MATH 3330 ABSTRACT ALGEBRA SPRING 2014

TANYA CHEN
Dr. Gordon Heier

Tuesday January 14, 2014

The Basics of Logic (Appendix)
Definition. A statement is a declarative sentence that is either true or false.
Examples
(1) $\#\{4, \pi, 7,3\}=3$
(2) There is a real number x such that $x^{2}=-1$.
(3) There exists infinitely many prime numbers.

Some statements are plainly assumed to be true. These are called postulates or axioms.

Examples

(1) One can draw a straight line through any two points in the plane.
(2) $3<4$

Most statements are derived from basic postulates by logical inference ("Theorems, proofs").

Quantifiers will often be used in our statements:
\forall : "for all"
ヨ: "there exists"
(1) $\forall x \in(0,2): x>-3 \quad$ True
(2) $\exists x \in \mathbb{Z}: x^{2}=9 \quad$ True
(3) $\exists x \in \mathbb{Z}: x^{2}=10 \quad$ False
(4) $\forall a \in \mathbb{R}: \exists x \in \mathbb{R}: x^{2}=a \quad$ False
(5) $\forall a \in \mathrm{C}: \exists x \in \mathrm{C}: x^{2}=a \quad$ True
$\forall a \in \mathbb{R}: \exists x \in \mathbb{R}: x^{2}=a$ is false. Prove statement (4) via a counterexample.
$-1 \in \mathbb{R}$, but $\forall x \in \mathbb{R}: x^{2} \geq 0>-1$
The logical opposite or "negation" of statement 4 is:
$\exists a \in \overline{\mathbb{R}} \forall x \in \mathbb{R}: x^{2} \neq a$
Example from Calculus:
$f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous at $x_{0} \Leftrightarrow \forall \varepsilon>0 \exists \delta>0 \forall x \in\left(x_{0}-\delta, x_{0}+\delta\right)$: $\left|f(x)-f\left(x_{0}\right)\right|<\varepsilon$
$f: \mathbb{R} \rightarrow \mathbb{R}$ is not continuous at $x_{0} \Leftrightarrow \exists \varepsilon>0 \forall \delta>0 \exists x \in\left(x_{0}-\delta, x_{0}+\delta\right)$: $\left|f(x)-f\left(x_{0}\right)\right| \geq \varepsilon$

From give statements, we can get new statements with "and," "or," " \Rightarrow," " \Leftrightarrow ".

Examples

- $x>3$ and $x<5$
(same as/"equivalent to" $x \in(3,5)$)
- $x>1$ and $x<0$ False.

Today, Math 3330 meets for class \Rightarrow Today is Tuesday.
This is one big statement: Today Math 3330 meets for class \Rightarrow Today is Tuesday. False.

Today Math 3330 meets for class \Leftarrow Today is Tuesday. True.

How to Negate With And/Or:

Let A and B be statements. $\operatorname{Not}(A$ and $B)$ is the same as not A or not B.

Contrapositive

$A \Rightarrow B$ is equivalent to not $A \Leftarrow \operatorname{not} B$.
Green sweater \Rightarrow Thursday
Chapter 1 Fundamentals
§1.1 Sets

```
\(\{0,2,5,7\}=\{0,0,2,5,5,7,7,7\}\)
\# = 4
```

Sets do not come with a notion of multiplicity of membership.
list, collection
Subset: $\{2,3\} \subset\{2,3,7,8\}$
$\subset: \Leftrightarrow \subseteq$
$\stackrel{\subset}{\subsetneq}$
$A \subset A$ True.
$\{1,3\} \not \subset\{2,3,7,8\}$
Equality of sets: $A=B \Leftrightarrow A \subset B$ and $B \subset A$

Thursday January 16, 2014

- TA office hours MF 12-12:50pm
- HW1 on website early afternoon.
§1.1 Sets (Continued)
\backslash cup
$A \cup B=\{x \mid x \in A$ or $x \in B\}$
\backslash cap
$A \cap B=\{x \mid x \in A$ and $x \in B\}$
Example.
$A=\{1,5,9\} \quad B=\{5,7\}$
$A \cup B=\{1,5,7,9\}$
$A \cap B=\{5\}$
Clear: $A \cup B=B \cup A$
Empty set: $\varnothing \quad(\})$
$\{1,2\} \cap\{3,4,5\}=\varnothing$
Important Notion: Complement
If $A, B \subset U\left(U\right.$ is universal superset), $A^{c}:=U \backslash A=\{x \in U \mid x \notin A\}$
$A \backslash B=\{x \in A \mid x \notin B\}$
Example. $U=\mathbb{Z}, A=\{$ even integers $\}, B=\{$ positive integers $\}$
$A^{c}=\{$ odd integers $\}=\{\ldots,-5,-3,-1,1,3, \ldots\}$
$A \backslash B=\{0,-2,-4,-6, \ldots\}$
Repeated Application:

$$
\begin{aligned}
(A \cap B) \cap C & =A \cap(B \cap C) \\
& =A \cap B \cap C
\end{aligned}
$$

$\ni x \Leftrightarrow x \in A$ and $x \in B$ and $x \in C$.
Warning: $A \cap(B \cup C) \neq(A \cap B) \cup C$
Ex 14. $A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$

$$
\begin{aligned}
\text { Proof." " " Let } & x \in A \cap(B \cup C) \\
& \Rightarrow x \in A \text { and }(x \in B \text { or } x \in C) \\
& \Rightarrow(x \in A \text { and } x \in B) \text { or }(x \in A \text { and } x \in C) \\
& \Rightarrow x \in A \cap B \text { or } x \in A \cap C \\
& \Rightarrow x \in(A \cap B) \cup(A \cap C)
\end{aligned}
$$

" \supset " Reverse arrows for this direction.
§1.2 Mappings

$$
f: A \rightarrow B
$$

Illegal:

Example. $f:\{1,2,3,4\} \rightarrow\{1,2,3, \ldots, 20\}$
$x \mapsto x^{2}$

Domain: $\{1,2,3,4\}$
Codomain: $\{1,2, \ldots, 20\}$
Range: $\{1,4,9,16\}$
Some more terminology: Let $f: A \rightarrow B$, let $S \subset A$.
Then $f(S)=\{f(x) \mid x \in S\}=\{b \in B: \exists x \in S: f(x)=b\}$.
Let $T \subset B$. Let $f: \mathbb{Z} \rightarrow \mathbb{Z} . x \mapsto x^{2}$.
$f^{-1}(T)=\{a \in A \mid f(a) \in T\}$
\mathbb{Z} integers from German word Zahlen.
$f^{-1}(\{4,9\})=\{-2,-3,2,3\}$
$f^{-1}(\{5,7,9\})=\{ \pm 3\}$
$f^{-1}(\{3\})=\varnothing$

Injective Maps

Definition. Let $f: A \rightarrow B$ map. Then f is called injective if $\forall x, y \in A$ with $x \neq y: f(x) \neq f(y)$
$\longrightarrow x \neq y \Longrightarrow f(x) \neq f(y)$
$x=y \Longleftarrow f(x)=f(y)$
$A \Rightarrow B$ same as not $A \Leftarrow \operatorname{not} B$
Not injective:

Example 1. $f: \mathbb{R} \rightarrow \mathbb{R}, x \mapsto 3 x+2$
$f(x)=f(y)$
$\longrightarrow 3 x+2=3 y+2$
$\longrightarrow 3 x=3 y$
$\longrightarrow x=y$
Thus f is injective.
Example 2. $\quad f: \mathbb{Z} \rightarrow \mathbb{Z} x \mapsto x^{2}$
$\mathbb{N}=\{0,1,2,3, \ldots\}$
Not injective.
$f(-2)=4=f(2)$ but $-2 \neq 2$
Example 3. $f: \mathbb{N} \rightarrow \mathbb{N}, x \mapsto x^{2}$
Injective.
Surjective Maps:
Definition. Let $f: A \rightarrow B$ map. Then f is called surjective $\Leftrightarrow f(A)=$ $B \Longleftrightarrow$ codomain range $\Longleftrightarrow \forall b \in B: \exists a \in A: b=f(a)$.
$\mathbb{R} \rightarrow \mathbb{N}$
$\mathbb{N} \rightarrow \mathbb{R}$

Examples

(1) $f: \mathbb{Z} \rightarrow \mathbb{Z}, x \mapsto x^{2} \quad$ Not surjective.
(2) $f: \mathbb{R} \rightarrow \mathbb{R}, x \mapsto x^{2} \quad$ Not surjective because all squares of reals are non-negative. So $-2 \notin f(\mathbb{R})$.
(3) $f: \mathbb{R} \rightarrow(0, \infty), x \mapsto x^{2} \quad$ Not a function.
(4) $f: \mathbb{R} \rightarrow[0, \infty), x \mapsto x^{2}$
(5) $f: \mathbb{R} \rightarrow \mathbb{R}, x \mapsto 3 x+2$ is surjective.

