MATH 3330 ABSTRACT ALGEBRA SPRING 2014

TANYA CHEN

Dr. Gordon Heier

Tuesday January 14, 2014

The Basics of Logic (Appendix)

Definition. A statement is a declarative sentence that is either true or false.

Examples

- (1) $\#\{4,\pi,7,3\}=3$
- (2) There is a real number x such that $x^2 = -1$.
- (3) There exists infinitely many prime numbers.

Some statements are plainly assumed to be true. These are called <u>postulates</u> or <u>axioms</u>.

Examples

- (1) One can draw a straight line through any two points in the plane.
- (2) 3 < 4

Most statements are derived from basic postulates by logical inference ("Theorems, proofs").

Quantifiers will often be used in our statements:

 \forall : "for all"

 \exists : "there exists"

(1) $\forall x \in (0,2) : x > -3$ True (2) $\exists x \in \mathbb{Z} : x^2 = 9$ True (3) $\exists x \in \mathbb{Z} : x^2 = 10$ False (4) $\forall a \in \mathbb{R} : \exists x \in \mathbb{R} : x^2 = a$ False (5) $\forall a \in \mathbb{C} : \exists x \in \mathbb{C} : x^2 = a$ True

TANYA CHEN

 $\forall a \in \mathbb{R} : \exists x \in \mathbb{R} : x^2 = a \text{ is false. Prove statement (4) via a <u>counterexample.</u>} -1 \in \mathbb{R}, \text{ but } \forall x \in \mathbb{R} : x^2 \ge 0 > -1$

The logical opposite or "negation" of statement 4 is: $\exists a \in \mathbb{R} \ \forall x \in \mathbb{R} : x^2 \neq a$

Example from Calculus: $f : \mathbb{R} \to \mathbb{R}$ is continuous at $x_0 \Leftrightarrow \forall \varepsilon > 0 \ \exists \delta > 0 \ \forall x \in (x_0 - \delta, x_0 + \delta) :$ $|f(x) - f(x_0)| < \varepsilon$

 $f : \mathbb{R} \to \mathbb{R}$ is not continuous at $x_0 \Leftrightarrow \exists \varepsilon > 0 \ \forall \delta > 0 \ \exists x \in (x_0 - \delta, x_0 + \delta) :$ $|f(x) - f(x_0)| \ge \varepsilon$

From give statements, we can get new statements with "and," "or," " \Rightarrow ," " \Leftrightarrow ".

Examples

- x > 3 and x < 5(same as/"equivalent to" $x \in (3, 5)$)
- x > 1 and x < 0 False.

Today, Math 3330 meets for class \Rightarrow Today is Tuesday.

This is one big statement: Today Math 3330 meets for class \Rightarrow Today is Tuesday. False.

Today Math 3330 meets for class \Leftarrow Today is Tuesday. True.

How to Negate With And/Or:

Let A and B be statements. Not(A and B) is the same as not A or not B.

Contrapositive $A \Rightarrow B$ is equivalent to not $A \leftarrow \text{not } B$.

Green sweater \Rightarrow Thursday

Chapter 1 Fundamentals

 $\S1.1$ Sets

 $\{0,2,5,7\} = \{0,0,2,5,5,7,7,7\} \\ \# = 4$

Sets do not come with a notion of multiplicity of membership.

 $\mathbf{2}$

list, collection

Subset: $\{2,3\} \subset \{2,3,7,8\}$ $\subset:\Leftrightarrow\subseteq$ \subseteq $A \subset A$ True.

 $\{1,3\}\not\subset\{2,3,7,8\}$

Equality of sets: $A = B \Leftrightarrow A \subset B$ and $B \subset A$

Thursday January 16, 2014

- TA office hours MF 12–12:50pm
- HW1 on website early afternoon.

```
\S1.1 Sets (Continued)
```

4

$$\begin{split} & \langle \mathrm{cup} \\ & A \cup B = \{ x | x \in A \text{ or } x \in B \} \\ & \langle \mathrm{cap} \rangle \end{split}$$

 $A \cap B = \{x | x \in A \text{ and } x \in B\}$

Example. $A = \{1, 5, 9\}$ $B = \{5, 7\}$ $A \cup B = \{1, 5, 7, 9\}$

 $A \cap B = \{5\}$

Clear: $A \cup B = B \cup A$

Empty set: \emptyset ({ }) {1,2} \cap {3,4,5} = \emptyset

Important Notion: Complement If $A, B \subset U$ (U is universal superset), $A^c := U \setminus A = \{x \in U | x \notin A\}$

 $A \setminus B = \{ x \in A | x \notin B \}$

Example. $U = \mathbb{Z}, A = \{\text{even integers}\}, B = \{\text{positive integers}\}$ $A^c = \{\text{odd integers}\} = \{\dots, -5, -3, -1, 1, 3, \dots\}$

 $A \setminus B = \{0, -2, -4, -6, \ldots\}$

Repeated Application:

$$(A \cap B) \cap C = A \cap (B \cap C)$$
$$= A \cap B \cap C$$

 $\ni x \Leftrightarrow x \in A \text{ and } x \in B \text{ and } x \in C.$

Warning: $A \cap (B \cup C) \neq (A \cap B) \cup C$

Ex 14. $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

Proof. "
$$\subset$$
" Let $x \in A \cap (B \cup C)$
 $\Rightarrow x \in A$ and $(x \in B \text{ or } x \in C)$
 $\Rightarrow (x \in A \text{ and } x \in B) \text{ or } (x \in A \text{ and } x \in C)$
 $\Rightarrow x \in A \cap B \text{ or } x \in A \cap C$
 $\Rightarrow x \in (A \cap B) \cup (A \cap C)$

" \supset " Reverse arrows for this direction.

§1.2 Mappings

$$f: A \to B$$

Illegal:

Example. $f : \{1, 2, 3, 4\} \rightarrow \{1, 2, 3, \dots, 20\}$ $x \mapsto x^2$

Domain: $\{1, 2, 3, 4\}$ Codomain: $\{1, 2, \dots, 20\}$ Range: $\{1, 4, 9, 16\}$

Some more terminology: Let $f : A \to B$, let $S \subset A$. Then $f(S) = \{f(x) | x \in S\} = \{b \in B : \exists x \in S : f(x) = b\}.$

Let $T \subset B$. Let $f : \mathbb{Z} \to \mathbb{Z}$. $x \mapsto x^2$. $f^{-1}(T) = \{a \in A | f(a) \in T\}$ \mathbb{Z} integers from German word Zahlen.

$$\begin{split} f^{-1}(\{4,9\}) &= \{-2,-3,2,3\} \\ f^{-1}(\{5,7,9\}) &= \{\pm 3\} \\ f^{-1}(\{3\}) &= \varnothing \end{split}$$

Injective Maps

Definition. Let $f : A \to B$ map. Then f is called <u>injective</u> if $\forall x, y \in A$ with $x \neq y : f(x) \neq f(y)$ $\longrightarrow x \neq y \Longrightarrow f(x) \neq f(y)$ $\boxed{x = y \Longleftarrow f(x) = f(y)}$ $A \Rightarrow B$ same as not $A \Leftarrow$ not B

Not injective:

Example 1. $f : \mathbb{R} \to \mathbb{R}, x \mapsto 3x + 2$

$$\begin{aligned} f(x) &= f(y) \\ &\longrightarrow 3x + 2 = 3y + 2 \\ &\longrightarrow 3x = 3y \\ &\longrightarrow x = y \end{aligned}$$

Thus f is injective.

Example 2. $f: \mathbb{Z} \to \mathbb{Z} \ x \mapsto x^2$

Not injective. f(-2) = 4 = f(2) but $-2 \neq 2$

Example 3. $f: \mathbb{N} \to \mathbb{N}, x \mapsto x^2$ Injective.

Surjective Maps:

Definition. Let $f : A \to B$ map. Then f is called surjective $\Leftrightarrow f(A) = B \iff$ codomain range $\iff \forall b \in B : \exists a \in A : b = f(a)$.

 $\mathbb{R} \to \mathbb{N}$

 $\mathbb{N} \to \mathbb{R}$

Examples

- (1) $f : \mathbb{Z} \to \mathbb{Z}, x \mapsto x^2$ Not surjective.
- (2) $f : \mathbb{R} \to \mathbb{R}, x \mapsto x^2$ Not surjective because all squares of reals are non-negative. So $-2 \notin f(\mathbb{R})$.
- (3) $f : \mathbb{R} \to (0, \infty), x \mapsto x^2$ Not a function.
- (4) $f : \mathbb{R} \to [0, \infty), x \mapsto x^2$
- (5) $f : \mathbb{R} \to \mathbb{R}, x \mapsto 3x + 2$ is surjective.

Proof. Let $y \in \mathbb{R}$ (\mathbb{R} is codomain.) Q: $\exists x \in \mathbb{R} : y = f(x)$? (\mathbb{R} is domain.)

