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The Basics of Logic (Appendix)

Definition. A statement is a declarative sentence that is either true or false.

Examples

(1) #{4, π, 7, 3} = 3

(2) There is a real number x such that x2 = −1.

(3) There exists infinitely many prime numbers.

Some statements are plainly assumed to be true. These are called postulates
or axioms.

Examples

(1) One can draw a straight line through any two points in the plane.

(2) 3 < 4

Most statements are derived from basic postulates by logical inference (“The-
orems, proofs”).

Quantifiers will often be used in our statements:
∀: “for all”
∃: “there exists”

(1) ∀x ∈ (0, 2) : x > −3 True
(2) ∃x ∈ Z : x2 = 9 True
(3) ∃x ∈ Z : x2 = 10 False
(4) ∀a ∈ R : ∃x ∈ R : x2 = a False
(5) ∀a ∈ C : ∃x ∈ C : x2 = a True
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∀a ∈ R : ∃x ∈ R : x2 = a is false. Prove statement (4) via a counterexample.

−1 ∈ R, but ∀x ∈ R : x2 ≥ 0 > −1

The logical opposite or “negation” of statement 4 is:

∃a ∈ R ∀x ∈ R : x2 6= a

Example from Calculus:
f : R → R is continuous at x0 ⇔ ∀ε > 0 ∃δ > 0 ∀x ∈ (x0 − δ, x0 + δ) :
|f(x)− f(x0)| < ε

f : R → R is not continuous at x0 ⇔ ∃ε > 0 ∀δ > 0 ∃x ∈ (x0 − δ, x0 + δ) :
|f(x)− f(x0)| ≥ ε

From give statements, we can get new statements with “and,” “or,” “⇒,”
“⇔”.

Examples

• x > 3 and x < 5
(same as/“equivalent to” x ∈ (3, 5) )

• x > 1 and x < 0 False.

Today, Math 3330 meets for class ⇒ Today is Tuesday.

This is one big statement: Today Math 3330 meets for class ⇒ Today is
Tuesday. False.

Today Math 3330 meets for class ⇐ Today is Tuesday. True.

How to Negate With And/Or:
Let A and B be statements. Not(A and B) is the same as not A or not B.

Contrapositive
A⇒ B is equivalent to not A⇐ not B.

Green sweater ⇒ Thursday

Chapter 1 Fundamentals

§1.1 Sets

{0, 2, 5, 7} = {0, 0, 2, 5, 5, 7, 7, 7}
# = 4
Sets do not come with a notion of multiplicity of membership.
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list, collection

Subset: {2, 3} ⊂ {2, 3, 7, 8}
⊂:⇔⊆
⊂
(

A ⊂ A True.
{1, 3} 6⊂ {2, 3, 7, 8}

Equality of sets: A = B ⇔ A ⊂ B and B ⊂ A
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Thursday January 16, 2014

• TA office hours MF 12–12:50pm
• HW1 on website early afternoon.

§1.1 Sets (Continued)

\cup
A ∪B = {x|x ∈ A or x ∈ B}

\cap
A ∩B = {x|x ∈ A and x ∈ B}

Example.
A = {1, 5, 9} B = {5, 7}
A ∪B = {1, 5, 7, 9}

A ∩B = {5}

Clear: A ∪B = B ∪A

Empty set: ∅ ( { } )
{1, 2} ∩ {3, 4, 5} = ∅

Important Notion: Complement
If A,B ⊂ U (U is universal superset), Ac := U \A = {x ∈ U |x /∈ A}

A \B = {x ∈ A|x /∈ B}

Example. U = Z, A = {even integers}, B = {positive integers}
Ac = {odd integers} = {. . . ,−5,−3,−1, 1, 3, . . .}

A \B = {0,−2,−4,−6, . . .}

Repeated Application:

(A ∩B) ∩ C = A ∩ (B ∩ C)

= A ∩B ∩ C

3 x⇔ x ∈ A and x ∈ B and x ∈ C.

Warning: A ∩ (B ∪ C) 6= (A ∩B) ∪ C

Ex 14. A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C)
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Proof. “ ⊂ ” Let x ∈ A ∩ (B ∪ C)

⇒ x ∈ A and (x ∈ B or x ∈ C)

⇒ (x ∈ A and x ∈ B) or (x ∈ A and x ∈ C)

⇒ x ∈ A ∩B or x ∈ A ∩ C
⇒ x ∈ (A ∩B) ∪ (A ∩ C)

“ ⊃ ” Reverse arrows for this direction. �

§1.2 Mappings

f : A→ B

Illegal:

Example. f : {1, 2, 3, 4} → {1, 2, 3, . . . , 20}
x 7→ x2
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Domain: {1, 2, 3, 4}
Codomain: {1, 2, . . . , 20}
Range: {1, 4, 9, 16}

Some more terminology: Let f : A→ B, let S ⊂ A.
Then f(S) = {f(x)|x ∈ S} = {b ∈ B : ∃x ∈ S : f(x) = b}.

Let T ⊂ B. Let f : Z→ Z. x 7→ x2.
f−1(T ) = {a ∈ A|f(a) ∈ T}
Z integers from German word Zahlen.

f−1({4, 9}) = {−2,−3, 2, 3}
f−1({5, 7, 9}) = {±3}
f−1({3}) = ∅

Injective Maps

Definition. Let f : A→ B map. Then f is called injective if ∀x, y ∈ A with
x 6= y : f(x) 6= f(y)
−→ x 6= y =⇒ f(x) 6= f(y)

x = y ⇐= f(x) = f(y)

A⇒ B same as not A⇐ not B

Not injective:

Example 1. f : R→ R, x 7→ 3x+ 2

f(x) = f(y)
−→ 3x+ 2 = 3y + 2
−→ 3x = 3y
−→ x = y

Thus f is injective.

Example 2. f : Z→ Z x 7→ x2
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N = {0, 1, 2, 3, . . .}

Not injective.
f(−2) = 4 = f(2) but −2 6= 2

Example 3. f : N→ N, x 7→ x2

Injective.

Surjective Maps:

Definition. Let f : A → B map. Then f is called surjective ⇔ f(A) =
B ⇐⇒ codomain range ⇐⇒ ∀b ∈ B : ∃a ∈ A : b = f(a).

R→ N

N→ R

Examples

(1) f : Z→ Z, x 7→ x2 Not surjective.

(2) f : R→ R, x 7→ x2 Not surjective because all squares of reals are
non-negative. So −2 6∈ f(R).

(3) f : R→ (0,∞), x 7→ x2 Not a function.

(4) f : R→ [0,∞), x 7→ x2

(5) f : R→ R, x 7→ 3x+ 2 is surjective.

Proof. Let y ∈ R (R is codomain.)
Q: ∃x ∈ R : y = f(x) ? (R is domain.)