Proof. Let $y \in \mathbb{R} \quad(\mathbb{R}$ is codomain.)
$\mathrm{Q}: \exists x \in \mathbb{R}: y=f(x) ? \quad$ (\mathbb{R} is domain.)
Solve.

$$
\begin{aligned}
y=f(x) & =3 x+2 \\
\Longrightarrow y-2 & =3 x \\
\Longrightarrow \frac{y-2}{3} & =x
\end{aligned}
$$

Check: $f\left(\frac{y-2}{3}\right)=3\left(\frac{y-2}{3}\right)+2=y-2+2=y$

Tuesday January 21, 2014
$x \mapsto \begin{cases}2 x+1 & \text { if } x \text { is even. } \\ \frac{x+1}{2} & \text { if } x \text { is odd. }\end{cases}$
(a) Injective? Prove.
(b) Surjective? Prove.

Solution:

(a) Even: \begin{tabular}{|c|c|}
\hlinex \& $f(x)$

\hline-2 \& -3

0 \& 1

2 \& 5

4 \& 9

\hline

\quad Odd:

\hlinex \& $f(x)$

\hline-3 \& -1

-1 \& 0

1 \& 1

3 \& 2

\hline
\end{tabular}

Not injective
(b) Let $y \in \mathbb{Z}$ arbitrary. $\exists x \in \mathbb{Z}: f(x)=y$

Claim. $\exists x \in \mathbb{Z}$ with x odd: $f(x)=y \Longleftrightarrow \frac{x+1}{2}=y$. Then, $x=2 y-1$ Then $f(2 y-1)=\frac{2 y}{y}=2 y$.

Indeed odd.
§1.4 Binary Operations

Cantor's Diagonal Count
$\mathbb{N} \rightarrow \mathbb{Q}$
$\mathbb{Z} \rightarrow \mathbb{Q}$
Definition. A binary operation on a non-empty set A is a mapping f : $A \times A \rightarrow A$.

$$
\left(a_{1}, a_{2}\right) \mapsto f\left(a_{1}, a_{2}\right)=a_{1} * a_{2}
$$

Recall: $A \times B:\{(a, b) \mid a \in A, b \in B\}$.
Example. $x * y$
(1) $f: \mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{Z}$

$$
(x, y) \mapsto x+y
$$

(2) $f: \mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{Z}$

$$
(x, y) \mapsto x \cdot y^{2}
$$

(3) $f: \mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{Z}$

$$
(x, y) \mapsto x^{2}+y^{2}
$$

(4) $f: \mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{Z}$

$$
(x, y) \mapsto 1+x \cdot y
$$

(5) $f: \mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{Z}$

$$
(x, y) \mapsto \frac{x \cdot y}{3}
$$

(6) $f: \mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{Q}$

$$
(x, y) \mapsto \frac{x \cdot y}{3}
$$

Not a binary operation.

$$
\begin{aligned}
& f: \mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{Q} \\
& (x, y) \mapsto \frac{x \cdot y}{3}
\end{aligned}
$$

Definition. If $a_{1} * a_{2}=a_{2} * a_{1} \forall a_{1}, a_{2} \in A$ then say f is commutative.
Definition. If $\left(a_{1} * a_{2}\right) * a_{3}=a_{1} *\left(a_{2} * a_{3}\right) \forall a_{1}, a_{2}, a_{3} \in A$ then say f is associative.

Ex. Look at 3. $f: \mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{Z},(x, y) \mapsto 1+x \cdot y$
$1+x y=1+y x \Longrightarrow f$ is commutative.

x	1
y	2
z	3

$x *(y * z)=1 *(2 * 3)=1 *(1+2 \cdot 3)=1 * 7=1+1 \cdot 7=8$
$(x * y) * z=(1+1 \cdot 2) * 3=3 * 3=1+3 \cdot 3=10 \neq 8$
\Longrightarrow Not associative.

Closedness

Let $f: A \times A \rightarrow A$ be a binary operation. If $B \subset A$ is $b_{1} * b_{2} \in B$ such that $\forall b_{1}, b_{2} \in B$, then we say B is closed under $*$ in A.
$f: \mathbb{Q} \times \mathbb{Q} \rightarrow \mathbb{Q}$

$$
(x, y) \mapsto x+y
$$

Identity Element
Definition. $e \in A$ is called an identity element if $\forall x \in A: e * x=x=x * e$.

Examples

(1) $A=\mathbb{Z}, *=+$

$$
e=0
$$

(2) $A=\mathbb{Z}, *=$.

$$
e=1
$$

(3) $A=\mathbb{Z}, x * y=x+y-3$

$$
\begin{aligned}
& e=3 \\
& e * x=3+x-3=x \\
& x * e=x+3-3=x
\end{aligned}
$$

(4) $A=\mathbb{Z}, x * y=x$ has no identity element because $e * y=e$ but should be y.
(5) $A=\mathbb{Z}, x * y=1+x y$

$$
\begin{aligned}
e * y & =1+e y=y \quad e * y=y \\
& \Leftrightarrow e y=y-1 \\
& \Leftrightarrow e=\frac{y-1}{y}
\end{aligned}
$$

$$
y \neq 0
$$

Depends on y, which it must not.
Right inverse, left inverse, inverse.
Key: Need to have identity element present to start with.
$1 \cdot x=x \quad x \cdot 1=x$

1 is identity element of \cdot on \mathbb{Z} or \mathbb{Q} on \mathbb{R}.
Now, it makes sense to seek, given x, an element y, such that $x \cdot y=1$.

Thursday January 23, 2014
§1.4 Binary Operations (continued)
Recall: e is neutral $\Leftrightarrow \forall x \in A: e * x=x=x * e$
Assume e exists.
Definition. Right inverse, left inverse, inverse.
Let $a \in A$.

- if $\exists b \in A: a * b=e$ call b right inverse of a.
- If $\exists b \in A: b * a=e$, then call b left inverse of a.
- If $\exists b \in A: a * b=e=b * a$ then call b inverse of a.

Ex 1. $\mathbb{R}^{\neq 0} \times \mathbb{R}^{\neq 0} \rightarrow \mathbb{R}^{\neq 0}$
$(x, y) \mapsto x \cdot y$
$e=1$ inverse to x is $\frac{1}{x}$.
Ex 2. $\mathbb{R}^{>0} \times \mathbb{R}^{>0} \rightarrow \mathbb{R}^{>0}$
$(x, y) \mapsto x\left(y^{2}\right)$
$1 \boldsymbol{x} 1 \checkmark$
No e thus no way to discuss any kind of inverse.

$$
\begin{aligned}
& E x \text { 3. } \mathbb{R}^{\neq 0} \times \mathbb{R}^{\neq 0} \rightarrow \mathbb{R}^{\neq 0} \\
& \quad(x, y) \mapsto 3 \cdot x y \\
& e=\frac{1}{3} \text { because } \\
& \quad \frac{1}{3} \cdot y=3 \cdot \frac{1}{3} \cdot y=y \\
& x \cdot \frac{1}{3}=3 \cdot x \cdot \frac{1}{3}=x \\
& \text { Inverse of } a \text { is } b \text { such that } a * b=e=1 / 3 \\
& \frac{1}{9 a} \\
& a * b=e=1 / 3 \\
& 3 a b \Leftrightarrow b=\frac{1}{9 a}
\end{aligned}
$$

Ex 4. 1 ${ }^{\text {st }}$

$$
*: A \times A \mapsto A
$$

(a) comm?
(b) $\exists e$? $e=$?
(c) \exists inverses?
$a_{i} * a_{j}$
$A=\left\{a_{1}, \ldots, a_{n}\right\}$

$$
\begin{gathered}
a_{i} * a_{j}=a_{j} * a_{i} \\
(i, j) \text {-square } \quad(j, i) \text {-square }
\end{gathered}
$$

(a) Yes, $*$ is commutative because the table is symmetric.
(b) $b * x=x$ and $x *=x \Longrightarrow b=e$
(c) inverse: $b * b=b=e \Longrightarrow b$ is its own inverse.
$x * y=x$
$y * x=x$
The inverse of c is a.
The inverse of a is c.
§1.5 Permutations
Let A be a set. (Not necessarily finite!)

$$
\left(\begin{array}{lll}
1 & 2 & 3 \\
3 & 2 & 1
\end{array}\right)
$$

$A=\{1,2,3\}$
Definition. A bijective map $f: A \rightarrow A$ is called a permutation on A.
$S(A)=\{$ permutations $\}$
$M(A)=\{$ all maps $A \rightarrow A\}$
Composition of maps yields a binary operation on $S(A)$.
It also yields binary operation on $M(A)$.
$e=$?

e
1

*: $M(A) \times M(A) \rightarrow M(A)$
$e=i d_{A}$
Left-inverses? Right-inverses? Inverse
e

Given $f \in M(A), \exists ? g \circ f=i d_{A}$.
Theorem. Let $f \in M(A)$. Then f injective $\Leftrightarrow f$ has a left inverse.