Solve.

$$y = f(x) = 3x + 2$$
$$\implies y - 2 = 3x$$
$$\implies \frac{y - 2}{3} = x$$

Check: $f\left(\frac{y-2}{3}\right) = 3\left(\frac{y-2}{3}\right) + 2 = y - 2 + 2 = y$

Tuesday January 21, 2014

$$x \mapsto \begin{cases} 2x+1 & \text{if } x \text{ is even.} \\ \frac{x+1}{2} & \text{if } x \text{ is odd.} \end{cases}$$

(a) Injective? Prove.

(b) Surjective? Prove.

Solution:

	x	f(x)		x	f(x)
	-2	-3		-3	-1
(a) Even:	0	1	Odd:	-1	0
	2	5		1	1
	4	9		3	2

Not injective

(b) Let
$$y \in \mathbb{Z}$$
 arbitrary. $\exists x \in \mathbb{Z} : f(x) = y$
Claim. $\exists x \in \mathbb{Z}$ with x odd: $f(x) = y \iff \frac{x+1}{2} = y$. Then,
 $x = 2y - 1$ Then $f(2y - 1) = \frac{2y}{y} = 2y$.
Indeed odd.

§1.4 Binary Operations

Cantor's Diagonal Count

 $\begin{array}{c} \mathbb{N} \to \mathbb{Q} \\ \mathbb{Z} \to \mathbb{Q} \end{array}$

Definition. A binary operation on a non-empty set A is a mapping $f : A \times A \rightarrow A$.

$$(a_1, a_2) \mapsto f(a_1, a_2) = a_1 * a_2$$

Recall: $A \times B : \{(a, b) | a \in A, b \in B\}.$

Example. x * y

(1)
$$f: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$$

 $(x, y) \mapsto x + y$

- (2) $f: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$ $(x, y) \mapsto x \cdot y^2$
- (3) $f: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$ $(x, y) \mapsto x^2 + y^2$

(4)
$$f : \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$$

 $(x, y) \mapsto 1 + x \cdot y$

(5)
$$f: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$$

 $(x, y) \mapsto \frac{x \cdot y}{3}$

(6)
$$f: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Q}$$

 $(x, y) \mapsto \frac{x \cdot y}{3}$

Not a binary operation.

$$f: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Q}$$
$$(x, y) \mapsto \frac{x \cdot y}{3}$$

Definition. If $a_1 * a_2 = a_2 * a_1 \ \forall a_1, a_2 \in A$ then say f is commutative.

Definition. If $(a_1 * a_2) * a_3 = a_1 * (a_2 * a_3) \forall a_1, a_2, a_3 \in A$ then say f is associative.

Ex. Look at 3. $f : \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}, (x, y) \mapsto 1 + x \cdot y$

 $1 + xy = 1 + yx \Longrightarrow f$ is commutative.

$$\begin{array}{c|c} \hline x & 1 \\ \hline y & 2 \\ z & 3 \\ \hline \end{array} \\ x*(y*z) = 1*(2*3) = 1*(1+2\cdot3) = 1*7 = 1+1\cdot7 = 8 \\ (x*y)*z = (1+1\cdot2)*3 = 3*3 = 1+3\cdot3 = 10 \neq 8 \end{array}$$

 \implies Not associative.

Closedness

Let $f : A \times A \to A$ be a binary operation. If $B \subset A$ is $b_1 * b_2 \in B$ such that $\forall b_1, b_2 \in B$, then we say B is closed under * in A.

$$f: \mathbb{Q} \times \mathbb{Q} \to \mathbb{Q}$$
$$(x, y) \mapsto x + y$$

Identity Element Definition. $e \in A$ is called an identity element if $\forall x \in A : e * x = x = x * e$.

Examples

(1)
$$A = \mathbb{Z}, * = +$$

 $e = 0$

(2)
$$A = \mathbb{Z}, * = \cdot$$

 $e = 1$

(3)
$$A = \mathbb{Z}, x * y = x + y - 3$$

 $e = 3$
 $e * x = 3 + x - 3 = x \checkmark$
 $x * e = x + 3 - 3 = x \checkmark$

(4) $A = \mathbb{Z}, x * y = x$ has no identity element because e * y = e but should be y.

(5)
$$A = \mathbb{Z}, \ x * y = 1 + xy$$

 $e * y = 1 + ey = y \quad e * y = y$
 $\Leftrightarrow ey = y - 1$
 $\Leftrightarrow e = \frac{y - 1}{y}$
 $y \neq 0$

Depends on y, which it must not.

Right inverse, left inverse, inverse.

Key: Need to have identity element present to start with.

 $1 \cdot x = x$ $x \cdot 1 = x$

1 is identity element of \cdot on \mathbb{Z} or \mathbb{Q} on \mathbb{R} .

Now, it makes sense to seek, given x, an element y, such that $x \cdot y = 1$.

Thursday January 23, 2014

§1.4 Binary Operations (continued)

Recall: e is neutral $\Leftrightarrow \forall x \in A : e * x = x = x * e$

Assume e exists.

Definition. Right inverse, left inverse, inverse.

Let $a \in A$.

- if $\exists b \in A : a * b = e$ call b right inverse of a.
- If $\exists b \in A : b * a = e$, then call b left inverse of a.
- If $\exists b \in A : a * b = e = b * a$ then call b inverse of a.

$$Ex \ 1. \ \mathbb{R}^{\neq 0} \times \mathbb{R}^{\neq 0} \to \mathbb{R}^{\neq 0}$$
$$(x, y) \mapsto x \cdot y$$
$$e = 1 \text{ inverse to } x \text{ is } \frac{1}{x}.$$
$$Ex \ 2. \ \mathbb{R}^{>0} \times \mathbb{R}^{>0} \to \mathbb{R}^{>0}$$
$$(x, y) \mapsto x(y^2)$$
$$1 \not = 1 \not$$

No e thus no way to discuss any kind of inverse.

$$Ex \ 3. \ \mathbb{R}^{\neq 0} \times \mathbb{R}^{\neq 0} \to \mathbb{R}^{\neq 0}$$

$$(x, y) \mapsto 3 \cdot xy$$

$$\boxed{e = \frac{1}{3}} \text{ because}$$

$$\frac{1}{3} \cdot y = 3 \cdot \frac{1}{3} \cdot y = y$$

$$x \cdot \frac{1}{3} = 3 \cdot x \cdot \frac{1}{3} = x$$
Inverse of *a* is *b* such that $a * b = e = 1/3$

$$\frac{1}{9a}$$

$$a * b = e = 1/3$$

$$3ab \Leftrightarrow b = \frac{1}{9a}$$

 $Ex 4. 1^{st}$

(a) comm?
(b)
$$\exists e? e = ?$$

(c) \exists inverses?

$$a_i * a_j$$

$$A = \{a_1, \dots, a_n\}$$

$$a_i * a_j = a_j * a_i$$

$$(i, j)\text{-square} \quad (j, i)\text{-square}$$

- (a) Yes, * is commutative because the table is symmetric.
- (b) b * x = x and $x * = x \Longrightarrow b = e$
- (c) inverse: $b * b = b = e \Longrightarrow b$ is its own inverse.

 $\begin{array}{l} x \ast y = x \\ y \ast x = x \end{array}$

The inverse of c is a. The inverse of a is c.

§1.5 Permutations

Let A be a set. (*Not* necessarily finite!)

$$\left(\begin{array}{rrr}1&2&3\\3&2&1\end{array}\right)$$

 $A = \{1, 2, 3\}$

Definition. A bijective map $f: A \to A$ is called a permutation on A.

$$\begin{split} S(A) &= \{\text{permutations}\}\\ M(A) &= \{\text{all maps } A \to A\} \end{split}$$

Composition of maps yields a binary operation on S(A). It also yields binary operation on M(A).

$$e = ?$$

$$\boxed{e \\ 1}$$
 $*: M(A) \times M(A) \rightarrow M(A)$

 $e = id_A$

Left-inverses? Right-inverses? Inverse e

Given $f \in M(A)$, $\exists ? g \circ f = id_A$.

Theorem. Let $f \in M(A)$. Then f injective $\Leftrightarrow f$ has a left inverse.

Proof. " \Rightarrow ": Proof by explicit construction: the left inverse g. For $a_2 \in \text{Range}(f) \exists$ unique element $a_1 \in A$.

 $f(a_1) = a_2$

For $a_2 \notin \text{Range}(f)$ set $g(a_2) =$ some arbitrary $a \in A$ (does *not* matter which one). Check that g is left inverse

$$(g \circ f)(a) = g(f(a)) = a$$

" \Leftarrow " Let g be left-inverse. Let $f(a_1) = f(a_2)$. Need to show $a_1 = a_2$.