Solve.

y = f(x) = 3x+ 2

=⇒ y − 2 = 3x

=⇒ y − 2

3
= x

Check: f

(
y − 2

3

)
= 3

(
y − 2

3

)
+ 2 = y − 2 + 2 = y
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Tuesday January 21, 2014

x 7→

2x+ 1 if x is even.
x+ 1

2
if x is odd.

(a) Injective? Prove.
(b) Surjective? Prove.

Solution:

(a) Even:

x f(x)
-2 -3
0 1
2 5
4 9

Odd:

x f(x)
-3 -1
-1 0
1 1
3 2

Not injective

(b) Let y ∈ Z arbitrary. ∃x ∈ Z : f(x) = y

Claim. ∃x ∈ Z with x odd: f(x) = y ⇐⇒ x+ 1

2
= y. Then,

x = 2y − 1 Then f(2y − 1) =
2y

y
= 2y.

Indeed odd.

§1.4 Binary Operations
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Cantor’s Diagonal Count

N→ Q
Z→ Q

Definition. A binary operation on a non-empty set A is a mapping f :
A×A→ A.

(a1, a2) 7→ f(a1, a2) = a1 ∗ a2

Recall:A×B : {(a, b)|a ∈ A, b ∈ B}.

Example. x ∗ y

(1) f : Z× Z→ Z
(x, y) 7→ x+ y

(2) f : Z× Z→ Z
(x, y) 7→ x · y2

(3) f : Z× Z→ Z
(x, y) 7→ x2 + y2

(4) f : Z× Z→ Z
(x, y) 7→ 1 + x · y

(5) f : Z× Z→ Z
(x, y) 7→ x · y

3

(6) f : Z× Z→ Q
(x, y) 7→ x · y

3

Not a binary operation.

f : Z× Z→ Q
(x, y) 7→ x · y

3

Definition. If a1 ∗ a2 = a2 ∗ a1 ∀a1, a2 ∈ A then say f is commutative.

Definition. If (a1 ∗ a2) ∗ a3 = a1 ∗ (a2 ∗ a3) ∀a1, a2, a3 ∈ A then say f is
associative.

Ex. Look at 3. f : Z× Z→ Z, (x, y) 7→ 1 + x · y
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1 + xy = 1 + yx =⇒ f is commutative.

x 1
y 2
z 3

x ∗ (y ∗ z) = 1 ∗ (2 ∗ 3) = 1 ∗ (1 + 2 · 3) = 1 ∗ 7 = 1 + 1 · 7 = 8
(x ∗ y) ∗ z = (1 + 1 · 2) ∗ 3 = 3 ∗ 3 = 1 + 3 · 3 = 10 6= 8

=⇒ Not associative.

Closedness

Let f : A×A→ A be a binary operation. If B ⊂ A is b1 ∗ b2 ∈ B such that
∀b1, b2 ∈ B, then we say B is closed under ∗ in A.

f : Q×Q→ Q
(x, y) 7→ x+ y

Identity Element
Definition. e ∈ A is called an identity element if ∀x ∈ A : e ∗ x = x = x ∗ e.

Examples

(1) A = Z, ∗ = +
e = 0

(2) A = Z,∗ = ·
e = 1

(3) A = Z, x ∗ y = x+ y − 3
e = 3
e ∗ x = 3 + x− 3 = x 3
x ∗ e = x+ 3− 3 = x 3

(4) A = Z, x∗y = x has no identity element because e∗y = e but should
be y.

(5) A = Z, x ∗ y = 1 + xy

e ∗ y = 1 + ey = y e ∗ y = y

⇔ ey = y − 1

⇔ e =
y − 1

y

y 6= 0
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Depends on y, which it must not.

Right inverse, left inverse, inverse.

Key: Need to have identity element present to start with.

1 · x = x x · 1 = x

1 is identity element of · on Z or Q on R.

Now, it makes sense to seek, given x, an element y, such that x · y = 1.
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Thursday January 23, 2014

§1.4 Binary Operations (continued)

Recall: e is neutral ⇔ ∀x ∈ A : e ∗ x = x = x ∗ e

Assume e exists.

Definition. Right inverse, left inverse, inverse.

Let a ∈ A.

• if ∃b ∈ A : a ∗ b = e call b right inverse of a.
• If ∃b ∈ A : b ∗ a = e, then call b left inverse of a.
• If ∃b ∈ A : a ∗ b = e = b ∗ a then call b inverse of a.

Ex 1. R 6=0 × R 6=0 → R6=0

(x, y) 7→ x · y
e = 1 inverse to x is

1

x
.

Ex 2. R>0 × R>0 → R>0

(x, y) 7→ x(y2)
1 7 1 3
No e thus no way to discuss any kind of inverse.

Ex 3. R6=0 × R 6=0 → R 6=0

(x, y) 7→ 3 · xy

e =
1

3
because

1

3
· y = 3 · 1

3
· y = y

x · 1

3
= 3 · x · 1

3
= x

Inverse of a is b such that a ∗ b = e = 1/3
1

9a
a ∗ b = e = 1/3

3ab⇔ b =
1

9a

Ex 4. 1st
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∗ : A×A 7→ A

(a) comm?
(b) ∃ e? e =?
(c) ∃ inverses?

ai ∗ aj
A = {a1, . . . , an}

ai ∗ aj = aj ∗ ai
(i, j)–square (j, i)–square

(a) Yes, ∗ is commutative because the table is symmetric.
(b) b ∗ x = x and x∗ = x =⇒ b = e
(c) inverse: b ∗ b = b = e =⇒ b is its own inverse.

x ∗ y = x
y ∗ x = x

The inverse of c is a.
The inverse of a is c.

§1.5 Permutations

Let A be a set. (Not necessarily finite!)(
1 2 3
3 2 1

)
A = {1, 2, 3}

Definition. A bijective map f : A→ A is called a permutation on A.
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S(A) = {permutations}
M(A) = {all maps A→ A}

Composition of maps yields a binary operation on S(A).
It also yields binary operation on M(A).

e =?

e
1

∗ : M(A)×M(A)→M(A)

e = idA

Left-inverses? Right-inverses? Inverse
e

Given f ∈M(A), ∃? g ◦ f = idA.

Theorem. Let f ∈M(A). Then f injective ⇔ f has a left inverse.

Proof. “⇒”: Proof by explicit construction: the left inverse g.
For a2 ∈Range(f) ∃ unique element a1 ∈ A.

f(a1) = a2

For a2 6∈ Range(f) set g(a2) = some arbitrary a ∈ A (does not matter which
one). Check that g is left inverse

(g ◦ f)(a) = g(f(a)) = a

2

“⇐” Let g be left-inverse. Let f(a1) = f(a2). Need to show a1 = a2.

Apply g to both sides:

=⇒ g(f(a1)) = g(f(a2))

id(a1) id(a2)

a1 a2
�
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Thursday January 30, 2014

• HW2 now due 2/4 (Tuesday)
• Selected solutions to HW1 this afternoon on my www.