Proof. " \Rightarrow ": Proof by explicit construction: the left inverse g.
For $a_{2} \in \operatorname{Range}(f) \exists$ unique element $a_{1} \in A$.

$$
f\left(a_{1}\right)=a_{2}
$$

For $a_{2} \notin \operatorname{Range}(f)$ set $g\left(a_{2}\right)=$ some arbitrary $a \in A$ (does not matter which one). Check that g is left inverse

$$
(g \circ f)(a)=g(f(a))=a
$$

$" \Leftarrow "$ Let g be left-inverse. Let $f\left(a_{1}\right)=f\left(a_{2}\right)$. Need to show $a_{1}=a_{2}$.
Apply g to both sides:

$$
\begin{gathered}
\Longrightarrow g\left(f\left(a_{1}\right)\right)=g\left(f\left(a_{2}\right)\right) \\
i d\left(a_{1}\right) \\
a_{1}
\end{gathered} \quad i d\left(a_{2}\right) .
$$

Thursday January 30, 2014

- HW2 now due 2/4 (Tuesday)
- Selected solutions to HW1 this afternoon on my www.

§1.5 Permutations

Let A any set.
Definition. $f: A \rightarrow A$ is called a permutation $\Leftrightarrow f$ bijective.
$S(A)=\{$ permutations $\}$
\cap
$M(A)=\{$ all $f: A \rightarrow A\}$
For $g, f \in M(A)$,

$$
f * g=f \circ g
$$

$e=I d_{A}$.
Theorem. Let $f \in M(A)$. Then f injective $\Leftrightarrow \exists$ left-inverse of f.
Right-inverse:
Theorem. Let $f \in M(A)$. Then f surjective $\Leftrightarrow \exists$ right-inverse of f.

Proof. " \Longrightarrow " Take $a_{2} \in A$. Since f surjective $\Longrightarrow \exists a_{1} \in A: f\left(a_{1}\right)=a_{2}$.

$i d=f \circ g \Longleftrightarrow: g$ is a right-inverse of f.
Let $g\left(a_{2}\right):=a_{1}$. (Any element a such that $f(a)=a_{2}$ will do.)

Claim: g is a right inverse of f.
Proof of Claim: $(f \circ g)\left(a_{2}\right)=f\left(g\left(a_{2}\right)\right)=f\left(a_{1}\right)=a_{2}$
$" \Longleftarrow "$ Take $a_{2} \in A$ arbitrary. Let $a_{1}:=g\left(a_{2}\right)$ with g right-inverse.
Observe: $f\left(a_{1}\right)=f\left(g\left(a_{2}\right)\right)=i d\left(a_{2}\right)=a_{2}$
Remark: Just saw: f bijective $\Leftrightarrow f$ has an inverse.
Example 1. $f: \mathbb{Z} \rightarrow \mathbb{Z}, x \mapsto 3 x$.

$$
3 x=3 y
$$

- f is not surjective, thus no right inverse.
- f is injective.
g ? is a left-inverse.
$x \mapsto \begin{cases}\frac{x}{3} & \text { if } x \in 3 \mathbb{Z} \quad\{\ldots,-9,-6,-3,-, 3,6,9, \ldots\} \\ 0 & \text { otherwise. does not matter. }\end{cases}$
g such that $g \circ f=i d$.
- $x \mapsto \begin{cases}\frac{x}{2} & \text { if } x \text { even. } \\ \mathrm{x}+2 & \text { if } x \text { odd. }\end{cases}$
- f is not injective: $f(1)=3=f(6)$.
- f is surjective: a right-inverse of f is $g: \mathbb{Z} \rightarrow \mathbb{Z}, x \mapsto 2 x$.

$$
(f \circ g)(x)=f(g(x))=f(2 x)
$$

Example 3. $f: \mathbb{R} \rightarrow \mathbb{R}, x \mapsto x^{2}$.
f is not injective.
f is not surjective.
Left-inverse: g such that $g \circ f=i d$.
" \sqrt{x} does not work for $x<0$."
$x * y=e$
§1.7 Relations
A (binary) relation on a set A is a subset $R \subset A \times A$. If $(a, b) \in R_{1}$, write $a \sim b$.

Example 1. $A=\{1,2,3\} . R=\{(1,1),(2,2),(3,3)\}$
Note: $(a, b) \in R(: \Leftrightarrow a \sim b) \Leftrightarrow a=b$.
Example 2. Same A. $R=\{(1,2),(2,3),(1,3)\}$
Example 3. Let A be any set. Let $R=\{(a, f(a)) \mid a \in A\} . R$ is the graph of $f: a \sim b \Leftrightarrow b=f(a)$.

Definition. Let A be a set. The relation R is called an equivalence relation \Leftrightarrow
(1) $\forall x \in A: x \sim x \quad$ (Reflexive)

$$
\begin{aligned}
& A=\{1,2,3\} \\
& R=\{(1,2),(1,3),(2,3),(7,1),(3,1),(3,7)\} \\
& (a, b) \in R \Leftrightarrow a \neq b . \\
& a \sim b \Leftrightarrow a \neq b . \\
& (\mathrm{O},()
\end{aligned}
$$

(2) $\forall x, y \in A: x \sim y \Longrightarrow y \sim x \quad$ (Symmetric)
(3) $\forall x, y, z \in A:(x \sim y$ and $y \sim z) \Longrightarrow x \sim z \quad$ (Transitive)

$$
a<b, b<c \Longrightarrow a<c
$$

Ex 1. $A=\mathbb{Z}, a \sim b \Leftrightarrow|a|=|b|$.
Reflexive $\sqrt{ }$
Proof. Let $a \in A$. Have to check $a \sim a$ is true. $a \sim a \Leftrightarrow|a|=|a|$. True.

Symmetric \checkmark
Proof. Let $a \sim b \Longrightarrow|a|=|b| \Longrightarrow|b|=|a| \Longrightarrow b \sim a$

Transitive \checkmark
Proof. Let $a \sim b, b \sim c \Longrightarrow|a|=|b|,|b|=|c| \Longrightarrow|a|=|c|$.

All three $\boldsymbol{\checkmark}$, equivalence relation.

Ex 2. $A=\mathbb{Z}, a \sim b \Leftrightarrow a=|b|$.
Reflexive \boldsymbol{X}
Let $a=-1$. Then $a \sim a$ is false: $-1=|-1|=1 \boldsymbol{X}$.
Symmetric X
$a=1, b=-1 . a \sim b \Leftrightarrow 1=|-1|=1$.
Check: $b \sim a \Leftrightarrow-1=|1|=1 . X$
Transitive left as exercise.
$A=\mathbb{Z} . \sim$ is "congruence $\bmod m$. " It IS an equivalence relation.

$$
x \sim y \Leftrightarrow \exists k \in \mathbb{Z}: x-y=k m
$$

e.g. $m=2$

Definition. Let R be an equivalence relation on A.

$$
[a]:=\{x \in A: x \sim a\}
$$

is called the equivalence class of A.

Tuesday February 4, 2014

Quiz 2

(1) Let $f: \mathbb{Z} \rightarrow \mathbb{Z}, x \mapsto 7 x$.
(a) \exists left-inverse? If yes, find it.
(b) \exists right-inverse? If yes, find it.
(2) Let $x, y \in \mathbb{Z}$. Let $x \sim y \Leftrightarrow x^{2}+y^{2}$ is a multiple of 2. Equivalence relation?

Theorem. Let $f \in M(A)$. Then f injective $\Leftrightarrow \exists$ left-inverse of f.

(1a) $x \mapsto \begin{cases}\frac{1}{7} x & \text { if } x \in 7 \mathbb{Z} \\ 0 & \text { if } x \notin 7 \mathbb{Z}\end{cases}$
(1b) Not surjective.
(2) R is reflexive and symmetric. For transitivity,

$$
\begin{aligned}
& \text { True }\left\{\begin{array}{l}
\exists k \in \mathbb{Z}: x^{2}+y^{2}=2 k \\
\exists k \in \mathbb{Z}: l \in \mathbb{Z}: y^{2}+z^{2}=2 l
\end{array}\right. \\
& \exists k \in \mathbb{Z} \exists l \in \mathbb{Z}: x^{2}-z^{2}=2 k-2 l=2(k-l)
\end{aligned}
$$

This is unchanged by adding the even number $2 z^{2} . \Longrightarrow x^{2}-z^{2}+$ $2 z^{2}=x^{2}+z^{2}$ is even.
$\mathbb{Q} \quad \frac{a}{b} \quad(a, b)$
$(a, b) \sim(c, d) \Leftrightarrow a d=b c$.
Recall: Equivalence classes. Let R equivalence relation on A. Then $[a]:=$ $\{x \in A: x \sim a\}$ is called the equivalence class of a.
$A=\mathbb{R}$
Ex 1. $x \sim y \Leftrightarrow|x|=|y|$

$$
[\pi]=\{\pi,-\pi\}
$$

\mathbb{Z}_{n}

Ex 2. Congruence mod 3 (recall: $x \sim y \Leftrightarrow x-y=3 k$ for some $x, y, k \in \mathbb{Z}$)
$[0]=\{\ldots,-9,-6,-3,0,3,6,9, \ldots\}$
$[1]=\{\ldots,-8,-5,-2,1,4,7,10, \ldots\}$
$[2]=\{\ldots,-10,-7,-4,-1,2,5,8, \ldots\}$
$[12]=[-9]=[0]=\ldots$
Theorem. Let R be an equivalence relation on A. Let $a, b \in A$. Then, either $[a]=[b]$ or $[a] \cap[b]=\varnothing$

Proof. Assume $[a] \cap[b] \neq \varnothing$. Need to show: $[a]=[b]$. Let $x \in[a] \cap[b]$ (exists!)
Let $\hat{a} \in[a]$.
Claim: $\hat{a} \in[b]$.
Have: $\hat{a} \sim a$

$$
\begin{aligned}
& x \sim a \\
& x \sim b
\end{aligned}
$$

\Downarrow
$\hat{a} \sim b$
\Downarrow
$\hat{a} \in[b]$

Thursday February 6, 2014

Recall: Let R be an equivalence relation on A.
Let $a \in A .[a]:=\{x \in A \mid x \sim a\}$.
Theorem. Let $[a],[b]$ be two equivalence classes. Then either $[a]=[b]$ or $[a] \cap[b]=\varnothing$.