Apply g to both sides:

$$\implies g(f(a_1)) = g(f(a_2))$$
$$id(a_1) \qquad id(a_2)$$
$$a_1 \qquad a_2$$

Thursday January 30, 2014

- HW2 now due 2/4 (Tuesday)
- Selected solutions to HW1 this afternoon on my www.

§1.5 Permutations

Let A any set. Definition. $f: A \to A$ is called a permutation $\Leftrightarrow f$ bijective.

$$\begin{split} S(A) &= \{\text{permutations}\} \\ &\cap \\ M(A) &= \{\text{all } f: A \to A\} \\ &\text{For } g, f \in M(A), \\ &f * g = f \circ g \\ e &= Id_A. \end{split}$$

Theorem. Let $f \in M(A)$. Then f injective $\Leftrightarrow \exists \text{ left-inverse}$ of f.

Right-inverse:

Theorem. Let $f \in M(A)$. Then f surjective $\Leftrightarrow \exists$ right-inverse of f.

Proof. " \Longrightarrow " Take $a_2 \in A$. Since f surjective $\Longrightarrow \exists a_1 \in A : f(a_1) = a_2$.

 $id = f \circ g \iff: g$ is a right-inverse of f.

Let $g(a_2) := a_1$. (Any element a such that $f(a) = a_2$ will do.)

Claim: g is a right inverse of f.
Proof of Claim:
$$(f \circ g)(a_2) = f(g(a_2)) = f(a_1) = a_2$$

" \Leftarrow " Take $a_2 \in A$ arbitrary. Let $a_1 := g(a_2)$ with g right-inverse.

Observe:
$$f(a_1) = f(g(a_2)) = id(a_2) = a_2$$

Remark: Just saw: f bijective \Leftrightarrow f has an inverse.

Example 1. $f: \mathbb{Z} \to \mathbb{Z}, x \mapsto 3x$.

3x = 3y

- f is not surjective, thus no right inverse.
- f is injective.

g ? is a left-inverse.

$$x \mapsto \begin{cases} \frac{x}{3} & \text{if } x \in 3\mathbb{Z} \\ 0 & \text{otherwise. does not matter.} \end{cases}$$

g such that $g \circ f = id$.

•
$$x \mapsto \begin{cases} \frac{x}{2} & \text{if } x \text{ even.} \\ x+2 & \text{if } x \text{ odd.} \end{cases}$$

• f is not injective: f(1) = 3 = f(6).

• f is surjective: a right-inverse of f is $g : \mathbb{Z} \to \mathbb{Z}, x \mapsto 2x$. $(f \circ g)(x) = f(g(x)) = f(2x)$

Example 3. $f : \mathbb{R} \to \mathbb{R}, x \mapsto x^2$. f is not injective. f is not surjective.

Left-inverse: g such that $g \circ f = id$. " \sqrt{x} does not work for x < 0."

x * y = e

§1.7 Relations

A (binary) relation on a set A is a subset $R \subset A \times A$. If $(a, b) \in R_1$, write $a \sim b$.

Example 1. $A = \{1, 2, 3\}$. $R = \{(1, 1), (2, 2), (3, 3)\}$ *Note:* $(a, b) \in R (:\Leftrightarrow a \sim b) \Leftrightarrow a = b$.

Example 2. Same A. $R = \{(1, 2), (2, 3), (1, 3)\}$

Example 3. Let A be any set. Let $R = \{(a, f(a)) | a \in A\}$. R is the graph of $f : a \sim b \Leftrightarrow b = f(a)$.

 $\begin{array}{l} \textit{Definition. Let } A \text{ be a set. The relation } R \text{ is called an } \underbrace{\text{equivalence relation}}_{\Leftrightarrow} \end{array}$

```
(1) \forall x \in A : x \sim x (Reflexive)

A = \{1, 2, 3\}
R = \{(1, 2), (1, 3), (2, 3), (7, 1), (3, 1), (3, 7)\}
(a, b) \in R \Leftrightarrow a \neq b.
a \sim b \Leftrightarrow a \neq b.
(), ()
(2) \forall x, y \in A : x \sim y \Longrightarrow y \sim x (Symmetric)

(3) \forall x, y, z \in A : (x \sim y \text{ and } y \sim z) \Longrightarrow x \sim z (Transitive)
```

Ex 1. $A = \mathbb{Z}, a \sim b \Leftrightarrow |a| = |b|.$

Reflexive \checkmark

Proof. Let $a \in A$. Have to check $a \sim a$ is true. $a \sim a \Leftrightarrow |a| = |a|$. True. \Box

Symmetric \checkmark

Proof. Let $a \sim b \Longrightarrow |a| = |b| \Longrightarrow |b| = |a| \Longrightarrow b \sim a$

Transitive \checkmark

Proof. Let $a \sim b, b \sim c \Longrightarrow |a| = |b|, |b| = |c| \Longrightarrow |a| = |c|.$

All three \checkmark , equivalence relation.

Ex 2. $A = \mathbb{Z}, a \sim b \Leftrightarrow a = |b|.$

Reflexive \boldsymbol{X} Let a = -1. Then $a \sim a$ is false: $-1 = |-1| = 1\boldsymbol{X}$.

Symmetric X $a = 1, b = -1. \ a \sim b \Leftrightarrow 1 = |-1| = 1. \checkmark$ Check: $b \sim a \Leftrightarrow -1 = |1| = 1. \checkmark$

Transitive left as exercise.

 $A = \mathbb{Z}$. ~ is "congruence mod m." It IS an equivalence relation.

 $x \sim y \Leftrightarrow \exists k \in \mathbb{Z} : x - y = km$

e.g. m = 2

Definition. Let R be an equivalence relation on A.

$$[a] := \{x \in A : x \sim a\}$$

is called the equivalence class of A.

Tuesday February 4, 2014

Quiz 2

- (1) Let $f : \mathbb{Z} \to \mathbb{Z}, x \mapsto 7x$.
 - (a) \exists left-inverse? If yes, find it.
 - (b) \exists right-inverse? If yes, find it.
- (2) Let $x, y \in \mathbb{Z}$. Let $x \sim y \Leftrightarrow x^2 + y^2$ is a multiple of 2. Equivalence relation?

Theorem. Let $f \in M(A)$. Then f injective $\Leftrightarrow \exists \text{ <u>left-inverse</u>}$ of f.

Theorem. Let $f \in M(A)$. Then f surjective $\Leftrightarrow \exists$ right-inverse of f.

(1a)
$$x \mapsto \begin{cases} \frac{1}{7}x & \text{if } x \in 7\mathbb{Z} \\ 0 & \text{if } x \notin 7\mathbb{Z} \end{cases}$$

- (1b) Not surjective.
- (2) R is reflexive and symmetric. For transitivity,

True
$$\begin{cases} \exists k \in \mathbb{Z} : x^2 + y^2 = 2k \\ \exists k \in \mathbb{Z} : l \in \mathbb{Z} : y^2 + z^2 = 2l \end{cases}$$
$$\exists k \in \mathbb{Z} \exists l \in \mathbb{Z} : x^2 - z^2 = 2k - 2l = 2(k - l) \end{cases}$$

This is unchanged by adding the even number $2z^2$. $\implies x^2 - z^2 + 2z^2 = x^2 + z^2$ is even.

$$\mathbb{Q} \qquad \frac{a}{b} \qquad (a,b) \\
(1,2) \\
(2,4)$$

 $(a,b) \sim (c,d) \Leftrightarrow ad = bc.$

Recall: Equivalence classes. Let R equivalence relation on A. Then $[a] := \{x \in A : x \sim a\}$ is called the equivalence class of a.

$$A = \mathbb{R}$$

 $\begin{array}{l} Ex \ 1. \ x \sim y \Leftrightarrow |x| = |y| \\ [\pi] = \{\pi, -\pi\} \end{array}$

 \mathbb{Z}_n

Ex 2. Congruence mod 3 (recall: $x \sim y \Leftrightarrow x - y = 3k$ for some $x, y, k \in \mathbb{Z}$)

 $[0] = \{\dots, -9, -6, -3, 0, 3, 6, 9, \dots\}$ $[1] = \{\dots, -8, -5, -2, 1, 4, 7, 10, \dots\}$ $[2] = \{\dots, -10, -7, -4, -1, 2, 5, 8, \dots\}$ $[12] = [-9] = [0] = \dots$

Theorem. Let R be an equivalence relation on A. Let $a, b \in A$. Then, either [a] = [b] or $[a] \cap [b] = \emptyset$

Proof. Assume $[a] \cap [b] \neq \emptyset$. Need to show: [a] = [b]. Let $x \in [a] \cap [b]$ (exists!) Let $\hat{a} \in [a]$.

Claim: $\hat{a} \in [b]$. Have: $\hat{a} \sim a$ $x \sim a$ $x \sim b$ \downarrow $\hat{a} \sim b$ \downarrow $\hat{a} \sim b$ \downarrow $\hat{a} \in [b]$

Thursday February 6, 2014

```
Recall: Let R be an equivalence relation on A.
Let a \in A. [a] := \{x \in A | x \sim a\}.
```

Theorem. Let [a], [b] be two equivalence classes. Then either [a] = [b] or $[a] \cap [b] = \emptyset$.