§1.5 Permutations

Let A any set.
Definition. f : A→ A is called a permutation ⇔ f bijective.

S(A) = {permutations}
∩
M(A) = {all f : A→ A}

For g, f ∈M(A),
f ∗ g = f ◦ g

e = IdA.

Theorem. Let f ∈M(A). Then f injective ⇔ ∃ left-inverse of f .

Right-inverse:
Theorem. Let f ∈M(A). Then f surjective ⇔ ∃ right-inverse of f .

Proof. “=⇒” Take a2 ∈ A. Since f surjective =⇒ ∃a1 ∈ A : f(a1) = a2.

id = f ◦ g ⇐⇒: g is a right-inverse of f .

Let g(a2) := a1. (Any element a such that f(a) = a2 will do. )
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Claim: g is a right inverse of f .
Proof of Claim: (f ◦ g)(a2) = f(g(a2)) = f(a1) = a2 �

“⇐=” Take a2 ∈ A arbitrary. Let a1 := g(a2) with g right-inverse.

Observe: f(a1) = f(g(a2)) = id(a2) = a2 2

Remark: Just saw: f bijective ⇔ f has an inverse.

Example 1. f : Z→ Z, x 7→ 3x.

3x = 3y

• f is not surjective, thus no right inverse.

• f is injective.

g ? is a left-inverse.

x 7→

{x
3

if x ∈ 3Z {...,−9,−6,−3,−, 3, 6, 9, ...}
0 otherwise. does not matter.

g such that g ◦ f = id.

• x 7→

{x
2

if x even.

x+2 if x odd.

• f is not injective: f(1) = 3 = f(6).
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• f is surjective: a right-inverse of f is g : Z→ Z, x 7→ 2x.
(f ◦ g)(x) = f(g(x)) = f(2x)

Example 3. f : R→ R, x 7→ x2.
f is not injective.
f is not surjective.

Left-inverse: g such that g ◦ f = id.
“
√
x does not work for x < 0.”

x ∗ y = e

§1.7 Relations

A (����binary) relation on a set A is a subset R ⊂ A × A. If (a, b) ∈ R1, write
a ∼ b.

Example 1. A = {1, 2, 3}. R = {(1, 1), (2, 2), (3, 3)}
Note: (a, b) ∈ R (:⇔ a ∼ b) ⇔ a = b.

Example 2. Same A. R = {(1, 2), (2, 3), (1, 3)}

Example 3. Let A be any set. Let R = {(a, f(a))|a ∈ A}. R is the graph of
f : a ∼ b⇔ b = f(a).

Definition. Let A be a set. The relation R is called an equivalence relation
⇔

(1) ∀x ∈ A : x ∼ x (Reflexive)

A = {1, 2, 3}
R = {(1, 2), (1, 3), (2, 3), (7, 1), (3, 1), (3, 7)}
(a, b) ∈ R⇔ a 6= b.
a ∼ b⇔ a 6= b.
( ),( )

(2) ∀x, y ∈ A : x ∼ y =⇒ y ∼ x (Symmetric)

(3) ∀x, y, z ∈ A : (x ∼ y and y ∼ z) =⇒ x ∼ z (Transitive)

a < b, b < c =⇒ a < c
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Ex 1. A = Z, a ∼ b⇔ |a| = |b|.

Reflexive 3

Proof. Let a ∈ A. Have to check a ∼ a is true. a ∼ a⇔ |a| = |a|. True. �

Symmetric 3

Proof. Let a ∼ b =⇒ |a| = |b| =⇒ |b| = |a| =⇒ b ∼ a �

Transitive 3

Proof. Let a ∼ b, b ∼ c =⇒ |a| = |b|, |b| = |c| =⇒ |a| = |c|. �

All three 3, equivalence relation.

Ex 2. A = Z, a ∼ b⇔ a = |b|.

Reflexive 7
Let a = −1. Then a ∼ a is false: −1 = | − 1| = 17.

Symmetric 7
a = 1, b = −1. a ∼ b⇔ 1 = | − 1| = 1. 3
Check: b ∼ a⇔ −1 = |1| = 1. 7

Transitive left as exercise.

A = Z. ∼ is “congruence mod m.” It IS an equivalence relation.

x ∼ y ⇔ ∃k ∈ Z : x− y = km

e.g. m = 2

Definition. Let R be an equivalence relation on A.

[a] := {x ∈ A : x ∼ a}
is called the equivalence class of A.
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Tuesday February 4, 2014

Quiz 2

(1) Let f : Z→ Z, x 7→ 7x.

(a) ∃ left-inverse? If yes, find it.
(b) ∃ right-inverse? If yes, find it.

(2) Let x, y ∈ Z. Let x ∼ y ⇔ x2 + y2 is a multiple of 2. Equivalence
relation?

Theorem. Let f ∈M(A). Then f injective ⇔ ∃ left-inverse of f .

Theorem. Let f ∈M(A). Then f surjective ⇔ ∃ right-inverse of f .

(1a) x 7→

{
1
7x if x ∈ 7Z
0 if x /∈ 7Z

(1b) Not surjective.

(2) R is reflexive and symmetric. For transitivity,

True

{
∃k ∈ Z : x2 + y2 = 2k

∃k ∈ Z : l ∈ Z : y2 + z2 = 2l

∃k ∈ Z∃l ∈ Z : x2 − z2 = 2k − 2l = 2(k − l)

This is unchanged by adding the even number 2z2. =⇒ x2 − z2 +
2z2 = x2 + z2 is even. 2

Q
a

b
(a, b)

(1, 2)
(2, 4)

(a, b) ∼ (c, d)⇔ ad = bc.

Recall: Equivalence classes. Let R equivalence relation on A. Then [a] :=
{x ∈ A : x ∼ a} is called the equivalence class of a.

A = R

Ex 1. x ∼ y ⇔ |x| = |y|
[π] = {π,−π}
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Zn

Ex 2. Congruence mod 3 (recall: x ∼ y ⇔ x− y = 3k for some x, y, k ∈ Z)

[0] = {. . . ,−9,−6,−3, 0, 3, 6, 9, . . .}
[1] = {. . . ,−8,−5,−2, 1, 4, 7, 10, . . .}
[2] = {. . . ,−10,−7,−4,−1, 2, 5, 8, . . .}

[12] = [−9] = [0] = . . .

Theorem. Let R be an equivalence relation on A. Let a, b ∈ A. Then, either
[a] = [b] or [a] ∩ [b] = ∅

Proof. Assume [a] ∩ [b] 6= ∅. Need to show: [a] = [b]. Let x ∈ [a] ∩ [b]
(exists!)
Let â ∈ [a].