Proof. Assume $[a] \cap[b] \neq \varnothing$. Need to show $[a]=[b]$.
Let $x \in[a] \cap[b]$.
Let $\hat{a} \in[a]$.
Claim: $\hat{a} \in[b]$.
Note: $\hat{a} \sim a, a \sim x, x \sim b \Rightarrow \hat{a} \sim x$

Not official language $\hat{a} \sim \not \subset, \not \subset \sim x, x \sim b \Rightarrow \hat{a} \sim x$
$\hat{a} \sim x, x \sim b \Rightarrow \hat{a} \sim x$
$\therefore \Rightarrow$ By transitivity, $\hat{a} \sim b$.
§2.2 Mathematical Induction

Principle of Mathematical Induction
Let P_{n} be a statement depending on $n \in \mathbb{N}=\{0,1,2, \ldots\}$ (or perhaps $\mathbb{N}=\{1,2,3, \ldots\}$ at our convenience.)

If P_{0} is true and $\left(P_{n} \Rightarrow P_{n+1}\right)$ is true, then $\forall n \in \mathbb{N}: P_{n}$ is true.
Example. Gauss's trick:

1	2	3	\cdots	100
100	99	98	\cdots	1
101	101	101	\cdots	101

$101+101+101+\cdots+101$
$\frac{100 \cdot 101}{2}=5050$

Example. $\quad P_{n}: \sum_{i=1}^{n} i=1+2+\cdots+n=\frac{n(n+1)}{2}$

Let us prove P_{n} for $n=1,2,3, \ldots$ (i.e. for all $n \in \mathbb{N}$) by mathematical induction.
$P_{1}: \quad 1=\frac{1 \cdot(1+1)}{2}$
Now, need to prove that $P_{n} \rightarrow P_{n+1}$.
Claim: $P_{n+1}: 1+2+\ldots+n+n+1=\frac{(n+1)(n+2)}{2}$
Prove this under the assumption that P_{n} holds, i.e. $1+\ldots+n=\frac{n(n+1)}{2}$.

$$
\begin{array}{c}P_{n} \\ \text { is true. } \\ \\ \downarrow \\ (1+\ldots+n)+(n+1)\end{array}=\frac{n(n+1)}{2}+n+1=\frac{n(n+1)+2(n+1)}{2}
$$

$=\frac{(n+1)(n+2)}{2}$

Example. $2^{1}+2^{2}+2^{3}+\cdots+2^{n}=2\left(2^{n}-1\right)$.
$P_{1}: 2^{1}=2\left(2^{1}-1\right) \checkmark$
$" P_{n} \Rightarrow P_{n+1}$ ": $\left(2^{1}+2^{2}+2^{3}+\cdots+2^{n}\right)+2^{n+1}=2\left(2^{n}-1\right)+2^{n+1}=$ $2\left(2^{n}-1+2^{n}\right)=2\left(2 \cdot 2^{n}-1\right)=2\left(2^{n+1}-1\right)$

Example. $1^{3}+3^{3}+5^{3}+\cdots+(2 n-1)^{3}=n^{2}\left(2 n^{2}-1\right)$
$P_{1}: 1^{3}=1^{2}\left(2 \cdot 1^{2}-1\right) \checkmark$
$P_{n} \Rightarrow P_{n+1}$:
Claim. $\left(1^{3}+3^{3}+\cdots+(2 n-1)^{3}\right)+(2(n+1)-1)^{3}=(n+1)^{2}\left(2(n+1)^{2}-1\right)$
LHS $\left(\right.$ using $\left.P_{n}\right): n^{2}\left(2 n^{2}-1\right)+(2(n+1)-1)^{3}=2 n^{4}+8 n^{3}+11 n^{2}+6 n+1$ \uparrow
Brute force
RHS: $(n+1)^{2}\left(2(n+1)^{2}-1\right)=2 n^{4}+8 n^{3}+11 n^{2}+6 n+1$

Let $a \in \mathbb{N}$. If P_{a} is true and $\left(P_{n} \Rightarrow P_{n+1}\right.$ is true $\forall n \in \mathbb{N}$ with $n \geq a$, then $\forall n \in \mathbb{N}$ with $n \geq a: P_{n}$ is true.

Example. $\forall n \geq 4: 1: 3 n<n^{2}$
Proof. (By Generalized Induction)
$P_{4}: \quad 1+3 \cdot 4<4^{2} \checkmark$
" $P_{4} \Rightarrow P_{n+1}$ ":
$P_{n+1}: 1+3(n+1)<(n+1)^{2}$
$1+3(n+1)=1+3 n+3<n^{2}+3<n^{2}+2 n+1=(n+1)^{2}$

$$
\stackrel{\uparrow}{n \geq 4}
$$

Principle of Complete Induction
Let $a \in \mathbb{N}$. If P_{a} is true and $\left(P_{a}, P_{a+1}, \ldots, P_{n} \Rightarrow P_{n+1}\right)$ all assumed to be true, then $\forall n \in \mathbb{N}$ with $n \geq a: P_{n}$ is true.
$123=1 \cdot 10^{2}+2 \cdot 10+3 \cdot 10^{0}$
Theorem. Every positive integer can be written in base 2, i.e.
$\forall n \in \mathbb{N} \geq 1 \exists j \in \mathbb{N} \geq 1 \exists c_{0}, \ldots, c_{j-1} \in\{0,1\}: n=c_{0} \cdot 2^{0}+c_{1} 2^{1}+c_{2} 2^{2}+$ $\cdots+c_{j-1} 2^{j-1}+2^{j-1}$

Proof. Let $j=1$. Let $c_{0}=1$.

$$
1=1 \cdot 2^{0} . \checkmark
$$

${ }^{\prime} P_{1}, \ldots, P_{n} \Rightarrow P_{n+1} "$
Case 1. n even ($\Leftrightarrow n+1$ odd)
$\begin{aligned} & P_{n} \Rightarrow n=c_{0} \cdot 2^{0} \\ & \uparrow=0 \mathrm{~b} / \mathrm{c} n \text { even } \uparrow \uparrow \uparrow c_{1} 2+c_{2} 2^{2}+\cdots+c_{j-1} 2^{j-1}+2^{j} \\ & \uparrow\end{aligned}$
even even even even even
add +1
$\longrightarrow n+1=1+c_{1} 2+\cdots+c_{j-1} 2^{j-1}+2^{j}$
Case 2. n odd ($n+1$ even).
let $k=\frac{n+1}{2}$.

$$
P_{k} \Rightarrow k=\tilde{c_{0}} \cdot 2^{0}+\tilde{c_{1}} 2+\cdots+\tilde{c}_{j-1} 2^{j-1}+2^{j}
$$

Multiply by 2 :
$n+1=2 k=\tilde{c}_{0} 2^{1}+\tilde{c}_{1} 2^{2}+\tilde{c}_{2} 2^{3}+\cdots+\tilde{c}_{j-1} 2^{j}+2^{j+1}$
Set $c_{0}=0$.
$c_{i}=\tilde{c}_{i-1}$ for $i=1, \ldots j$

Tuesday February 11, 2014
Quiz 3
(1) $\forall n \in \mathbb{N} \geq 3: 1+2 n<2^{n}$
(2) $\forall n \in \mathbb{N} \geq 1: 1^{3}+2^{3}+\cdots+n^{3}=\frac{1}{4} n^{2}(n+1)^{2}$
(1) First, $n=3$. \checkmark. Then the induction step: $1+2 n+2<2^{n}+2<$ $2^{n}+2^{n}=2 \cdot 2^{n}=2^{n}+1$

Replace 2 with 2^{n}.
(2) Assume P_{n} is true. Show LHS in $P_{n+1}=$ RHS in P_{n+1}.

$$
\begin{aligned}
& \frac{1}{4} n^{2}(n+1)^{2}+(n+1)^{3}=(n+1)^{2}\left(\frac{1}{4} n^{2}+(n+1)\right) \\
& =\frac{1}{4}(n+1)^{2}\left(n^{2}+4 n+4\right)=\frac{1}{4}(n+1)^{2} \cdot(n+2)^{2}
\end{aligned}
$$

$\S 2.3$ Divisibility

Recall. For $b \in \mathbb{Z}, a \in \mathbb{Z} \backslash\{0\}, a \mid b$ (say " a divides b ") $\Leftrightarrow \exists c \in \mathbb{Z}: b=c \cdot a$

Recall. The division algorithm / division with remainder.
Let $a, b \in \mathbb{Z}, b>0$. Then $\exists!q \in \mathbb{Z}$ and $r \in \mathbb{Z}$ with $r \in\{0,1, \ldots, b-1\}$. $a=q \cdot b+r$.