Proof. Assume $[a] \cap [b] \neq \emptyset$. Need to show [a] = [b]. Let $x \in [a] \cap [b]$. Let $\hat{a} \in [a]$.

 $\begin{array}{l} Claim: \ \hat{a} \in [b].\\ Note: \ \hat{a} \sim a, a \sim x, x \sim b \Rightarrow \hat{a} \sim x \end{array}$

```
Not official language \hat{a} \sim \phi, \phi \sim x, x \sim b \Rightarrow \hat{a} \sim x
\hat{a} \sim x, x \sim b \Rightarrow \hat{a} \sim x
```

```
\therefore \Rightarrow By transitivity, \hat{a} \sim b.
```

§2.2 Mathematical Induction

Principle of Mathematical Induction

Let P_n be a statement depending on $n \in \mathbb{N} = \{0, 1, 2, ...\}$ (or perhaps $\mathbb{N} = \{1, 2, 3, ...\}$ at our convenience.)

If P_0 is true and $(P_n \Rightarrow P_{n+1})$ is true, then $\forall n \in \mathbb{N} : P_n$ is true.

Example. Gauss's trick:

1	2	3	•••	100
100	99	98	•••	1
101	101	101	•••	101

 $101 + 101 + 101 + \dots + 101$

$$\frac{100 \cdot 101}{2} = 5050$$

Example.
$$P_n: \sum_{i=1}^n i = 1 + 2 + \dots + n = \frac{n(n+1)}{2}$$

Let us prove P_n for n = 1, 2, 3, ... (i.e. for all $n \in \mathbb{N}$) by mathematical induction.

$$P_1: \quad 1 = \frac{1 \cdot (1+1)}{2} \checkmark$$

Now, need to prove that $P_n \to P_{n+1}$.

Claim: P_{n+1} : $1+2+\ldots+n+n+1 = \frac{(n+1)(n+2)}{2}$

Prove this under the assumption that P_n holds, i.e. $1 + \ldots + n = \frac{n(n+1)}{2}$.

$$P_n \text{ is true.} \downarrow \\ (1 + \ldots + n) + (n+1) = \frac{n(n+1)}{2} + n + 1 = \frac{n(n+1) + 2(n+1)}{2} \\ = \frac{(n+1)(n+2)}{2} \square$$

$$\begin{split} & Example. \quad 2^1 + 2^2 + 2^3 + \dots + 2^n = 2(2^n - 1). \\ & P_1 : 2^1 = 2(2^1 - 1) \checkmark \\ & "P_n \Rightarrow P_{n+1}": (2^1 + 2^2 + 2^3 + \dots + 2^n) + 2^{n+1} = 2(2^n - 1) + 2^{n+1} = 2(2^n - 1 + 2^n) = 2(2 \cdot 2^n - 1) = 2(2^{n+1} - 1) \\ & \square \\ & Example. \quad 1^3 + 3^3 + 5^3 + \dots + (2n - 1)^3 = n^2(2n^2 - 1) \\ & P_1 : 1^3 = 1^2(2 \cdot 1^2 - 1) \checkmark \\ & P_n \Rightarrow P_{n+1}: \\ & Claim. \quad (1^3 + 3^3 + \dots + (2n - 1)^3) + (2(n + 1) - 1)^3 = (n + 1)^2(2(n + 1)^2 - 1) \\ & \text{LHS (using } P_n): \quad n^2(2n^2 - 1) + (2(n + 1) - 1)^3 = 2n^4 + 8n^3 + 11n^2 + 6n + 1 \\ & \uparrow \\ & \text{Brute force} \\ & \text{RHS: } (n + 1)^2(2(n + 1)^2 - 1) = 2n^4 + 8n^3 + 11n^2 + 6n + 1 \end{split}$$

Principle of Generalized Induction

Let $a \in \mathbb{N}$. If P_a is true and $(P_n \Rightarrow P_{n+1} \text{ is true } \forall n \in \mathbb{N} \text{ with } n \ge a$, then $\forall n \in \mathbb{N} \text{ with } n \ge a : P_n \text{ is true.}$

Example. $\forall n \ge 4 : 1 : 3n < n^2$ Proof. (By Generalized Induction) $P_4 : 1 + 3 \cdot 4 < 4^2 \checkmark$ " $P_4 \Rightarrow P_{n+1}$ ": $P_{n+1} : 1 + 3(n+1) < (n+1)^2$ $1 + 3(n+1) = 1 + 3n + 3 < n^2 + 3 < n^2 + 2n + 1 = (n+1)^2$ \uparrow $n \ge 4$

Principle of Complete Induction

Let $a \in \mathbb{N}$. If P_a is true and $(P_a, P_{a+1}, \ldots, P_n \Rightarrow P_{n+1})$ all assumed to be true, then $\forall n \in \mathbb{N}$ with $n \ge a$: P_n is true.

$$123 = 1 \cdot 10^2 + 2 \cdot 10 + 3 \cdot 10^0$$

Theorem. Every positive integer can be written in base 2, i.e. $\forall n \in \mathbb{N} \geq 1 \ \exists j \in \mathbb{N} \geq 1 \ \exists c_0, \dots, c_{j-1} \in \{0, 1\} : n = c_0 \cdot 2^0 + c_1 2^1 + c_2 2^2 + \dots + c_{j-1} 2^{j-1} + 2^{j-1}$

Proof. Let j = 1. Let $c_0 = 1$. $1 = 1 \cdot 2^0$.

" $P_1, \ldots, P_n \Rightarrow P_{n+1}$ "

Case 1. n even ($\Leftrightarrow n + 1$ odd)

$$P_n \Rightarrow n = \boxed{c_0 \cdot 2^0} + c_1 2 + c_2 2^2 + \dots + c_{j-1} 2^{j-1} + 2^j$$

$$\uparrow = 0 \text{ b/c } n \text{ even } \uparrow \uparrow \uparrow \uparrow$$

even even even even even even

add +1 $\longrightarrow n + 1 = 1 + c_1 2 + \dots + c_{i-1} 2^{j-1} + 2^j$

Case 2. n odd (n + 1 even).

let $k = \frac{n+1}{2}$.

 $P_k \Rightarrow k = \tilde{c_0} \cdot 2^0 + \tilde{c_1} 2 + \dots + \tilde{c_{j-1}} 2^{j-1} + 2^j$ Multiply by 2: $n + 1 = 2k = \tilde{c_0} 2^1 + \tilde{c_1} 2^2 + \tilde{c_2} 2^3 + \dots + \tilde{c_{j-1}} 2^j + 2^{j+1}$ Set $c_0 = 0$. $c_i = \tilde{c_{i-1}} \text{ for } i = 1, \dots j$

Tuesday February 11, 2014

Quiz 3

(1)
$$\forall n \in \mathbb{N}^{\geq 3}$$
: $1 + 2n < 2^n$
(2) $\forall n \in \mathbb{N}^{\geq 1}$: $1^3 + 2^3 + \dots + n^3 = \frac{1}{4}n^2(n+1)^2$

- (1) First, n = 3. \checkmark . Then the induction step: $1 + 2n + 2 < 2^n + 2 < 2^n + 2^n = 2 \cdot 2^n = 2^n + 1$ Replace 2 with 2^n .
- (2) Assume P_n is true. Show LHS in $P_{n+1} =$ RHS in P_{n+1} .

$$\frac{1}{4}n^2(n+1)^2 + (n+1)^3 = (n+1)^2(\frac{1}{4}n^2 + (n+1))$$
$$= \frac{1}{4}(n+1)^2(n^2 + 4n + 4) = \frac{1}{4}(n+1)^2 \cdot (n+2)^2$$

§2.3 Divisibility

Recall. For $b \in \mathbb{Z}$, $a \in \mathbb{Z} \setminus \{0\}$, $a \mid b$ (say "a divides b") $\Leftrightarrow \exists c \in \mathbb{Z} : b = c \cdot a$

Recall. The division algorithm / division with remainder. Let $a, b \in \mathbb{Z}, b > 0$. Then $\exists ! q \in \mathbb{Z}$ and $r \in \mathbb{Z}$ with $r \in \{0, 1, \dots, b-1\}$. $a = q \cdot b + r$.

Example. a = 3, b = 10. q = 3, r = 5 and $35 = 3 \cdot 10 + 5$ or $a = q \cdot b + r$.

$$a = 72, b = 7.72 = 10 \cdot 7 + 2$$

$$a = -91, b = 11.$$

$$Observe. -91 = \underbrace{(-8) \cdot 11 - 3}_{\uparrow} = (-9)11 + 8$$

Not a valid division with remainder.

$$-91 = (-9)11 + 10$$

 $a = qb + r$

Recall. Long division algorithm. a = 357, b = 13. $\frac{357}{13} = 27$ with remainder: 6. For negative a how to do long division with remainder: Work with |a|, then multiply by (-1), then adjust to positive remainder.