Claim: â ∈ [b].
Have: â ∼ a

x ∼ a
x ∼ b
⇓
â ∼ b
⇓

â ∈ [b]
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Thursday February 6, 2014

Recall: Let R be an equivalence relation on A.
Let a ∈ A. [a] := {x ∈ A|x ∼ a}.

Theorem. Let [a], [b] be two equivalence classes. Then either [a] = [b] or
[a] ∩ [b] = ∅.

Proof. Assume [a] ∩ [b] 6= ∅. Need to show [a] = [b].
Let x ∈ [a] ∩ [b].
Let â ∈ [a].

Claim: â ∈ [b].
Note: â ∼ a, a ∼ x, x ∼ b⇒ â ∼ x

Not official language â ∼ �a, �a ∼ x, x ∼ b⇒ â ∼ x
â ∼ x, x ∼ b⇒ â ∼ x

∴ ⇒ By transitivity, â ∼ b. �

§2.2 Mathematical Induction

Principle of Mathematical Induction

Let Pn be a statement depending on n ∈ N = {0, 1, 2, . . . } (or perhaps
N = {1, 2, 3, . . . } at our convenience.)

If P0 is true and (Pn ⇒ Pn+1) is true, then ∀n ∈ N : Pn is true.

Example. Gauss’s trick:

1 2 3 · · · 100

100 99 98 · · · 1

101 101 101 · · · 101

101 + 101 + 101 + · · ·+ 101

100 · 101

2
= 5050

Example. Pn :

n∑
i=1

i = 1 + 2 + · · ·+ n =
n(n+ 1)

2
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Let us prove Pn for n = 1, 2, 3, . . . (i.e. for all n ∈ N) by mathematical
induction.

P1 : 1 =
1 · (1 + 1)

2
3

Now, need to prove that Pn → Pn+1.

Claim: Pn+1 : 1 + 2 + . . .+ n+ n+ 1 =
(n+ 1)(n+ 2)

2

Prove this under the assumption that Pn holds, i.e. 1 + . . .+ n =
n(n+ 1)

2
.

Pn is true.
↓

(1 + . . .+ n) + (n+ 1) =
n(n+ 1)

2
+ n+ 1 =

n(n+ 1) + 2(n+ 1)

2

=
(n+ 1)(n+ 2)

2
2

Example. 21 + 22 + 23 + · · ·+ 2n = 2(2n − 1).

P1 : 21 = 2(21 − 1) 3

“Pn ⇒ Pn+1”: (21 + 22 + 23 + · · · + 2n) + 2n+1 = 2(2n − 1) + 2n+1 =
2(2n − 1 + 2n) = 2(2 · 2n − 1) = 2(2n+1 − 1) 2

Example. 13 + 33 + 53 + · · ·+ (2n− 1)3 = n2(2n2 − 1)

P1 : 13 = 12(2 · 12 − 1) 3

Pn ⇒ Pn+1:

Claim. (13 + 33 + · · ·+ (2n− 1)3) + (2(n+ 1)− 1)3 = (n+ 1)2(2(n+ 1)2− 1)

LHS (using Pn): n2(2n2 − 1) + (2(n+ 1)− 1)3 = 2n4 + 8n3 + 11n2 + 6n+ 1
↑

Brute force

RHS: (n+ 1)2(2(n+ 1)2 − 1) = 2n4 + 8n3 + 11n2 + 6n+ 1

Principle of Generalized Induction
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Let a ∈ N. If Pa is true and (Pn ⇒ Pn+1 is true ∀n ∈ N with n ≥ a, then
∀n ∈ N with n ≥ a : Pn is true.

Example. ∀n ≥ 4 : 1 : 3n < n2

Proof. (By Generalized Induction)

P4 : 1 + 3 · 4 < 42 3

“P4 ⇒ Pn+1”:

Pn+1 : 1 + 3(n+ 1) < (n+ 1)2

1 + 3(n+ 1) = 1 + 3n+ 3 < n2 + 3 < n2+ 2n+ 1 = (n+ 1)2 �

↑
n ≥ 4

Principle of Complete Induction

Let a ∈ N. If Pa is true and (Pa, Pa+1, . . . , Pn ⇒ Pn+1) all assumed to be
true, then ∀n ∈ N with n ≥ a : Pn is true.

123 = 1 · 102 + 2 · 10 + 3 · 100

Theorem. Every positive integer can be written in base 2, i.e.
∀n ∈ N ≥ 1 ∃j ∈ N ≥ 1 ∃c0, . . . , cj−1 ∈ {0, 1} : n = c0 · 20 + c12

1 + c22
2 +

· · ·+ cj−12
j−1 + 2j−1

Proof. Let j = 1. Let c0 = 1.

1 = 1 · 20. 3

“P1, . . . , Pn ⇒ Pn+1”

Case 1. n even (⇔ n+ 1 odd)

Pn ⇒ n = c0 · 20 +c12 + c22
2 + · · ·+ cj−12

j−1 + 2j

↑ =0 b/c n even ↑ ↑ ↑ ↑
even even even even even

add +1
−→ n+ 1 = 1 + c12 + · · ·+ cj−12

j−1 + 2j

Case 2. n odd (n+ 1 even).

let k =
n+ 1

2
.
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Pk ⇒ k = c̃0 · 20 + c̃12 + · · ·+ c̃j−12
j−1 + 2j

Multiply by 2:

n+ 1 = 2k = c̃02
1 + c̃12

2 + c̃22
3 + · · ·+ c̃j−12

j + 2j+1

Set c0 = 0.

ci = c̃i−1 for i = 1, . . . j
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Tuesday February 11, 2014

Quiz 3

(1) ∀n ∈ N≥3 : 1 + 2n < 2n

(2) ∀n ∈ N≥1 : 13 + 23 + · · ·+ n3 =
1

4
n2(n+ 1)2

(1) First, n = 3. 3. Then the induction step: 1 + 2n + 2 < 2n + 2 <
2n + 2n = 2 · 2n = 2n + 1

Replace 2 with 2n. 2

(2) Assume Pn is true. Show LHS in Pn+1 = RHS in Pn+1.

1

4
n2(n+ 1)2 + (n+ 1)3 = (n+ 1)2(

1

4
n2 + (n+ 1))

=
1

4
(n+ 1)2(n2 + 4n+ 4) =

1

4
(n+ 1)2 · (n+ 2)2

§2.3 Divisibility

Recall. For b ∈ Z, a ∈ Z \ {0}, a|b (say “a divides b”) ⇔ ∃c ∈ Z : b = c · a

Recall. The division algorithm / division with remainder.

Let a, b ∈ Z, b > 0. Then ∃!q ∈ Z and r ∈ Z with r ∈ {0, 1, . . . , b − 1}.
a = q · b+ r.

Example. a = 3, b = 10. q = 3, r = 5 and 35 = 3 · 10 + 5 or a = q · b+ r.

a = 72, b = 7. 72 = 10 · 7 + 2.

a = −91, b = 11.