Example. $a=3, b=10 . q=3, r=5$ and $35=3 \cdot 10+5$ or $a=q \cdot b+r$.
$a=72, b=7.72=10 \cdot 7+2$.
$a=-91, b=11$.
Observe. $-91=\frac{(-8) \cdot 11-3}{\uparrow}=(-9) 11+8$
Not a valid division with remainder.
$-91=(-9) 11+10$
$a=q b+r$

Recall. Long division algorithm.
$a=357, b=13$. $\frac{357}{13}=27$ with remainder: 6 .

For negative a how to do long division with remainder: Work with $|a|$, then multiply by (-1), then adjust to positive remainder.

Example. $a=-122, b=11$.
First, work with $+122: \frac{122}{11}=11$ with remainder 1 .
$122=11 \cdot 11+1$

Multilpy by $(-1):-122=(-11) 11-1=(-12) \cdot 11+10$

$$
a \quad q \quad b \quad r
$$

§2.4 Prime Factors and GCDs (Greatest Common Divisors)

Definition. $d=\operatorname{gcd}(a, b)$ such that $a, b \in \mathbb{Z}$ if and only if:
(1) $d \in \mathbb{N} \geq 1$ (i.e., d positive integers)
(2) $d|a, d| b$
(3) $c \mid a$ and $c|b \Rightarrow c| d$

Theorem. (GCD-Theorem)
Let a, b be integers, at least one non-zero. The smallest non-zero $d \in \mathbb{N} \neq 0$ that can be written as $d=a m+b n$ with $m, n \in \mathbb{Z}$ in the $\operatorname{gcd}(a, b)$.
(1) Show: $d \mid a(d \mid b$ by symmetry)

We can always divide a by d with remainder: $a=q \cdot d+r$ if and only if

$$
\begin{aligned}
r & =a-q d=a-q(a m+b n) \\
& =a-q(a m+b n) \\
& =a(1-m q)+b(-n q)
\end{aligned}
$$

Note: This shows that r has the same property of d, but d was smallest (and $r<d$). $\rightarrow \leftarrow$ unless $r=0$.
(2) Remains: There is no greater divisor than d. To this end, let c be any other divisor.

$$
\begin{aligned}
& d=a m+b n=c l_{1} m+c l_{2} n=c\left(l_{1} m+l_{2} n\right) \Rightarrow c \mid d \\
& \quad c \cdot l_{1} \quad c \cdot l_{2}
\end{aligned}
$$

How to find m, n, d for given a, b ? Let $a, b \in \mathbb{N}$.

Key idea: Subtracting a multiple of the smaller number (either a, b) from the other number does not change the GCD.

Thursday February 13, 2014
$G C D$ Theorem. Let $a, b \in \mathbb{Z}$. The smallest non-zero $d \in \mathbb{N} \neq 0$ that can be written

$$
d=a m+b n \quad(m, n \in \mathbb{Z})
$$

is the GCD.

Note. $d=a m+b n=(-a)(-m)+b n$
Key idea. Subtracting a multiple of the smaller number from the larger number where a, b are the numbers, does not change the GCD.

Example. Find $\operatorname{gcd}(1492,176)$.

$$
\begin{aligned}
\operatorname{gcd}(1492,176) & =\operatorname{gcd}(1492,1776-1492=284) \\
& =\operatorname{gcd}(1492-5 \cdot 284=72,284) \\
& =\operatorname{gcd}(72,284-3 \cdot 72=68) \\
& =\operatorname{gcd}(72-1 \cdot 68=4,68) \\
& =4(\text { obviously })
\end{aligned}
$$

Scratch Work. $1492=5 \cdot 284+72$

$$
4 \cdot 72=288
$$

Example. To find m, n such that $4=1492 \cdot m+1776 \cdot n$.

$$
\begin{aligned}
4 & =72-68=72-(284-3 \cdot 72)= \\
& =4 \cdot 72-284=4(1492-5 \cdot 284)-284 \\
& =4 \cdot 1492-21 \cdot 284 \\
& =4 \cdot 1492-21 \cdot(1776-1492) \\
& =25 \cdot 1492+(-21) 1776 \\
& m \quad n
\end{aligned}
$$

Example. $a=102, b=66$.

$$
\begin{aligned}
& \operatorname{gcd}(102,66)=\operatorname{gcd}(102-66=36,66) \\
&=\operatorname{gcd}(36,66-36=30) \\
&=\operatorname{gcd}(36-30=6,30) \\
& 6=36-30 \\
&=(102-66)-(66-36) \\
&= 102-2 \cdot 66+36
\end{aligned}
$$

$$
\begin{aligned}
= & 102-2 \cdot 66+102-66 \\
= & 2 \cdot 102+(-3) 66 \\
& m \quad n
\end{aligned}
$$

Remark. For next section, $3 a=3 b$. Most would conclude $a=b$. $\bmod 3$ is true for all $a, b \in \mathbb{Z}$.

Definition. Call a, b relatively prime $\Leftrightarrow \operatorname{gcd}(a, b)=1$.
Definition. An integer $p>1$ is called prime if $a \mid p \Rightarrow a= \pm 1$ or $a= \pm p$.
Euclid's Lemma. If p prime and $p|a \cdot b \Rightarrow p| a$ or $p \mid b$. (Consider $5 \mid 10 \cdot 7$)

Unique Factorization Theorem.
Every positive integer >1 can be expressed as a product of primes, unique up to reordering of the factors.
Proof. By complete induction. If n is prime, done. If not, write $n=a \cdot b$ where $a>1$ and $b>1$. Apply induction twice, once to a and once to b. (Both are $<n$.)

Euclid's Theorem on Primes. There exists infinitely many primes.
Proof. To obtain a contradiction, let us assume that p_{1}, \ldots, p_{k} for $k \in \mathbb{N}$ is a complete list of all primes. Consider: $m=p_{1}+\ldots+p_{k}+1$. Note $m>p_{i} \forall i=1, \ldots, k \Rightarrow m$ is not a prime. Unique Factorization Theorem \Rightarrow $\exists i: p_{i} \mid m$. But the remainder obtained when dividing m by p_{i} is obviously 1. 4

Example. Find prime factorization in an ad-hoc way.

$$
\begin{aligned}
84 & =2 \cdot 42=2^{2} \cdot 21 \\
& =2^{2} \cdot 3 \cdot 7
\end{aligned}
$$

Remark. This yields an alternative way of finding the GCD.
$\operatorname{gcd}(287,161)$ can be determined as follows:

$$
\begin{aligned}
287 & =7 \cdot 41 \\
161 & =7 \cdot 23 \\
\Rightarrow \operatorname{gcd} & =7 .
\end{aligned}
$$

```
1492=4\cdot373, 1776= 24}\cdot3\cdot3
    \uparrow \uparrow
    2}\mp@subsup{}{}{2}\mathrm{ prime
```


§2.5 Congruence of Integers

Remark. Let $a, b \in \mathbb{Z} . a \equiv b \bmod n \in \mathbb{N}^{>0} \Leftrightarrow \exists k \in \mathbb{Z}: a-b=k \cdot n$.