Example. a = -122, b = 11. First, work with $+122: \frac{122}{11} = 11$ with remainder 1.

 $122 = 11 \cdot 11 + 1$

Multilpy by $(-1): -122 = (-11)11 - 1 = (-12) \cdot 11 + 10$ $a \qquad q \qquad b \qquad r$

§2.4 Prime Factors and GCDs (Greatest Common Divisors)

Definition. $d = \gcd(a, b)$ such that $a, b \in \mathbb{Z}$ if and only if: (1) $d \in \mathbb{N}^{\geq 1}$ (i.e., d positive integers) (2) d|a, d|b(3) c|a and $c|b \Rightarrow c|d$

Theorem. (GCD-Theorem)

Let a, b be integers, at least one non-zero. The <u>smallest</u> non-zero $d \in \mathbb{N}^{\neq 0}$ that can be written as d = am + bn with $m, n \in \mathbb{Z}$ in the gcd(a, b).

(1) Show: d|a|(d|b| by symmetry)

We can always divide a by d with remainder: $a = q \cdot d + r$ if and only if

$$r = a - qd = a - q(am + bn)$$
$$= a - q(am + bn)$$
$$= a(1 - mq) + b(-nq)$$

Note: This shows that r has the same property of d, but d was smallest (and r < d). $\rightarrow \leftarrow$ unless r = 0.

(2) Remains: There is no greater divisor than d. To this end, let c be any other divisor.

$$d = am + bn = cl_1m + cl_2n = c(l_1m + l_2n) \Rightarrow c|d \qquad \Box$$

$$c \cdot l_1 \quad c \cdot l_2$$

How to find m, n, d for given a, b? Let $a, b \in \mathbb{N}$.

Key idea: Subtracting a multiple of the smaller number (either a, b) from the other number does *not change* the GCD.

Thursday February 13, 2014

GCD Theorem. Let $a,b\in\mathbb{Z}.$ The smallest non-zero $d\in\mathbb{N}^{\neq0}$ that can be written

$$d = am + bn \quad (m, n \in \mathbb{Z})$$

is the GCD.

Note. d = am + bn = (-a)(-m) + bn

Key idea. Subtracting a multiple of the smaller number from the larger number where a, b are the numbers, does not change the GCD.

Example. Find gcd(1492, 176).

$$gcd(1492, 176) = gcd(1492, 1776 - 1492 = 284)$$
$$= gcd(1492 - 5 \cdot 284 = 72, 284)$$
$$= gcd(72, 284 - 3 \cdot 72 = 68)$$
$$= gcd(72 - 1 \cdot 68 = 4, 68)$$
$$= 4 \text{ (obviously)}$$

Scratch Work. $1492 = 5 \cdot 284 + 72$ $4 \cdot 72 = 288$

Example. To find m, n such that $4 = 1492 \cdot m + 1776 \cdot n$. $4 = 72 - 68 = 72 - (284 - 3 \cdot 72) =$ $= 4 \cdot 72 - 284 = 4(1492 - 5 \cdot 284) - 284$ $= 4 \cdot 1492 - 21 \cdot 284$ $= 4 \cdot 1492 - 21 \cdot (1776 - 1492)$ $= 25 \cdot 1492 + (-21)1776$ m n

Example. a = 102, b = 66.

$$gcd(102, 66) = gcd(102 - 66 = 36, 66)$$

= $gcd(36, 66 - 36 = 30)$
= $gcd(36 - 30 = 6, 30)$

$$6 = 36 - 30$$

= (102 - 66) - (66 - 36)
= 102 - 2 \cdot 66 + 36

TANYA CHEN

$$= 102 - 2 \cdot 66 + 102 - 66$$

= 2 \cdot 102 + (-3)66
m n

Remark. For next section, 3a = 3b. Most would conclude a = b. mod 3 is true for all $a, b \in \mathbb{Z}$.

Definition. Call a, b relatively prime $\Leftrightarrow \gcd(a, b) = 1$.

Definition. An integer p > 1 is called prime if $a | p \Rightarrow a = \pm 1$ or $a = \pm p$.

Euclid's Lemma. If p prime and $p|a \cdot b \Rightarrow p|a \text{ or } p|b$. (Consider $5|10 \cdot 7$)

Unique Factorization Theorem.

Every positive integer > 1 can be expressed as a product of primes, unique up to reordering of the factors.

Proof. By complete induction. If n is prime, done. If not, write $n = a \cdot b$ where a > 1 and b > 1. Apply induction <u>twice</u>, once to a and once to b. (Both are < n.)

Euclid's Theorem on Primes. There exists infinitely many primes.

Proof. To obtain a contradiction, let us assume that p_1, \ldots, p_k for $k \in \mathbb{N}$ is a complete list of all primes. Consider: $m = p_1 + \ldots + p_k + 1$. Note $m > p_i \ \forall i = 1, \ldots, k \Rightarrow m$ is not a prime. Unique Factorization Theorem $\Rightarrow \exists i : p_i | m$. But the remainder obtained when dividing m by p_i is obviously 1. 4

Example. Find prime factorization in an ad-hoc way.

$$84 = 2 \cdot 42 = 2^2 \cdot 21$$
$$= 2^2 \cdot 3 \cdot 7$$

Remark. This yields an alternative way of finding the GCD.

gcd(287, 161) can be determined as follows:

$$287 = \overline{7} \cdot 41$$
$$161 = \overline{7} \cdot 23$$
$$\Rightarrow \text{ gcd} = 7.$$

$$1492 = 4 \cdot 373, \ 1776 = 2^4 \cdot 3 \cdot 37$$

$$\uparrow \qquad \uparrow$$

$$2^2 \text{ prime}$$

§2.5 Congruence of Integers

Remark. Let $a, b \in \mathbb{Z}$. $a \equiv b \mod n \in \mathbb{N}^{>0} \Leftrightarrow \exists k \in \mathbb{Z} : a - b = k \cdot n$.

Remark. " \equiv mod n" is an equivalence relation.

Proof.

(1) Reflexive: $a - a = 0 \cdot n$ (2) Symmetric: $a - b = k \cdot n \Rightarrow b - a = -kn = (-k) \cdot n$ (3) Transitive: $a \cdot b = k_1 n$ and $b - c = k_2 \cdot n \Rightarrow a - (k_2 n + c) = k_1 n \Rightarrow a - c = k_1 n + k_2 n = (k_1 + k_2) n$ $b = k_2 n + c$

Theorem (2.22) Let x be any integer.

(a) $a \equiv b \mod n \Leftrightarrow$	$a + x \equiv b + x \mod n$	Reversible
(b) $a \equiv b \mod n \Rightarrow$	$xa \equiv xb \mod n$	Not Reversible

Proof. (a) Let $a \equiv b \mod n$, i.e., $\exists k \in \mathbb{Z} : a - b = kn$.

Check:
$$a + x - (b + x) = a - b = kn$$

 $a + \varkappa - (b + \varkappa) = a - b = kn \checkmark$
(b) $xa - xb = x(a - b) = x(kn) = (xk)n\checkmark$

Theorem 2.23 $a \equiv b \mod n$ and $c \equiv d \mod n \Rightarrow a + c = b + d \mod n$ Proof. $a + c - (b + d) = a - b + c - d = k_1 \cdot n + k_2 \cdot n = (k_1 + k_2) \cdot n$ $k_1 + k_2 \in \mathbb{Z}$

Tuesday February 18, 2014

Quiz 4

(1)
$$gcd(117, 315) =$$
?
 $gcd(117, 315) = gcd(81, 117) = gcd(81, 36) = gcd(36, 9) = 9$

(2) Find $m, n \in \mathbb{Z}$: gcd(117, 315) = m315 + 117n

$$9 = 81 - (2 \cdot 36)$$

= 81 - 2 \cdot (117 - (1 \cdot 81))
= (3 \cdot 81) - (2 \cdot 117)
= 3(315 - (2 \cdot 117)) - (2 \cdot 117)
= 3 \cdot 315 - 8 \cdot 117
\therefore m = 3, n = -8

§2.5 Congruence of Integers (Continued)

 $(a, b \in \mathbb{Z})$

$$\begin{aligned} a \sim b :\Leftrightarrow a \equiv b \mod n \\ :\Leftrightarrow \exists k \in \mathbb{Z} : a - b = kn \end{aligned}$$

is an equivalence relation.

Theorem. For any $x \in \mathbb{Z}$, (1) $a \equiv b \mod n \Leftrightarrow a + x \equiv b + x \mod n$ (2) $a \equiv b \mod n \Rightarrow ax \equiv bx \mod n$ $\Leftarrow 4$ Theorem. $a \equiv b \mod n$ $c \equiv d \mod n$ $\Rightarrow a + c \equiv b + d \mod n$.