Observe. −91 = (−8) · 11− 3 = (−9)11 + 8

↑
Not a valid division with remainder.

−91 = (−9)11 + 10
a = qb+ r

Recall. Long division algorithm.

a = 357, b = 13.
357

13
= 27 with remainder: 6.
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For negative a how to do long division with remainder: Work with |a|, then
multiply by (−1), then adjust to positive remainder.

Example. a = −122, b = 11.

First, work with +122 :
122

11
= 11 with remainder 1.

122 = 11 · 11 + 1

Multilpy by (−1) : −122 = (−11)11− 1 = (−12) · 11 + 10
a q b r

§2.4 Prime Factors and GCDs (Greatest Common Divisors)

Definition. d = gcd(a, b) such that a, b ∈ Z if and only if:

(1) d ∈ N≥1 (i.e., d positive integers)
(2) d|a, d|b
(3) c|a and c|b⇒ c|d

Theorem. (GCD-Theorem)

Let a, b be integers, at least one non-zero. The smallest non-zero d ∈ N 6=0

that can be written as d = am+ bn with m,n ∈ Z in the gcd(a, b).

(1) Show: d|a (d|b by symmetry)
We can always divide a by d with remainder: a = q · d + r if and
only if

r = a− qd = a− q(am+ bn)

= a− q(am+ bn)

= a(1−mq) + b(−nq)
Note: This shows that r has the same property of d, but d was

smallest (and r < d). →← unless r = 0.

(2) Remains: There is no greater divisor than d. To this end, let c be
any other divisor.
d = am+ bn = cl1m+ cl2n = c(l1m+ l2n)⇒ c|d 2

c · l1 c · l2

How to find m,n, d for given a, b? Let a, b ∈ N.

Key idea: Subtracting a multiple of the smaller number (either a, b) from
the other number does not change the GCD.
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Thursday February 13, 2014

GCD Theorem. Let a, b ∈ Z. The smallest non-zero d ∈ N6=0 that can be
written

d = am+ bn (m,n ∈ Z)

is the GCD.

Note. d = am+ bn = (−a)(−m) + bn

Key idea. Subtracting a multiple of the smaller number from the larger
number where a, b are the numbers, does not change the GCD.

Example. Find gcd(1492, 176).

gcd(1492, 176) = gcd(1492, 1776− 1492 = 284)

= gcd(1492− 5 · 284 = 72, 284)

= gcd(72, 284− 3 · 72 = 68)

= gcd(72− 1 · 68 = 4, 68)

= 4 (obviously)

Scratch Work. 1492 = 5 · 284 + 72
4 · 72 = 288

Example. To find m,n such that 4 = 1492 ·m+ 1776 · n.

4 = 72− 68 = 72− (284− 3 · 72) =

= 4 · 72− 284 = 4(1492− 5 · 284)− 284

= 4 · 1492− 21 · 284

= 4 · 1492− 21 · (1776− 1492)

= 25 · 1492 + (−21)1776

m n

Example. a = 102, b = 66.

gcd(102, 66) = gcd(102− 66 = 36, 66)

= gcd(36, 66− 36 = 30)

= gcd(36− 30 = 6, 30)

6 = 36− 30

= (102− 66)− (66− 36)

= 102− 2 · 66 + 36
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= 102− 2 · 66 + 102− 66

= 2 · 102 + (−3)66

m n

Remark. For next section, 3a = 3b. Most would conclude a = b. mod 3 is
true for all a, b ∈ Z.

Definition. Call a, b relatively prime ⇔ gcd(a, b) = 1.

Definition. An integer p > 1 is called prime if a|p⇒ a = ±1 or a = ±p.

Euclid’s Lemma. If p prime and p|a · b⇒ p|a or p|b.
(Consider 5|10 · 7)

Unique Factorization Theorem.

Every positive integer > 1 can be expressed as a product of primes, unique
up to reordering of the factors.

Proof. By complete induction. If n is prime, done. If not, write n = a · b
where a > 1 and b > 1. Apply induction twice, once to a and once to b.
(Both are < n.) �

Euclid’s Theorem on Primes. There exists infinitely many primes.

Proof. To obtain a contradiction, let us assume that p1, . . . , pk for k ∈ N
is a complete list of all primes. Consider: m = p1 + . . . + pk + 1. Note
m > pi ∀i = 1, . . . , k ⇒ m is not a prime. Unique Factorization Theorem⇒
∃i : pi|m. But the remainder obtained when dividing m by pi is obviously
1. � �

Example. Find prime factorization in an ad-hoc way.

84 = 2 · 42 = 22 · 21

= 22 · 3 · 7

Remark. This yields an alternative way of finding the GCD.

gcd(287, 161) can be determined as follows:

287 = 7 · 41

161 = 7 · 23

⇒ gcd = 7.
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1492 = 4 · 373, 1776 = 24 · 3 · 37
↑ ↑
22 prime

§2.5 Congruence of Integers

Remark. Let a, b ∈ Z. a ≡ b mod n ∈ N>0 ⇔ ∃k ∈ Z : a− b = k · n.

Remark. “≡ mod n” is an equivalence relation.

Proof.

(1) Reflexive: a− a = 0 · n
(2) Symmetric: a− b = k · n⇒ b− a = −kn = (−k) · n
(3) Transitive: a · b = k1n and b − c = k2 · n ⇒ a − (k2n + c) = k1n ⇒

a− c = k1n+ k2n = (k1 + k2)n

b = k2n+ c �

Theorem (2.22) Let x be any integer.

(a) a ≡ b mod n ⇔ a+ x ≡ b+ x mod n Reversible
(b) a ≡ b mod n ⇒ xa ≡ xb mod n Not Reversible

Proof. (a) Let a ≡ b mod n, i.e., ∃k ∈ Z : a− b = kn.

Check: a+ x− (b+ x) = a− b = kn
a+�x− (b+�x) = a− b = kn 3

(b) xa− xb = x(a− b) = x(kn) = (xk)n 3

Theorem 2.23 a ≡ b mod n and c ≡ d mod n⇒ a+ c = b+ d mod n

Proof. a+ c− (b+ d) = a− b+ c− d = k1 · n+ k2 · n = (k1 + k2) · n
k1 + k2 ∈ Z �
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Tuesday February 18, 2014

Quiz 4

(1) gcd(117, 315) =?
gcd(117, 315) = gcd(81, 117) = gcd(81, 36) = gcd(36, 9) = 9

(2) Find m,n ∈ Z : gcd(117, 315) = m315 + 117n

9 = 81− (2 · 36)

= 81− 2 · (117− (1 · 81))

= (3 · 81)− (2 · 117)

= 3(315− (2 · 117))− (2 · 117)

= 3 · 315− 8 · 117

∴ m = 3, n = −8

§2.5 Congruence of Integers (Continued)

(a, b ∈ Z)

a ∼ b :⇔ a ≡ b mod n

:⇔ ∃k ∈ Z : a− b = kn

is an equivalence relation.