Remark. $" \equiv \bmod n "$ is an equivalence relation.
Proof.
(1) Reflexive: $a-a=0 \cdot n$
(2) Symmetric: $a-b=k \cdot n \Rightarrow b-a=-k n=(-k) \cdot n$
(3) Transitive: $a \cdot b=k_{1} n$ and $b-c=k_{2} \cdot n \Rightarrow a-\left(k_{2} n+c\right)=k_{1} n \Rightarrow$ $a-c=k_{1} n+k_{2} n=\left(k_{1}+k_{2}\right) n$ $b=k_{2} n+c$

Theorem (2.22) Let x be any integer.
(a) $a \equiv b \bmod n \Leftrightarrow a+x \equiv b+x \bmod n$ Reversible
(b) $a \equiv b \bmod n \Rightarrow x a \equiv x b \bmod n$ Not Reversible

Proof. (a) Let $a \equiv b \bmod n$, i.e., $\exists k \in \mathbb{Z}: a-b=k n$.
Check: $a+x-(b+x)=a-b=k n$
$a+\not x-(b+x)=a-b=k n \boldsymbol{J}$
(b) $x a-x b=x(a-b)=x(k n)=(x k) n \boldsymbol{\checkmark}$

Theorem $2.23 a \equiv b \bmod n$ and $c \equiv d \bmod n \Rightarrow a+c=b+d \bmod n$
Proof. $a+c-(b+d)=a-b+c-d=k_{1} \cdot n+k_{2} \cdot n=\left(k_{1}+k_{2}\right) \cdot n$ $k_{1}+k_{2} \in \mathbb{Z}$

Tuesday February 18, 2014

Quiz 4
(1) $\operatorname{gcd}(117,315)=$?

$$
\operatorname{gcd}(117,315)=\operatorname{gcd}(81,117)=\operatorname{gcd}(81,36)=\operatorname{gcd}(36,9)=9
$$

(2) Find $m, n \in \mathbb{Z}: \operatorname{gcd}(117,315)=m 315+117 n$

$$
\begin{aligned}
9 & =81-(2 \cdot 36) \\
& =81-2 \cdot(117-(1 \cdot 81)) \\
& =(3 \cdot 81)-(2 \cdot 117) \\
& =3(315-(2 \cdot 117))-(2 \cdot 117) \\
& =3 \cdot 315-8 \cdot 117 \\
\therefore m & =3, \quad n=-8
\end{aligned}
$$

$\S 2.5$ Congruence of Integers (Continued)
$(a, b \in \mathbb{Z})$

$$
\begin{aligned}
a \sim b & : \Leftrightarrow a \equiv b \quad \bmod n \\
& : \Leftrightarrow \exists k \in \mathbb{Z}: a-b=k n
\end{aligned}
$$

is an equivalence relation.

Theorem. For any $x \in \mathbb{Z}$,
(1) $a \equiv b \bmod n \Leftrightarrow a+x \equiv b+x \bmod n$
(2) $a \equiv b \bmod n \Rightarrow a x \equiv b x \bmod n$
$\Leftarrow\}$
Theorem. $a \equiv b \bmod n$
$c \equiv d \bmod n$
$\Rightarrow a+c \equiv b+d \bmod n$.

Theorem 2.24 (Cancellation Law)
If $a x \equiv a y \bmod n$ and $\operatorname{gcd}(a, n)=1$ then $x \equiv y \bmod n$.
Proof. $a x \equiv a y \bmod n$
$\Leftrightarrow \exists k: k \cdot n=(a x-a y)$
$\Leftrightarrow n \mid(a x-a y)$
$\Leftrightarrow n \mid(a(x-y))$
$\Leftrightarrow n \mid x-y$
$\operatorname{gcd}(a, n)=1$
$\Leftrightarrow x \equiv y \bmod n$

Remark. What goes wrong if $\operatorname{gcd}(a, n)>1$:
$2 \cdot 2 \equiv 2 \cdot 4 \bmod 4$
$\begin{array}{lllll}a & x & a & y & n\end{array}$
$\operatorname{gcd}(a, n)=\operatorname{gcd}(2,4)=2 \neq 1$
"cancel" the factor of 2 :
$2 \equiv 4 \bmod 4$
x y 々
Want to solve two types of equations:
(1) $a x \equiv b \bmod n$ with $\operatorname{gcd}(a, n)=1$ (solve for x).
(2) $x \equiv a \bmod m$.
$x \equiv b \bmod n$
$(\operatorname{gcd}(m, n)=1)$
Solve for x.
all over \mathbb{Z}

Theorem 2.25. Let $a, b, n \in \mathbb{Z}$. Let $\operatorname{gcd}(a, n)=1$. Then the congruence $a x \equiv \bmod n$ has a solution $x \in \mathbb{Z}$ and any two solutions are congruent $\bmod n$.

Proof. $\operatorname{gcd}(a, n)=1 \Rightarrow \exists s, t \in \mathbb{Z}: 1=a s+n t$
\uparrow
GCD Theorem
$a x \equiv \bmod n \Leftrightarrow \exists k \in \mathbb{Z}: a x-b=k n$
$\operatorname{gcd}(a, n)=1 \Rightarrow \frac{\exists s, t \in \mathbb{Z}: 1=a s+n t}{\text { Multiply by } b}$
$\Rightarrow \exists s, t \in \mathbb{Z}: b=a(b s)+n(b t)$
$\Rightarrow \exists s, t \in \mathbb{Z}: a(b s)-b=n(-b t)$
$\Rightarrow \exists s, t \in \mathbb{Z}: a \underline{(b s)}-b=\frac{n(-b t)}{\in \mathbb{Z}}$
Finally, let us determine all solutions. Let x, y both solve the congruence equation.

$$
\left.\begin{array}{l}
\begin{array}{l}
a x \equiv b \\
a y \equiv b
\end{array} \quad \bmod n \\
\Rightarrow \not x \equiv \phi y \bmod n
\end{array}\right\}
$$

$\Rightarrow x \equiv y \bmod n$
\uparrow Cancellation Law

Example. $20 x \equiv 14 \bmod 63$.
Note: $\operatorname{gcd}(20,63)=1$.

Write $\quad 1=20(-22)+63(7)$
$(b=14) \cdot 1 \quad 14=(20(-22) 14)+63(7 \cdot 14)$

$$
14=(20(-22) 14)+63(7 \cdot 14)
$$

What is the smallest positive x which solves?
$-308+5 \cdot 63=7$

Check your answer: $20 \cdot 7-14=2 \cdot 63 \boldsymbol{\checkmark}$
$3 x \equiv 7 \bmod 13$
$1=3 s+13 t$
$1=3(-4)+13 t$
$7 \cdot 1 \quad 7=3(-28)+13 \cdot 7$

$$
x=-28 \quad \text { smallest positive } x=11
$$

Theorem 2.26. Let $\operatorname{gcd}(m, n)=1$.
Let $a, b \in \mathbb{Z}$.
Then $\exists x \in \mathbb{Z}: x \equiv a \bmod m$
$x \equiv b \bmod n$
Any two solutions x, y are congruent $\bmod m \cdot n$.
Proof. Solve (1): $x=a+m k \quad \forall k \in \mathbb{Z}$.
Solve into (2): $a+m k \equiv b \bmod n$
$\Leftrightarrow m k \equiv b-a \bmod n$
Since $\operatorname{gcd}(m, n)=1$, Theorem $2.2 .5 \Longrightarrow$ Can solve for $k .\left(\rightarrow\right.$ Get $\left.k_{0}.\right)$ $x=a+m k_{0}$ solves (1) and (2).

Uniqueness to congruence mod m, n

Let x, y be two solutions.
$x \equiv a \bmod m \quad y \equiv a \bmod m$
$x \equiv b \bmod n \quad y \equiv b \bmod n$
$x \equiv y \bmod m$

$$
\begin{aligned}
& x \equiv y \bmod n \\
& m \mid x-y \\
& m \mid x-y \\
& m \cdot n \mid x-y
\end{aligned}
$$

Thursday February 20, 2014

Recall. Let $a, b, n \in \mathbb{Z}$ with $\operatorname{gcd}(a, n)=1 . \Rightarrow \exists x \in \mathbb{Z}: a x \equiv b \bmod n$. Any two solutions x, y are congruent $\bmod n$.

Let $a, b \in \mathbb{Z}$. Let $m, n \in \mathbb{Z}$ with $\operatorname{gcd}(m, n)=1 . \Rightarrow \exists x \in \mathbb{Z}: x \equiv a \bmod m$ and $\equiv b \bmod n$. Any two solutions x, y are congruent $\bmod m \cdot n$.

Example. $x \equiv 2 \bmod 5$
$x \equiv 3 \bmod 8$
$(1) \Leftrightarrow x=2+5 k$
Sub into $(2): 2+5 k \equiv 3 \bmod 8 \Leftrightarrow 5 k \equiv 1 \bmod 8$.
Find s, t such that $1=5 s+8 t$.

$$
\begin{aligned}
& \operatorname{gcd}(5,8)=\operatorname{gcd}(5,3)=\operatorname{gcd}(3,2)=1 \\
& \Rightarrow 1=3-2 \\
& \quad=(8-5)-(5-3) \\
& =8-2 \cdot 5+3 \\
& =8-2 \cdot 5+(8-5) \\
& =2 \cdot 8+(-3) 5 \\
& \quad-3=s=k \\
& \rightarrow x=2+5(-3)=-13
\end{aligned}
$$

Smallest positive x is $-13+40=27$.
Check. $27 \equiv 2 \bmod 5 \checkmark$
$27 \equiv 3 \bmod 8 \checkmark$
Example. $2 x \equiv 5 \bmod 3$
$5 x+4 \equiv 5 \bmod 7$
Solve (1). $1=3-2 \quad 1 \cdot 5$

$$
\begin{aligned}
& 5 \cdot 1=5 \cdot 3+2 \frac{(-5)}{x} \\
& x=-5+3 k=1+3 k
\end{aligned}
$$

Substitute into (2). $5(1+3 k)+4 \equiv 5 \bmod 7$ $\Leftrightarrow 15 k+9 \equiv 5 \bmod 7$

$$
\begin{aligned}
& \Leftrightarrow \boxed{15} k \equiv \frac{-4}{\bmod } \boxed{7} \\
& 1=15+(-2) \cdot 7 \quad 1 \cdot(\underline{-4}) \\
& \left.-4=\frac{(-4)}{k}\right) 15+8 \cdot 7
\end{aligned}
$$

$x=1+3(-4)=-11$
Smallest positive $x=-11+21=10$
Check. $2 \cdot 10 \equiv 5 \bmod 3 \boldsymbol{\checkmark}$

$$
50+4 \equiv 5 \bmod 7 \checkmark
$$

Let $a, b \in \mathbb{Z}$.
Let $m, n \in \mathbb{Z}$ with $\operatorname{gcd}(m, n)=1$.
$\Rightarrow \exists x \in \mathbb{Z}: x \equiv a \bmod m$

$$
x \equiv b \bmod n
$$

Any two solutions x, y are congruent $\bmod m \cdot n$.