Theorem 2.24 (Cancellation Law) If $ax \equiv ay \mod n$ and gcd(a, n) = 1 then $x \equiv y \mod n$.

Proof. $ax \equiv ay \mod n$ $\Leftrightarrow \exists k : k \cdot n = (ax - ay)$ $\Leftrightarrow n | (ax - ay)$ $\Leftrightarrow n | (a(x - y))$ $\Leftrightarrow n | x - y$ $\gcd(a, n) = 1$ $\Leftrightarrow x \equiv y \mod n$

Remark. What goes wrong if gcd(a, n) > 1:

Want to solve two types of equations:

(1)
$$ax \equiv b \mod n$$
 with $gcd(a, n) = 1$ (solve for x).
(2) $x \equiv a \mod m$.
 $x \equiv b \mod n$
 $(gcd(m, n) = 1)$
Solve for x.
all over \mathbb{Z}

Theorem 2.25. Let $a, b, n \in \mathbb{Z}$. Let gcd(a, n) = 1. Then the congruence $ax \equiv \mod n$ has a solution $x \in \mathbb{Z}$ and any two solutions are congruent $\mod n$.

Proof. $gcd(a, n) = 1 \Rightarrow \exists s, t \in \mathbb{Z} : 1 = as + nt$ \uparrow GCD Theorem

 $ax \equiv \mod n \Leftrightarrow \exists k \in \mathbb{Z} : ax - b = kn$ $\gcd(a, n) = 1 \Rightarrow \underbrace{\exists s, t \in \mathbb{Z} : 1 = as + nt}_{\text{Multiply by } b}$ $\Rightarrow \exists s, t \in \mathbb{Z} : b = a(bs) + n(bt)$ $\Rightarrow \exists s, t \in \mathbb{Z} : a(bs) - b = n(-bt)$ $\Rightarrow \exists s, t \in \mathbb{Z} : a(\underline{bs}) - b = n(\underline{-bt})$ $\underbrace{x \in \mathbb{Z} : a(\underline{bs})}_{\in \mathbb{Z}} = a(\underline{bs})$

Finally, let us determine all solutions. Let x, y both solve the congruence equation.

$$\begin{array}{l} ax \equiv b \mod n \\ ay \equiv b \mod n \end{array} \right\} \\ \Rightarrow \not ax \equiv \not ay \mod n \\ \uparrow \operatorname{Transitivity} \text{ of } \equiv \end{array}$$

 $\Rightarrow x \equiv y \mod n$ \uparrow Cancellation Law

Example. $20x \equiv 14 \mod 63$. Note: gcd(20, 63) = 1.

Write 1 = 20(-22) + 63(7) $(b = 14) \cdot 1$ $14 = (20(-22)14) + 63(7 \cdot 14)$

$$14 = (20(-22)14) + 63(7 \cdot 14)$$
$$x = -308$$

What is the smallest positive x which solves? $-308 + 5 \cdot 63 = 7$

Check your answer: $20 \cdot 7 - 14 = 2 \cdot 63$

Theorem 2.26. Let gcd(m, n) = 1. Let $a, b \in \mathbb{Z}$. Then $\exists x \in \mathbb{Z} : x \equiv a \mod m$ (1) $x \equiv b \mod n$ (2) Any two solutions x, y are congruent $\mod m \cdot n$.

Proof. Solve (1): $x = a + mk \quad \forall k \in \mathbb{Z}$. Solve into (2): $a + mk \equiv b \mod n$ $\Leftrightarrow \boxed{mk \equiv b - a \mod n}$

Since gcd(m, n) = 1, Theorem 2.2.5 \Longrightarrow Can solve for k. (\rightarrow Get k_0 .) $x = a + mk_0$ solves (1) and (2).

Uniqueness to congruence mod m, n

Let x, y be two solutions.

 $\begin{array}{ll} x \equiv a \mod m & y \equiv a \mod m \\ x \equiv b \mod n & y \equiv b \mod n \end{array}$

 $x\equiv y \!\!\mod m$

 $x \equiv y \mod n$ m|x - ym|x - y $m \cdot n|x - y$

Thursday February 20, 2014

Recall. Let $a, b, n \in \mathbb{Z}$ with gcd(a, n) = 1. $\Rightarrow \exists x \in \mathbb{Z} : ax \equiv b \mod n$. Any two solutions x, y are congruent mod n.

Let $a, b \in \mathbb{Z}$. Let $m, n \in \mathbb{Z}$ with gcd(m, n) = 1. $\Rightarrow \exists x \in \mathbb{Z} : x \equiv a \mod m$ and $\equiv b \mod n$. Any two solutions x, y are congruent mod $m \cdot n$.

Example. $x \equiv 2 \mod 5$ (1) $x \equiv 3 \mod 8$ (2)

 $(1) \Leftrightarrow x = 2 + 5k$

Sub into (2): $2 + 5k \equiv 3 \mod 8 \Leftrightarrow 5k \equiv 1 \mod 8$.

Find s, t such that 1 = 5s + 8t.

$$gcd(5,8) = gcd(5,3) = gcd(3,2) = 1$$

$$\Rightarrow 1 = 3 - 2$$

$$= (8 - 5) - (5 - 3)$$

$$= 8 - 2 \cdot 5 + 3$$

$$= 8 - 2 \cdot 5 + (8 - 5)$$

$$= 2 \cdot 8 + (-3)5$$

$$- 3 = s = k$$

$$\Rightarrow x = 2 + 5(-3) = -13$$

Smallest positive x is -13 + 40 = 27.

Check. $27 \equiv 2 \mod 5 \checkmark$ $27 \equiv 3 \mod 8 \checkmark$

Example.
$$2x \equiv 5 \mod 3$$
 (1)
 $5x + 4 \equiv 5 \mod 7$ (2)

Solve (1).
$$1 = 3 - 2$$

 $5 \cdot 1 = 5 \cdot 3 + 2 \underbrace{(-5)}_{x}$
 $x = -5 + 3k = 1 + 3k$

Substitute into (2). $5(1+3k) + 4 \equiv 5 \mod 7$ $\Leftrightarrow 15k + 9 \equiv 5 \mod 7$

$$\Leftrightarrow \boxed{15} k \equiv \underline{-4} \mod \boxed{7}$$
$$1 = 15 + (-2) \cdot 7 \qquad 1 \cdot (\underline{-4})$$
$$-4 = (\underline{-4})15 + 8 \cdot 7$$

x = 1 + 3(-4) = -11

Smallest positive x = -11 + 21 = 10

Check. $2 \cdot 10 \equiv 5 \mod 3$ $50 + 4 \equiv 5 \mod 7$

Let $a, b \in \mathbb{Z}$. Let $m, n \in \mathbb{Z}$ with gcd(m, n) = 1. $\Rightarrow \exists x \in \mathbb{Z} : x \equiv a \mod m$ $x \equiv b \mod n$ Any two solutions x, y are congruent mod $m \cdot n$.

Theorem 2.2.7 (Chinese Remainder Theorem)

Let n_1, \ldots, n_m pairwise relatively prime. Let $a_1, \ldots, a_m \in \mathbb{Z}$. $\Rightarrow \exists x \in \mathbb{Z} : x \equiv a_1 \mod n_1$ $x \equiv a_2 \mod n_2$ \vdots $x \equiv a_m \mod n_m$

Any two solutions are congruent mod $n_1 \cdot \ldots \cdot n_m$.

§2.6 Congruence Classes

 $\mathbb{Z}_n = \{ \text{congruence classes of integers mod } n \} \\= \{ [0], [1], [2], \dots, [n-1] \}$

 $\begin{bmatrix} 0 \end{bmatrix} = \{ \dots, -2n, -n, 0, n, 2n, \dots \} \\ \begin{bmatrix} 2 \end{bmatrix} = \{ \dots, 2 - 2n, 2 - n, 2, 2 + n, 2 + 2n, \dots \}$

Define addition on $\mathbb{Z}_n : [a] + [b] = [a+b]$

Note. This *is* well-defined because:

$$\begin{split} [a+rn]+[b+sn] &= [a+rn+b+sn] \\ &= a+b+n(r+s) \\ &= [a+b] \end{split}$$

Associativity $([a] + [b]) + [c] = [a] + ([b] + [c]) \checkmark$

Commutativity: $[a] + [b] = [b] + [a] \checkmark$

Identity: $[0] + [a] = [a] \checkmark$ $[-a] + [a] = [0] \checkmark$

Table for $\mathbb{Z}_4 = \{[0], [1], [2], [3]\}$

+	[0]	[1]	[2]	[3]
[0]	[0]	[1]	[2]	[3]
[1]	[1]	[2]	[3]	[0]
[2]	[2]	[3]	[0]	[1]
[3]	[3]	[0]	[1]	[2]

Multiplication: $[a] \cdot [b] = [ab]$ Commutativity \checkmark Associativity \checkmark Identity: [1]

Multiplication Table for \mathbb{Z}_4

•	[0]	[1]	[2]	[3]
[0]	[0]	[0]	[0]	[0]
[1]	[0]	[1]	[2]	[3]
[2]	[0]	[2]	[0]	[2]
[3]	[0]	[3]	[2]	[1]

 $[2] \cdot [2] = [0]$

Start with a, n. Let's study multiplicative inverses:

 $[a] \cdot [b] = [1]$

$$\Leftrightarrow [ab - 1] = [0] \Leftrightarrow \exists q \in \mathbb{Z} : ab - 1 = qn \Leftrightarrow \exists q \in \mathbb{Z} : a \cdot b + (-q)n = 1$$

GCD Theorem $\Rightarrow b \pmod{q}$ exist $\Leftrightarrow \gcd(a, n) = 1$.