Theorem. For any x ∈ Z,

(1) a ≡ b mod n⇔ a+ x ≡ b+ x mod n
(2) a ≡ b mod n⇒ ax ≡ bx mod n

⇐ �
Theorem. a ≡ b mod n
c ≡ d mod n
⇒ a+ c ≡ b+ d mod n.

Theorem 2.24 (Cancellation Law)
If ax ≡ ay mod n and gcd(a, n) = 1 then x ≡ y mod n.

Proof. ax ≡ ay mod n
⇔ ∃k : k · n = (ax− ay)
⇔ n|(ax− ay)
⇔ n|(a(x− y))
⇔ n|x− y
gcd(a, n) = 1
⇔ x ≡ y mod n �
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Remark. What goes wrong if gcd(a, n) > 1:

2 · 2 ≡ 2 · 4 mod 4
a x a y n
gcd(a, n) = gcd(2, 4) = 2 6= 1
“cancel” the factor of 2:
2 ≡ 4 mod 4
x y �

Want to solve two types of equations:

(1) ax ≡ b mod n with gcd(a, n) = 1 (solve for x).
(2) x ≡ a mod m.

x ≡ b mod n
(gcd(m,n) = 1)
Solve for x.
all over Z

Theorem 2.25. Let a, b, n ∈ Z. Let gcd(a, n) = 1. Then the congruence
ax ≡ mod n has a solution x ∈ Z and any two solutions are congruent
mod n.

Proof. gcd(a, n) = 1⇒ ∃s, t ∈ Z : 1 = as+ nt
↑

GCD Theorem

ax ≡ mod n⇔ ∃k ∈ Z : ax− b = kn

gcd(a, n) = 1⇒ ∃s, t ∈ Z : 1 = as+ nt
Multiply by b

⇒ ∃s, t ∈ Z : b = a(bs) + n(bt)
⇒ ∃s, t ∈ Z : a(bs)− b = n(−bt)

⇒ ∃s, t ∈ Z : a(bs)−b = n(−bt)
x ∈ Z

Finally, let us determine all solutions. Let x, y both solve the congruence
equation.

ax ≡ b mod n

ay ≡ b mod n

}

⇒ �ax ≡ �ay mod n
↑ Transitivity of ≡
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⇒ x ≡ y mod n
↑ Cancellation Law

�

Example. 20x ≡ 14 mod 63.
Note: gcd(20, 63) = 1.

Write 1 = 20(−22) + 63(7)
(b = 14) · 1 14 = (20(−22)14) + 63(7 · 14)

14 = (20(−22)14) + 63(7 · 14)
x = −308

What is the smallest positive x which solves?
−308 + 5 · 63 = 7

Check your answer: 20 · 7− 14 = 2 · 63 3

3x ≡ 7 mod 13
1 = 3s+ 13t
1 = 3(−4) + 13t
7 · 1 7 = 3(−28) + 13 · 7

x = −28 smallest positive x = 11

Theorem 2.26. Let gcd(m,n) = 1.
Let a, b ∈ Z.
Then ∃x ∈ Z : x ≡ a mod m (1)

x ≡ b mod n (2)
Any two solutions x, y are congruent mod m · n.

Proof. Solve (1): x = a+mk ∀k ∈ Z.
Solve into (2): a+mk ≡ b mod n

⇔ mk ≡ b− a mod n

Since gcd(m,n) = 1, Theorem 2.2.5 =⇒ Can solve for k. (→ Get k0.)
x = a+mk0 solves (1) and (2). �

Uniqueness to congruence mod m,n

Let x, y be two solutions.

x ≡ a mod m y ≡ a mod m
x ≡ b mod n y ≡ b mod n

x ≡ y mod m
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x ≡ y mod n

m|x− y
m|x− y

m · n|x− y
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Thursday February 20, 2014

Recall. Let a, b, n ∈ Z with gcd(a, n) = 1. ⇒ ∃x ∈ Z : ax ≡ b mod n. Any
two solutions x, y are congruent mod n.

Let a, b ∈ Z. Let m,n ∈ Z with gcd(m,n) = 1. ⇒ ∃x ∈ Z : x ≡ a mod m
and ≡ b mod n. Any two solutions x, y are congruent mod m · n.

Example. x ≡ 2 mod 5 (1)
x ≡ 3 mod 8 (2)

(1)⇔ x = 2 + 5k

Sub into (2): 2 + 5k ≡ 3 mod 8⇔ 5k ≡ 1 mod 8.

Find s, t such that 1 = 5s+ 8t.

gcd(5, 8) = gcd(5, 3) = gcd(3, 2) = 1

⇒ 1 = 3− 2

= (8− 5)− (5− 3)

= 8− 2 · 5 + 3

= 8− 2 · 5 + (8− 5)

= 2 · 8 + (−3)5

− 3 = s = k

→ x = 2 + 5(−3) = −13

Smallest positive x is −13 + 40 = 27.

Check. 27 ≡ 2 mod 5 3
27 ≡ 3 mod 8 3

Example. 2 x ≡ 5 mod 3 (1)

5x+ 4 ≡ 5 mod 7 (2)

Solve (1). 1 = 3− 2 1 · 5
5 · 1 = 5 · 3 + 2 (-5)

x
x = −5 + 3k = 1 + 3k

Substitute into (2). 5(1 + 3k) + 4 ≡ 5 mod 7
⇔ 15k + 9 ≡ 5 mod 7
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⇔ 15 k ≡ −4 mod 7
1 = 15 + (−2) · 7 1 · (−4)

−4 = (−4)15 + 8 · 7
k

x = 1 + 3(−4) = −11

Smallest positive x = −11 + 21 = 10

Check. 2 · 10 ≡ 5 mod 3 3
50 + 4 ≡ 5 mod 7 3

Let a, b ∈ Z.
Let m,n ∈ Z with gcd(m,n) = 1.
⇒ ∃x ∈ Z : x ≡ a mod m

x ≡ b mod n
Any two solutions x, y are congruent mod m · n.

Theorem 2.2.7 (Chinese Remainder Theorem)

Let n1, . . . , nm pairwise relatively prime. Let a1, . . . , am ∈ Z.
⇒ ∃x ∈ Z : x ≡ a1 mod n1

x ≡ a2 mod n2
...

x ≡ am mod nm

Any two solutions are congruent mod n1 · . . . · nm.