Theorem 2.2.7 (Chinese Remainder Theorem)
Let n_{1}, \ldots, n_{m} pairwise relatively prime. Let $a_{1}, \ldots, a_{m} \in \mathbb{Z}$.

$$
\begin{aligned}
\Rightarrow \exists x \in \mathbb{Z}: & x \equiv a_{1} \bmod n_{1} \\
x & \equiv a_{2} \bmod n_{2} \\
& \vdots \\
x & \equiv a_{m} \bmod n_{m}
\end{aligned}
$$

Any two solutions are congruent $\bmod n_{1} \cdot \ldots \cdot n_{m}$.

§2.6 Congruence Classes

$$
\begin{aligned}
\mathbb{Z}_{n} & =\{\text { congruence classes of integers } \bmod n\} \\
& =\{[0],[1],[2], \ldots,[n-1]\} \\
{[0] } & =\{\ldots,-2 n,-n, 0, n, 2 n, \ldots\} \\
{[2] } & =\{\ldots, 2-2 n, 2-n, 2,2+n, 2+2 n, \ldots\}
\end{aligned}
$$

Define addition on $\mathbb{Z}_{n}:[a]+[b]=[a+b]$
Note. This is well-defined because:

$$
\begin{aligned}
{[a+r n]+[b+s n] } & =[a+r n+b+s n] \\
& =a+b+n(r+s) \\
& =[a+b]
\end{aligned}
$$

Associativity $([a]+[b])+[c]=[a]+([b]+[c]) \boldsymbol{\checkmark}$
Commutativity: $[a]+[b]=[b]+[a] \checkmark$
Identity: $[0]+[a]=[a] \checkmark$ $[-a]+[a]=[0] \checkmark$

Table for $\mathbb{Z}_{4}=\{[0],[1],[2],[3]\}$

+	$[0]$	$[1]$	$[2]$	$[3]$
$[0]$	$[0]$	$[1]$	$[2]$	$[3]$
$[1]$	$[1]$	$[2]$	$[3]$	$[0]$
$[2]$	$[2]$	$[3]$	$[0]$	$[1]$
$[3]$	$[3]$	$[0]$	$[1]$	$[2]$

Multiplication: $[a] \cdot[b]=[a b]$
Commutativity \checkmark
Associativity \checkmark
Identity: [1]
Multiplication Table for \mathbb{Z}_{4}

\bullet	$[0]$	$[1]$	$[2]$	$[3]$
$[0]$	$[0]$	$[0]$	$[0]$	$[0]$
$[1]$	$[0]$	$[1]$	$[2]$	$[3]$
$[2]$	$[0]$	$[2]$	$[0]$	$[2]$
$[3]$	$[0]$	$[3]$	$[2]$	$[1]$

$$
[2] \cdot[2]=[0]
$$

Start with a, n.
Let's study multiplicative inverses:

$$
\begin{aligned}
& {[a] \cdot[b]=[1] } \\
\Leftrightarrow & {[a b-1]=[0] } \\
\Leftrightarrow & \exists q \in \mathbb{Z}: a b-1=q n \\
\Leftrightarrow & \exists q \in \mathbb{Z}: a \cdot b+(-q) n=1
\end{aligned}
$$

GCD Theorem $\Rightarrow b$ (and q) exist $\Leftrightarrow \operatorname{gcd}(a, n)=1$.
Just saw: [a] has multiplicative inverse in $\mathbb{Z}_{n} \Leftrightarrow \operatorname{gcd}(a, n)=1$.
Corollary. Every element of \mathbb{Z}_{p} has a multiplicative inverse if $p=$ prime.
Let's solve equations (system of equations) in \mathbb{Z}_{n} :
Example. [4] $\cdot[x]=[5]$ in \mathbb{Z}_{13}
$[4]^{-1} \cdot \mid \quad[x]=[4]^{-1}[5]$
Remains to find $b:[b]=[4]^{-1}$:

b	$\cdot[4]$
0	0
1	$[4]$
2	$[8]$
3	$[12]$
4	$[3]$
5	$[7]$
6	$[11]$
7	$[2]$
8	$[6]$
9	$[10]$
10	$[1]$

$$
\begin{aligned}
& \Rightarrow[4]^{-1}=[10] \\
& \Rightarrow[x]=[4]^{-1} \cdot[5]=[10] \cdot[5]=[50]=[11]
\end{aligned}
$$

$28-26=2$
32-26-6
$36-26=10$
$40-39=1$

Tuesday February 25, 2014

Quiz 5
(1) $5 x+1 \equiv 3 \bmod 13$
(2) $x \equiv 3 \bmod 5$
$2 x \equiv 5 \bmod 7$
In each case, find all solutions.
Example. $[4][x]+[y]=[22] \quad$ in \mathbb{Z}_{26}.

$$
[19][x]+[y]=[15]
$$

Subtract (2) from (1):

$$
\begin{aligned}
& {[-15][x]=[7]} \\
& \Leftrightarrow[11][x]=[7] \\
& \Leftrightarrow[x]=[11]^{-1} \cdot[7]
\end{aligned}
$$

To find [11] ${ }^{-1}$:
$x \cdot 11 \equiv 1 \bmod 26$
$a x \equiv b \bmod m$
$1=11 \cdot s+26 t$
$s=-7, t=3$
$11 \cdot 19=110+99$
$209 \cdot 26=8$
208/1
$z=-7$
$\Rightarrow[11]^{-1}=[-7]=[19]$
$\Rightarrow[x]=[19] \cdot[7]=[133]=[3]$
Remains: $[4] \cdot[3]+[y]=[22]$

$$
\Leftrightarrow[y]=[22]-[12]=[10]
$$

$\S 3.1$ Definition of a group.
Definition. A group in a set G and a binary operation $*: G \times G \rightarrow G$ such that
(1) $*$ is associative, i.e., for all $x, y, z \in G:(x * y) * z=x *(y * z)$
(2) There exists an identity element e, i.e., there exists $e \in G$ such that for all $x \in G$ it follows $e * x=x=x * e$.
(3) For all $a \in G$, there exists $b \in G$ such that $a * b=e=b * a$ ("existence of inverses")

Definition. If G is a group with $x, y \in G$, and $x * y=y * x$, then call G abelian or commutative.

Examples.
$(\mathbb{Z},+)$ is a commutative group.
(\mathbb{Z}, \cdot) not a group.
(3) fails: No multiplicative inverses (except for ± 1).
$(\mathbb{R},+) \checkmark$
(\mathbb{R}, \cdot) is not a group $\left(" \frac{1}{0}\right.$ " is a problem.)
$(\mathbb{R} \backslash\{0\}, \cdot)$ is a group.

Thursday February 27, 2014
$\S 3.1$ Definition of a Group

Let G be a set with binary operation *.
(1) $*$ is associative.
(2) There exists an identity element.
(3) For all $a \in G, \exists b \in G$ such that $a * b=e=b * a$.

If, in addition, $*$ is commutative, then G is called Abelian or commutative.
Example 1. $(\mathbb{R},+),(\mathbb{R} \backslash\{0\}, \cdot),(\mathbb{Z},+)$
Example 2. $G=\{f: \mathbb{R} \rightarrow \mathbb{R}$ continuous $\}$ with $(f+g)(x)=f(x)+g(x)$. + is a binary operation because of the summation theorem for continuous functions and satisfies (1), (2), (3).