Just saw: [a] has multiplicative inverse in $\mathbb{Z}_n \Leftrightarrow \gcd(a, n) = 1$.

Corollary. Every element of \mathbb{Z}_p has a multiplicative inverse if p = prime.

Let's solve equations (system of equations) in \mathbb{Z}_n :

Example. [4] \cdot [x] = [5] in \mathbb{Z}_{13} [4]⁻¹ \cdot | [x] = [4]⁻¹[5]

Remains to find $b : [b] = [4]^{-1}$:

b	$\cdot [4]$
0	0
1	[4]
2	[8]
3	[12]
4	[3]
5	[7]
6	[11]
7	[2]
8	[6]
9	[10]
10	[1]

 $\Rightarrow [4]^{-1} = [10]$ $\Rightarrow [x] = [4]^{-1} \cdot [5] = [10] \cdot [5] = [50] = [11]$ 28-26=232-26-636-26=1040-39=1

Tuesday February 25, 2014

Quiz 5

(1) $5x + 1 \equiv 3 \mod 13$ (2) $x \equiv 3 \mod 5$ $2x \equiv 5 \mod 7$

In each case, find *all* solutions.

Example.
$$[4][x] + [y] = [22]$$
 in \mathbb{Z}_{26} .
 $[19][x] + [y] = [15]$

Subtract (2) from (1):

$$[-15][x] = [7]$$

$$\Leftrightarrow [11][x] = [7]$$

$$\Leftrightarrow [x] = [11]^{-1} \cdot [7]$$

To find $[11]^{-1}$:

$$\boxed{x \cdot 11 \equiv 1 \mod 26}$$

$$\boxed{ax \equiv b \mod m}$$

$$1 = 11 \cdot s + 26t$$

$$s = -7, t = 3$$

$$11 \cdot 19 = 110 + 99$$

$$209 \cdot 26 = 8$$

$$208/1$$

$$z = -7$$

$$\Rightarrow [11]^{-1} = [-7] = [19]$$

$$\Rightarrow [x] = [19] \cdot [7] = [133] = [3]$$

$$Remains: [4] \cdot [3] + [y] = [22]$$

$$\Leftrightarrow [y] = [22] - [12] = [10]$$

§3.1 Definition of a group.

Definition. A group in a set G and a binary operation $*:G\times G\to G$ such that

- (1) * is associative, i.e., for all $x, y, z \in G : (x * y) * z = x * (y * z)$
- (2) There exists an identity element e, i.e., there exists $e \in G$ such that for all $x \in G$ it follows e * x = x = x * e.

(3) For all $a \in G$, there exists $b \in G$ such that a * b = e = b * a ("existence of inverses")

Definition. If G is a group with $x, y \in G$, and x * y = y * x, then call G abelian or commutative.

Examples.
(Z, +) is a commutative group.
(Z, ·) not a group.
(3) fails: No multiplicative inverses (except for ±1).

 $(\mathbb{R}, +) \checkmark$ $(\mathbb{R}, \cdot) \text{ is not a group } \left(\frac{1}{0} \text{ is a problem.} \right)$ $(\mathbb{R} \setminus \{0\}, \cdot) \text{ is a group.}$

Thursday February 27, 2014

 $\S3.1$ Definition of a *Group*

Let G be a set with binary operation *.

- (1) * is associative.
- (2) There exists an identity element.
- (3) For all $a \in G$, $\exists b \in G$ such that a * b = e = b * a.

If, in addition, * is *commutative*, then G is called Abelian or commutative.

Example 1. $(\mathbb{R}, +), (\mathbb{R} \setminus \{0\}, \cdot), (\mathbb{Z}, +)$

Example 2. $G = \{f : \mathbb{R} \to \mathbb{R} \text{ continuous}\}$ with (f + g)(x) = f(x) + g(x). + is a binary operation because of the summation theorem for continuous functions and satisfies (1), (2), (3).

Example 3. $A = \{1, 2, 3\}$ $\rho(A) = \{f : A \to A\} | \text{bijective}\}$ $\rho(A) = \begin{cases} 1 & \text{if } x \ge 0\\ 0 & \text{if } x < 0. \end{cases}$

	*	e	α	β	γ	σ	ε	
	e	e	α	β	γ	σ	ε	
	α	α	β	e				
	β	β						
	γ	γ					α	
	σ	σ						
	ε	ε						
	$1 \mapsto 2$ $\alpha \circ \alpha : 2 \mapsto 3$ $3 \mapsto 1$ $1 \mapsto 1$ $\alpha \circ \beta : 2 \mapsto 2$ $3 \mapsto 3$							
,	γο	$\varepsilon:2$	$\begin{array}{c} 1 \mapsto \\ 2 \mapsto \\ 3 \mapsto \end{array}$	1				

Example 4. $\#G = 2 \Rightarrow G \cong (\mathbb{Z}_2, +)$

+	[0]	[1]			
[0]	[0]	[1]			
[1]	[1]	[0]			

Example 5. $\#G = 3 \Rightarrow G \cong (\mathbb{Z}_3, +)$

Example 6. #G = 4

(a)
$$G = (\mathbb{Z}_4, +)$$

(b) $\begin{vmatrix} * & e & a & b & ab \\ e & e & a & b & ab \\ \hline a & a & e & ab & b \\ \hline b & b & ab & e & a \\ \hline ab & ab & \boxed{b} & a & e \\ \end{vmatrix}$

 $G = \{e, a, b, ab\} \qquad G \text{ abelian with } a \ast a = e$ b * b = e(ab) * (ab) = e

We will see: G in $\mathbb{Z}_2 \times \mathbb{Z}_2$ $(AB)^{-1}$ $Felix \rightarrow (Klein's Four Group)$

§3.2 Properties of Group Elements

Theorem 3.4

- (a) $e \in G$ is unique.
- (b) For all $x \in G$ the universe of x is unique (thus the special x^{-1} can be used).
- (c) For all $x \in G : (x^{-1})^{-1} = x$ (d) For all $x, y \in G : (xy)^{-1} = y^{-1}x^{-1}$
- (e) For all $a, x, y \in G$: $(ax = ay \Rightarrow x = y)$

x * y = xy

Proof. (a) Let e, e' be neutral elements. e = ee' = e' $\uparrow \qquad \uparrow$ e' neutral e neutral

(b) Let $a \in G$. Let b, c both be inverses.

$$b = eb = (ca)b = c(ab) = ce$$
(c) $x^{-1} \cdot x = e \checkmark$
 $x \cdot x^{-1} = e \checkmark$
(d) $(x^{-1} \cdot x) = e^{-1}$

(d)
$$(xy)(y^{-1}x^{-1}) = x(yy^{-1})x^{-1} = xx^{-1} = e$$

 $yy^{-1} = e$

$$(y^{-1}x^{-1})(xy) = y^{-1}(x^{-1}x)y = y^{-1}y = e$$

 $xyx^{-1}y^{-1}$

(e) Let
$$ax = ay \mid a^{-1} *$$

 $a^{-1}(ax) = a^{-1}ay \Leftrightarrow (a^{-1}a)x = (a^{-1}a)y \Leftrightarrow x =$

y

Remarks on Matrix Groups $(Mat_{n \times m}(\mathbb{R}), +)$ is a group. $(Mat_{n \times m}(\mathbb{R}), \cdot)$ $(Mat_{n \times m}(\mathbb{R})|\{\det A = 0\}, \cdot) = GL_n\mathbb{R}$

§3.3 Subgroups

Definition. Let G be a group. A subset $H \subset G$ is called a subgroup if H is a group with the binary operation induced from G.