§2.6 Congruence Classes

Zn = {congruence classes of integers mod n}
= {[0], [1], [2], . . . , [n− 1]}

[0] = {. . . ,−2n,−n, 0, n, 2n, . . .}
[2] = {. . . , 2− 2n, 2− n, 2, 2 + n, 2 + 2n, . . .}

Define addition on Zn : [a] + [b] = [a+ b]

Note. This is well-defined because:

[a+ rn] + [b+ sn] = [a+ rn+ b+ sn]

= a+ b+ n(r + s)

= [a+ b]



36 TANYA CHEN

Associativity ([a] + [b]) + [c] = [a] + ([b] + [c]) 3

Commutativity: [a] + [b] = [b] + [a] 3

Identity: [0] + [a] = [a] 3
[−a] + [a] = [0] 3

Table for Z4 = {[0], [1], [2], [3]}

+ [0] [1] [2] [3]

[0] [0] [1] [2] [3]

[1] [1] [2] [3] [0]

[2] [2] [3] [0] [1]

[3] [3] [0] [1] [2]

Multiplication: [a] · [b] = [ab]
Commutativity 3
Associativity 3
Identity: [1]

Multiplication Table for Z4

• [0] [1] [2] [3]

[0] [0] [0] [0] [0]

[1] [0] [1] [2] [3]

[2] [0] [2] [0] [2]

[3] [0] [3] [2] [1]

[2] · [2] = [0]

Start with a, n.
Let’s study multiplicative inverses:

[a] · [b] = [1]

⇔ [ab− 1] = [0]
⇔ ∃q ∈ Z : ab− 1 = qn
⇔ ∃q ∈ Z : a · b+ (−q)n = 1
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GCD Theorem ⇒ b (and q) exist ⇔ gcd(a, n) = 1.

Just saw: [a] has multiplicative inverse in Zn ⇔ gcd(a, n) = 1.

Corollary. Every element of Zp has a multiplicative inverse if p = prime.

Let’s solve equations (system of equations) in Zn:

Example. [4] · [x] = [5] in Z13

[4]−1 · | [x] = [4]−1[5]

Remains to find b : [b] = [4]−1:

b ·[4]

0 0

1 [4]

2 [8]

3 [12]

4 [3]

5 [7]

6 [11]

7 [2]

8 [6]

9 [10]

10 [1]

⇒ [4]−1 = [10]
⇒ [x] = [4]−1 · [5] = [10] · [5] = [50] = [11]

28-26=2
32-26-6
36-26=10
40-39=1
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Tuesday February 25, 2014

Quiz 5

(1) 5x+ 1 ≡ 3 mod 13
(2) x ≡ 3 mod 5

2x ≡ 5 mod 7

In each case, find all solutions.

Example. [4][x] + [y] = [22] in Z26.
[19][x] + [y] = [15]

Subtract (2) from (1):

[−15][x] = [7]
⇔ [11][x] = [7]
⇔ [x] = [11]−1 · [7]

To find [11]−1:

x · 11 ≡ 1 mod 26

ax ≡ b mod m

1 = 11 · s+ 26t
s = −7, t = 3

11 · 19 = 110 + 99
209 · 26 = 8
208/1

z = −7
⇒ [11]−1 = [−7] = [19]
⇒ [x] = [19] · [7] = [133] = [3]

Remains: [4] · [3] + [y] = [22]
⇔ [y] = [22]− [12] = [10]

§3.1 Definition of a group.

Definition. A group in a set G and a binary operation ∗ : G×G→ G such
that

(1) ∗ is associative, i.e., for all x, y, z ∈ G : (x ∗ y) ∗ z = x ∗ (y ∗ z)
(2) There exists an identity element e, i.e., there exists e ∈ G such that

for all x ∈ G it follows e ∗ x = x = x ∗ e.
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(3) For all a ∈ G, there exists b ∈ G such that a∗b = e = b∗a (“existence
of inverses”)

Definition. If G is a group with x, y ∈ G, and x ∗ y = y ∗ x, then call G
abelian or commutative.

Examples.
(Z,+) is a commutative group.
(Z, ·) not a group.
(3) fails: No multiplicative inverses (except for ±1).

(R,+) 3

(R, ·) is not a group

(
“

1

0
” is a problem.

)
(R \ {0}, ·) is a group.
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Thursday February 27, 2014

§3.1 Definition of a Group

Let G be a set with binary operation ∗.
(1) ∗ is associative.
(2) There exists an identity element.
(3) For all a ∈ G, ∃b ∈ G such that a ∗ b = e = b ∗ a.

If, in addition, ∗ is commutative, then G is called Abelian or commutative.

Example 1. (R,+), (R \ {0}, ·), (Z,+)

Example 2. G = {f : R→ R continuous} with (f + g)(x) = f(x) + g(x).
+ is a binary operation because of the summation theorem for continuous
functions and satisfies (1), (2), (3).

Example 3. A = {1, 2, 3}
ρ(A) = {f : A→ A}|bijective}

ρ(A) =

{
1 if x ≥ 0

0 if x < 0.

∗ e α β γ σ ε

e e α β γ σ ε

α α β e

β β

γ γ α

σ σ

ε ε

1 7→ 2
α ◦ α : 2 7→ 3

3 7→ 1

1 7→ 1
α ◦ β : 2 7→ 2

3 7→ 3

1 7→ 3
γ ◦ ε : 2 7→ 1

3 7→ 2
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Example 4. #G = 2⇒ G ∼= (Z2,+)

+ [0] [1]

[0] [0] [1]

[1] [1] [0]

Example 5. #G = 3⇒ G ∼= (Z3,+)

Example 6. #G = 4

(a) G = (Z4,+)

(b)

∗ e a b ab

e e a b ab

a a e ab b

b b ab e a

ab ab b a e

↑
aba = b��aa

G = {e, a, b, ab} G abelian with a ∗ a = e
b ∗ b = e
(ab) ∗ (ab) = e

We will see: G in Z2 × Z2

(AB)−1

Felix→ (Klein’s Four Group)

§3.2 Properties of Group Elements

Theorem 3.4

(a) e ∈ G is unique.
(b) For all x ∈ G the universe of x is unique (thus the special x−1 can

be used).
(c) For all x ∈ G : (x−1)−1 = x
(d) For all x, y ∈ G : (xy)−1 = y−1x−1

(e) For all a, x, y ∈ G : (ax = ay ⇒ x = y)

x ∗ y = xy
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Proof. (a) Let e, e′ be neutral elements.
e = ee′ = e′

↑ ↑
e′ neutral e neutral

(b) Let a ∈ G. Let b, c both be inverses.

b = eb = (ca)b = c(ab) = ce
(c) x−1 · x = e 3

x · x−1 = e 3

(d) (xy)(y−1x−1) = x(yy−1)x−1 = xx−1 = e
↑

yy−1 = e

(y−1x−1)(xy) = y−1(x−1x)y = y−1y = e

xyx−1y−1

(e) Let ax = ay | a−1 ∗

a−1(ax) = a−1ay ⇔ (a−1a)x = (a−1a)y ⇔ x = y
�

Remarks on Matrix Groups
(Matn×m(R),+) is a group.
(Matn×m(R), ·)
(Matn×m(R)|{detA = 0}, ·) = GLnR

§3.3 Subgroups

Definition. Let G be a group. A subset H ⊂ G is called a subgroup if H is
a group with the binary operation induced from G.

