and partition S_{3} into left cosets of H.

Solution. The distinct left cosets of H are

$$
H \text { itself, } \quad(1,3) H=\{(1,3),(1,3,2)\}, \quad \text { and }(1,2) H=\{(1,2),(1,2,3)\}
$$

Thus, S_{3} can be partitioned as $S_{3}=H \cup(1,3) H \cup(1,2) H$.
8. (Section 4.4, Problem 8) Let H be a subgroup of a group G.
(a) Prove that $g H g^{-1}$ is a subgroup of G for any $g \in G$. We say that $g H g^{-1}$ is a conjugate of H and that H and $g H^{-1}$ are conjugate subgroups.
(b) Prove that if H is abelian, then $g \mathrm{Hg}^{-1}$ is abelian.
(c) Prove that if H is cyclic, then $g H^{-1}$ is cyclic.
(d) Prove that H and $g \mathrm{Hg}^{-1}$ are isomorphic.

Solution.
(a) For any $g \in G, g H g^{-1}$ is a subgroup of G.

Proof. Let e be the identity element in G. Then, the identity element in $g H^{-1}$ is $g e g^{-1}$ and $g \mathrm{Hg}^{-1}$ is nonempty. Now let $x, y \in g H g^{-1}$. This means that there exist $h, h^{\prime} \in H$ such that $x=g h g^{-1}$ and $y=g h^{\prime} g^{-1}$. Note that $y^{-1}=g h^{\prime-1} g^{-1}$. So

$$
x y^{-1}=\left(g h g^{-1}\right)\left(g h^{\prime-1} g^{-1}\right)=g h h^{\prime-1} g^{-1}=g \hat{h} g^{-1} \in H
$$

because $h h^{\prime}=\hat{h} \in H$ due to H being a subgroup. Thus, by Theorem $3.10, g \mathrm{Hg}^{-1}$ is a subgroup of G.
(b) If H is abelian, then $g H g^{-1}$ is abelian.

Proof. Assume H is abelian and let $x, y \in H$. This means that there exist $h, h^{\prime} \in H$ such that $x=g h g^{-1}$ and $y=g h^{\prime} g^{-1}$. Then

$$
\left.x y=\left(g h g^{-1}\right)\left(g h^{\prime} g^{-1}\right)=g(h h)^{\prime} g^{-1}=g\left(h^{\prime} h\right) g^{-1}=g h^{\prime} e h g^{-1}=\left(g h^{\prime} g^{-1}\right)\left(g h g^{-1}\right)\right)=y x
$$

So, $g H^{-1}$ is abelian.
(c) If H is cyclic, then $g H^{-1}$ is cyclic.

Proof. Assume H is cyclic-that is, $\exists h \in H$ such that $H=\langle h\rangle$. Claim that $g H g^{-1}=\left\langle g h g^{-1}\right\rangle$. Let $x \in g H g^{-1}$ be arbitrary. This means that there exists $h^{\prime} \in H$ such that $x=g h^{\prime} g^{-1}$. Because $h^{\prime} \in H$ and H is cyclic, there exists $k \in \mathbb{Z}$ such that $h^{\prime}=h^{k}$. Thus, $x=g h^{\prime} g^{-1}=g\left(h^{k}\right) g^{-1}=\left(g h g^{-1}\right)^{k}$. So $g H g^{-1}$ is cylcic.
(d) H and $g H g^{-1}$ are isomorphic.

Proof. Define a map $\varphi: H \rightarrow g H g^{-1}$ by $\varphi(h)=g h g^{-1}$. We must show that this map is indeed an isomorphism.

Let $h, h^{\prime} \in H$ and let e be the identity element in H. Then

$$
\varphi\left(h h^{\prime}\right)=g\left(h h^{\prime}\right) g^{-1}=g h e h^{\prime} g^{-1}=\left(g h g^{-1}\right)\left(g h^{\prime} g^{-1}\right)=\varphi(h) \varphi\left(h^{\prime}\right)
$$

So, φ is a homomorphism. Now assume that $\varphi(h)=\varphi\left(h^{\prime}\right)$. This means that $g h g^{-1}=g h^{\prime} g^{-1}$, and that $h=h^{\prime}$. So φ is one-to-one. Also, let $g h g^{-1} \in g H g^{-1}$ has a pre-image of $h \in H$-that is, $\varphi(h)=g H g^{-1}$. Thus, φ is onto. Hence, φ is an isomorphism and $H \cong g \mathrm{Hg}^{-1}$.
9. (Section 4.4, Problem 19) If H and K are arbitrary subgroups of G, prove that $H K=K H$ if and only if $H K$ is subgroup of G.

Proof. \Rightarrow Assume $H K=K H$. Because H and K are subgroups, they both contain the identity element, e. Thus, $e=e(e) \in H K$. So $H K \neq \emptyset$. Now let $x, y \in H K$. This means there exists $h, h^{\prime} \in H$ and $k, k^{\prime} \in K$ such that $x=h k$ and $y=h^{\prime} k^{\prime}$. Then, using the fact that $H K=K^{\prime}$, we have

$$
x y^{-1}=(h k)\left(h^{\prime} k^{\prime}\right)^{-1}=h k k^{\prime-1} h^{\prime-1}=h h^{\prime-1} k k^{\prime-1} \in H K
$$

Thus, by Theorem 3.10, $H K$ is a subgroup of G.
\Leftrightarrow Now assume that $H K$ is a subgroup of G. Let $x \in H K$. Because $H K$ is a subgroup, x^{-1} exists and is given by $x^{-1}=h k$, for some $h \in H$ and $k \in K$. Then $x=\left(x^{-1}\right)^{-1}=k^{-1} h^{-1} \in K H$. Hence, $H K \subset K H$. Similarly, we have that $K H \subseteq H K$. Thus, $H K=K H$.