Equivalent Definition. $\varnothing \neq H \subset G$ is called a subgroup \Leftrightarrow

(1)
$$x, y \in H \Rightarrow x * y \in H$$

(2) $x \in H \Rightarrow x^{-1} \in H$

Example 1. $H = \{[0], [2], [4]\} \subset (\mathbb{Z}_6, +)$

(1)
$$\checkmark$$

(2) $[2]-1 = [4] \checkmark$
 $[4]^{-1} = [2] \checkmark$
 $\Rightarrow H \text{ is a subgroup of } (\mathbb{Z}_6, +)$
 $[2] + [4] = [6] = [0] = e$

(3)
$$H = \{[0], [1], [2]\} \subset (\mathbb{Z}_6, +)$$

 $[1] + [2] = [3] \notin H \Rightarrow H \text{ is not a subgroup of } \mathbb{Z}_6$
 $\uparrow \qquad \uparrow$
 $H \qquad H$

Tuesday March 4, 2014

Online Tutoring: Tuesday 6-7pm Fridays 1-2pm www.math.ueh.edu/~nleger

§3.3 Subgroups (continued)

Recall: $\emptyset \neq H \subset G$ (G for group) is a subgroup \Leftrightarrow

$$\begin{array}{ll} (1) \ x,y \in H \Rightarrow x \ast y \in H \\ (2) \ x \in H \Rightarrow x^{-1} \in H \end{array}$$

 $\begin{array}{c} *:G\times G\to G\\ H\times H\to H\end{array}$

Examples (continued)

(2)
$$G = (\mathbb{R} \setminus \{0\}, \cdot)$$

 $H = \{x \in \mathbb{R}, x < 0\}$
(a) (b) "The product of population of the second secon

- (a) \Leftrightarrow "The product of negative reals is negative." False. H is not a subgroup.
- (3) $G = (\mathbb{R} \setminus \{0\}, \cdot)$ $H = \{1, 2, 3, 4, 5, \ldots\}$
 - (a) Any product of natural numbers is a natural number. \checkmark
 - (b) For $x \in \{2, 3, 4, 5, ...\}$, $\frac{1}{x} \notin H$, i.e., condition (b) is *not* satisfied and *H* is *not* a subgroup.

(4)
$$G = (\mathbb{R} \setminus \{0\}, \cdot)$$

 $H = (\mathbb{Q} \setminus \{0\}, \cdot)$ \checkmark subgroup
 $H = (\mathbb{Q} \setminus \mathbb{Z}, \cdot)$
Condition (a) does not hold. $\frac{2}{3} \cdot \frac{9}{2} = 3$.
So $\frac{2}{3} \in H, \frac{9}{2} \in H$, but $3 \notin H$.
 \checkmark Not a subgroup.

$$H = \{1, -1\} \cong \mathbb{Z}_2 \checkmark$$

(5) $A = \{1, 2, 3\}$ $\varphi(A) = \{\text{bijective maps } \{1, 2, 3\}\}.$ $H = \{\text{id}\}\checkmark$ $H = \{\text{id}\}\checkmark$ $H = \left\{ \begin{array}{cccc} 1 \mapsto 2 & 1 \mapsto 3\\ \text{id} & \alpha : & 2 \mapsto 3 & \alpha \circ \alpha : & 2 \mapsto 1\\ & 3 \mapsto 1 & & 3 \mapsto 2 \end{array} \right\}$ (a) All we need to check is:

$$\alpha \circ \alpha \in H \checkmark$$
$$1 \mapsto 1$$
$$\alpha \circ (\alpha \circ \alpha) : \begin{array}{c} 1 \mapsto 1 \\ 2 \mapsto 2 \\ 3 \mapsto 3 \end{array} = \operatorname{id} \in H \checkmark$$

$$(\alpha \circ \alpha) \circ (\alpha \circ \alpha) : \begin{array}{ccc} 1 \mapsto 2 \\ 2 \mapsto 3 \\ 3 \mapsto 1 \end{array} = \alpha \in H \checkmark$$

(b)
$$\alpha \cdot \alpha \in H \checkmark$$

 $\alpha \cdot (\alpha \cdot \alpha)$
 $\alpha^{-1} = \alpha \circ \alpha \checkmark$
 $(\alpha \circ \alpha)^{-1} = \alpha \checkmark$
 $\Rightarrow H$ is a subgroup of $\varphi(A)$.

Integral Exponents

For
$$a \in G$$
, define:
 $\forall k \in \mathbb{N} : a^k = \underbrace{a * (\dots (a * (a * a)) \dots)}_{k \text{ factors}}$
 $\forall k \in \{-1, -2, -3, -4, \dots\} : a^k = (a^{-1})^{(k)} = (a^{(k)})^{-1}$
 $x \in \mathbb{R} * \qquad x^{-3} = \frac{1}{x^3} = \left(\frac{1}{x}\right)^3$

Theorem. (Laws of Exponents)

 $\begin{array}{l} m,n\in\mathbb{Z}\\ (1) \ x^{n}\ast x^{-n}=e\\ (2) \ x^{m}\ast x^{n}=x^{m+n}\\ (3) \ (x^{m})^{n}=x^{m\cdot n}\\ (4) \ \mathrm{If}\ G \ \mathrm{abelian},\ \mathrm{then}\ (xy)^{n}=x^{n}y^{n} \end{array}$

Cyclic (Sub)groups:

Definition. Let G be a group. Say G is cyclic. $\Leftrightarrow \exists a \in G : G = \{a^n | n \in \mathbb{Z}\}$ \downarrow < a >

Definition. Let G be a group. Let $H \subset G$. We call H a cyclic subgroup of G. If $\exists a \in G : \langle a \rangle = H$.

Definition. Any such a is called a generator of H (or G, respectively).

Example 1. $(\mathbb{Z}, +) = <1> = <-1>$

$$H = \{e\} \quad \text{Note: } 1^3 = 3^0 \\ 1^3 = 3 \cdot 1 \quad 3^0 = 1 * 1 * 1$$

Example 2. Consider $G = (\mathbb{Z}, +)$ $H = \langle 2 \rangle = \{\dots, -6, -4, -2, 0, 2, 4, 6, \dots\}$ is the cyclic subgroup of \mathbb{Z} generated by 2.

Example 3. $G = (\mathbb{Z}_6, +)$ $\mathbb{Z}_6 = \{[0], [1], [2], [3], [4], [5]\}$

Let's find all the cyclic subgroups of G.

$$H = \langle [0] \rangle = \{[0]\}$$

$$H = \langle [1] \rangle = G$$

$$[1] = \{[0], [1], [1] + [1] = [2] \quad [2] + [1] = [3], \dots\}$$

$$H = \langle [2] \rangle = \{[0], [2], [4]\}$$

$$H = \langle [3] \rangle = \{[0], [2], [4]\}$$

$$H = \langle [4] \rangle = \{[0], [3]\}$$

$$H = \langle [4] \rangle = \{[0], [4], [2]\}$$

$$H = \langle [5] \rangle = \{[0], [5], [4], [3], [2], [1], [0]\} = G$$
Saw: $G = \langle [1] \rangle = \langle [5] \rangle$

$$\langle [2] \rangle = \langle [4] \rangle \cong \mathbb{Z}_{3}$$

$$\langle [3] \rangle \cong \mathbb{Z}_{3}$$

$$\langle [0] \rangle = \{e\}$$

Remark. Let G be a group. Then any group element $x \in G$ yields a cyclic group $\langle x \rangle = \{x^n | n \in \mathbb{Z}\}.$

Thursday March 6 2014

Timetable:

Today in class: Q6 solution and new material. Later today: New HW 7 on my www, due 03/18. Class of 03/18: Solutions to HW 7 discussed in class. Further exam prep. No new material. Class of 03/20: MT Exam Sample exams: See my earlier Math 3330 on my www.

Theorem 3.15 Infinite Cyclic Groups

Let $a \in G$. If $a^n \neq e$ for all n > 0, then $a^p \neq a^q$ for all $p \neq q = \mathbb{Z}$ and $\langle a \rangle$ is infinite cyclic.

Proof. If $a^p = a^q$ for $p \neq q$, then $a^{p-q} = e$ (without loss of generality p > q) By assumption: p - q = 0 4

Corollary. If #G, then $a^n = e$ for some $n \in \mathbb{N} > 0$.

Theorem 3.20 (Subgroups of Cyclic Groups) Let G cyclic group with generator a. Let $H \subset G$ subgroup. Then either a) $H = \{e\} = \langle e \rangle$ or b) $H = \langle a^k \rangle$ where k is the least positive integer such that $a^k \in H$.

Proof. Let $b \neq e \in H$. Have to show: $\exists l \in \mathbb{Z} \neq 0 : b = a^{ek}$. Assume false. Because $b \in G : \exists j : b = a^j$ Do division with remainder $j = m \cdot k + r$ with 0 < r < k. Since H is a subgroup, $b \cdot (a^{mk})^{-1} \in H$. $a^r \neq \text{minimality of } k$.

Definition. The order (ord(a)) of $a \in G$ is # < a >. Clear: ord(a) = min{ $m \in \mathbb{N} > 0 : a^m = e$ }

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF HOUSTON, HOUSTON, TX, USA *E-mail address*: tgchen@uh.edu