Equivalent Definition. ∅ 6= H ⊂ G is called a subgroup ⇔
(1) x, y ∈ H ⇒ x ∗ y ∈ H
(2) x ∈ H ⇒ x−1 ∈ H

Example 1. H = {[0], [2], [4]} ⊂ (Z6,+)

(1) 3
(2) [2]−1 = [4] 3

[4]−1 = [2] 3
⇒ H is a subgroup of (Z6,+)

[2] + [4] = [6] = [0] = e
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(3) H = {[0], [1], [2]} ⊂ (Z6,+)

[1] + [2] = [3] /∈ H ⇒ H is not a subgroup of Z6

↑ ↑
H H
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Tuesday March 4, 2014

Online Tutoring: Tuesday 6-7pm
Fridays 1-2pm
www.math.ueh.edu/∼nleger

§3.3 Subgroups (continued)

Recall: ∅ 6= H ⊂ G (G for group) is a subgroup ⇔
(1) x, y ∈ H ⇒ x ∗ y ∈ H
(2) x ∈ H ⇒ x−1 ∈ H

∗ : G×G→ G
H ×H → H

Examples (continued)

(1) G = (R \ {0}, ·) is a group.
H = {x ∈ R, x > 0}
(a) ⇔ “The product of positive reals is positive.” True.
(b) ⇔ “The reciprocal of a positive real is positive.” True.
(a) and (b) ⇒ H is a subgroup.

(2) G = (R \ {0}, ·)
H = {x ∈ R, x < 0}
(a) ⇔ “The product of negative reals is negative.” False.

H is not a subgroup.

(3) G = (R \ {0}, ·)
H = {1, 2, 3, 4, 5, . . .}
(a) Any product of natural numbers is a natural number. 3

(b) For x ∈ {2, 3, 4, 5, . . .}, 1

x
/∈ H, i.e., condition (b) is not satisfied

and H is not a subgroup.

(4) G = (R \ {0}, ·)
H = (Q \ {0}, ·) 3subgroup
H = (Q \ Z, ·)
Condition (a) does not hold.

2

3
· 9

2
= 3.

So
2

3
∈ H,

9

2
∈ H, but 3 /∈ H.

7Not a subgroup.

H = {1,−1} ∼= Z2 3
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(5) A = {1, 2, 3}
ϕ(A) = {bijective maps {1, 2, 3}}.

H = {id} 3

H =

 1 7→ 2 1 7→ 3
id α : 2 7→ 3 α ◦ α : 2 7→ 1

3 7→ 1 3 7→ 2


(a) All we need to check is:

α ◦ α ∈ H 3

1 7→ 1
α ◦ (α ◦ α) : 2 7→ 2 = id ∈ H 3

3 7→ 3

1 7→ 2
(α ◦ α) ◦ (α ◦ α) : 2 7→ 3 = α ∈ H 3

3 7→ 1

(b) α · α ∈ H 3
α · (α · α)
α−1 = α ◦ α 3
(α ◦ α)−1 = α 3
⇒ H is a subgroup of ϕ(A).

Integral Exponents

For a ∈ G, define:
∀k ∈ N : ak = a ∗ (. . . (a ∗ (a ∗ a)) . . .)︸ ︷︷ ︸

k factors
∀k ∈ {−1,−2,−3,−4, . . .} : ak = (a−1)(k) = (a(k))−1

x ∈ R∗ x−3 =
1

x3
=

(
1

x

)3

Theorem. (Laws of Exponents)

m,n ∈ Z

(1) xn ∗ x−n = e
(2) xm ∗ xn = xm+n

(3) (xm)n = xm·n

(4) If G abelian, then (xy)n = xnyn
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Cyclic (Sub)groups:

Definition. Let G be a group. Say G is cyclic. ⇔ ∃a ∈ G : G = {an|n ∈ Z}
↓

< a >

Definition. Let G be a group. Let H ⊂ G. We call H a cyclic subgroup of
G.
If ∃a ∈ G :< a >= H.

Definition. Any such a is called a generator of H (or G, respectively).

Example 1. (Z,+) =< 1 >=< −1 >

H = {e} Note: 13 = 30

13 = 3 · 1 30 = 1 ∗ 1 ∗ 1

Example 2. Consider G = (Z,+)
H =< 2 >= {. . . ,−6,−4,−2, 0, 2, 4, 6, . . .} is the cyclic subgroup of Z gen-
erated by 2.

Example 3. G = (Z6,+)

Z6 = {[0], [1], [2], [3], [4], [5]}

Let’s find all the cyclic subgroups of G.

H =< [0] >= {[0]}

H =< [1] >= G

[1] = {[0], [1], [1] + [1] = [2] [2] + [1] = [3], . . .}

H =< [2] >= {[0], [2], [4]}

H =< [3] >= {[0], [3]}

H =< [4] >= {[0], [4], [2]}

H =< [5] >= {[0], [5], [4], [3], [2], [1], [0]} = G

Saw: G =< [1] >=< [5] >
< [2] >=< [4] >∼= Z3

< [3] >∼= Z3

< [0] >= {e}
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Remark. Let G be a group. Then any group element x ∈ G yields a cyclic
group < x >= {xn|n ∈ Z}.
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Thursday March 6 2014

Timetable:

Today in class: Q6 solution and new material.
Later today: New HW 7 on my www, due 03/18.
Class of 03/18: Solutions to HW 7 discussed in class. Further exam prep.
No new material.
Class of 03/20: MT Exam
Sample exams: See my earlier Math 3330 on my www.

Theorem 3.15 Infinite Cyclic Groups

Let a ∈ G. If an 6= e for all n > 0, then ap 6= aq for all p 6= q = Z and < a >
is infinite cyclic.

Proof. If ap = aq for p 6= q, then ap−q = e (without loss of generality p > q)
By assumption: p− q = 0 �

Corollary. If #G, then an = e for some n ∈ N > 0.

Theorem 3.20 (Subgroups of Cyclic Groups)
Let G cyclic group with generator a. Let H ⊂ G subgroup. Then either
a) H = {e} =< e > or
b) H =< ak > where k is the least positive integer such that ak ∈ H.

Proof. Let b 6= e ∈ H. Have to show: ∃l ∈ Z 6= 0 : b = aek. Assume false.
Because b ∈ G : ∃j : b = aj

Do division with remainder j = m · k + r with 0 < r < k. Since H is a
subgroup, b · (amk)−1 ∈ H.
ar � minimality of k.

Definition. The order (ord(a)) of a ∈ G is # < a >.
Clear: ord(a) = min{m ∈ N > 0 : am = e}

Department of Mathematics, University of Houston, Houston, TX, USA
E-mail address: tgchen@uh.edu