Example 3. $A=\{1,2,3\}$
$\rho(A)=\{f: A \rightarrow A\} \mid$ bijective $\}$
$\rho(A)= \begin{cases}1 & \text { if } x \geq 0 \\ 0 & \text { if } x<0 .\end{cases}$

$*$	e	α	β	γ	σ	ε
e	e	α	β	γ	σ	ε
α	α	β	e			
β	β					
γ	γ					α
σ	σ					
ε	ε					

$1 \mapsto 2$
$\alpha \circ \alpha: 2 \mapsto 3$
$3 \mapsto 1$
$1 \mapsto 1$
$\alpha \circ \beta: 2 \mapsto 2$
$3 \mapsto 3$
$1 \mapsto 3$
$\gamma \circ \varepsilon: 2 \mapsto 1$
$3 \mapsto 2$

Example 4. $\# G=2 \Rightarrow G \cong\left(\mathbb{Z}_{2},+\right)$

+	$[0]$	$[1]$
$[0]$	$[0]$	$[1]$
$[1]$	$[1]$	$[0]$

Example 5. $\# G=3 \Rightarrow G \cong\left(\mathbb{Z}_{3},+\right)$
Example 6. $\# G=4$
(a) $G=\left(\mathbb{Z}_{4},+\right)$
(b)

$*$	e	a	b	$a b$
e	e	a	b	$a b$
a	a	e	$a b$	b
b	b	$a b$	e	a
$a b$	$a b$	b	a	e
\uparrow 				

$G=\{e, a, b, a b\} \quad G$ abelian with $a * a=e$
$b * b=e$
$(a b) *(a b)=e$
We will see: G in $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$
$(A B)^{-1}$
Felix \rightarrow (Klein's Four Group)
§3.2 Properties of Group Elements
Theorem 3.4
(a) $e \in G$ is unique.
(b) For all $x \in G$ the universe of x is unique (thus the special x^{-1} can be used).
(c) For all $x \in G:\left(x^{-1}\right)^{-1}=x$
(d) For all $x, y \in G:(x y)^{-1}=y^{-1} x^{-1}$
(e) For all $a, x, y \in G:(a x=a y \Rightarrow x=y)$
$x * y=x y$

Proof. (a) Let e, e^{\prime} be neutral elements.

$$
\begin{aligned}
& e=e e^{\prime}=e^{\prime} \\
& \uparrow \uparrow \uparrow \\
& e^{\prime} \text { neutral } e \text { neutral }
\end{aligned}
$$

(b) Let $a \in G$. Let b, c both be inverses.

$$
b=e b=(c a) b=c(a b)=c e
$$

(c) $x^{-1} \cdot x=e \boldsymbol{J}$

$$
x \cdot x^{-1}=e \boldsymbol{\checkmark}
$$

(d) $(x y)\left(y^{-1} x^{-1}\right)=x\left(y y^{-1}\right) x^{-1}=x x^{-1}=e$

$$
\stackrel{\uparrow}{\wedge y^{-1}}=e
$$

$$
\left(y^{-1} x^{-1}\right)(x y)=y^{-1}\left(x^{-1} x\right) y=y^{-1} y=e
$$

$$
x y x^{-1} y^{-1}
$$

(e) Let $a x=a y \mid a^{-1} *$

$$
a^{-1}(a x)=a^{-1} a y \Leftrightarrow\left(a^{-1} a\right) x=\left(a^{-1} a\right) y \Leftrightarrow x=y
$$

Remarks on Matrix Groups
$\left(\operatorname{Mat}_{n \times m}(\mathbb{R}),+\right)$ is a group.
$\left(\operatorname{Mat}_{n \times m}(\mathbb{R}), \cdot\right)$
$\left(\operatorname{Mat}_{n \times m}(\mathbb{R}) \mid\{\operatorname{det} A=0\}, \cdot\right)=G L_{n} \mathbb{R}$

§3.3 Subgroups

Definition. Let G be a group. A subset $H \subset G$ is called a subgroup if H is a group with the binary operation induced from G.

Equivalent Definition. $\varnothing \neq H \subset G$ is called a subgroup \Leftrightarrow
(1) $x, y \in H \Rightarrow x * y \in H$
(2) $x \in H \Rightarrow x^{-1} \in H$

Example 1. $H=\{[0],[2],[4]\} \subset\left(\mathbb{Z}_{6},+\right)$
(1) \checkmark
(2) $[2]-1=[4] \checkmark$

$$
[4]^{-1}=[2] \checkmark
$$

$$
\Rightarrow H \text { is a subgroup of }\left(\mathbb{Z}_{6},+\right)
$$

$$
[2]+[4]=[6]=[0]=e
$$

(3) $H=\{[0],[1],[2]\} \subset\left(\mathbb{Z}_{6},+\right)$

$$
\begin{aligned}
& {[1]+[2]=[3] \notin H \Rightarrow H \text { is not a subgroup of } \mathbb{Z}_{6}} \\
& \uparrow \\
& H
\end{aligned}
$$

Tuesday March 4, 2014

Online Tutoring: Tuesday 6-7pm
Fridays 1-2pm
www.math.ueh.edu/~nleger

§3.3 Subgroups (continued)

Recall: $\varnothing \neq H \subset G$ (G for group) is a subgroup \Leftrightarrow
(1) $x, y \in H \Rightarrow x * y \in H$
(2) $x \in H \Rightarrow x^{-1} \in H$

* : $G \times G \rightarrow G$
$H \times H \rightarrow H$
Examples (continued)
(1) $G=(\mathbb{R} \backslash\{0\}, \cdot)$ is a group.
$H=\{x \in \mathbb{R}, x>0\}$
(a) \Leftrightarrow "The product of positive reals is positive." True.
(b) \Leftrightarrow "The reciprocal of a positive real is positive." True.
(a) and (b) $\Rightarrow H$ is a subgroup.
(2) $G=(\mathbb{R} \backslash\{0\}, \cdot)$
$H=\{x \in \mathbb{R}, x<0\}$
(a) \Leftrightarrow "The product of negative reals is negative." False. H is not a subgroup.
(3) $G=(\mathbb{R} \backslash\{0\}, \cdot)$
$H=\{1,2,3,4,5, \ldots\}$
(a) Any product of natural numbers is a natural number.
(b) For $x \in\{2,3,4,5, \ldots\}, \frac{1}{x} \notin H$, i.e., condition (b) is not satisfied and H is not a subgroup.
(4) $G=(\mathbb{R} \backslash\{0\}, \cdot)$
$H=(\mathbb{Q} \backslash\{0\}, \cdot) \boldsymbol{\checkmark}$ subgroup
$H=(\mathbb{Q} \backslash \mathbb{Z}, \cdot)$
Condition (a) does not hold. $\frac{2}{3} \cdot \frac{9}{2}=3$.
So $\frac{2}{3} \in H, \frac{9}{2} \in H$, but $3 \notin H$.
X Not a subgroup.
$H=\{1,-1\} \cong \mathbb{Z}_{2} \checkmark$
(5) $A=\{1,2,3\}$
$\varphi(A)=\{$ bijective maps $\{1,2,3\}\}$.

$$
\begin{aligned}
& H=\{\mathrm{id}\} \checkmark \\
& H=\left\{\begin{array}{rlll}
& & 1 \mapsto 2 \\
\text { id } \alpha: \begin{array}{l}
1 \mapsto \\
2 \mapsto 3 \\
3 \mapsto 1
\end{array} & \alpha \circ \alpha: & 1 \mapsto 3 \\
2 \mapsto 1 \\
& & 3 \mapsto 2
\end{array}\right\}
\end{aligned}
$$

(a) All we need to check is:

$$
\begin{aligned}
& \alpha \circ \alpha \in H \boldsymbol{J} \\
& 1 \mapsto 1 \\
& \begin{aligned}
\alpha \circ(\alpha \circ \alpha): & 2 \mapsto 2 \quad=\quad \mathrm{id} \in H \quad \checkmark \\
& 3 \mapsto 3
\end{aligned} \\
& 1 \mapsto 2 \\
& (\alpha \circ \alpha) \circ(\alpha \circ \alpha): 2 \mapsto 3=\alpha \in H \quad \checkmark \\
& 3 \mapsto 1
\end{aligned}
$$

(b) $\alpha \cdot \alpha \in H \boldsymbol{J}$
$\alpha \cdot(\alpha \cdot \alpha)$
$\alpha^{-1}=\alpha \circ \alpha \boldsymbol{\downarrow}$
$(\alpha \circ \alpha)^{-1}=\alpha \checkmark$
$\Rightarrow H$ is a subgroup of $\varphi(A)$.

Integral Exponents

For $a \in G$, define:
$\forall k \in \mathbb{N}: a^{k}=\underbrace{a *(\ldots(a *(a * a)) \ldots)}_{k \text { factors }}$
$\forall k \in\{-1,-2,-3,-4, \ldots\}: a^{k}=\left(a^{-1}\right)^{(k)}=\left(a^{(k)}\right)^{-1}$
$x \in \mathbb{R} * \quad x^{-3}=\frac{1}{x^{3}}=\left(\frac{1}{x}\right)^{3}$
Theorem. (Laws of Exponents)
$m, n \in \mathbb{Z}$
(1) $x^{n} * x^{-n}=e$
(2) $x^{m} * x^{n}=x^{m+n}$
(3) $\left(x^{m}\right)^{n}=x^{m \cdot n}$
(4) If G abelian, then $(x y)^{n}=x^{n} y^{n}$

Cyclic (Sub)groups:
Definition. Let G be a group. Say G is cyclic. $\Leftrightarrow \exists a \in G: G=\underset{\substack{\left\{a^{n} \mid n \in \mathbb{Z}\right\} \\ \downarrow}}{\downarrow}$ $<a>$

Definition. Let G be a group. Let $H \subset G$. We call H a cyclic subgroup of G.
If $\exists a \in G:<a>=H$.
Definition. Any such a is called a generator of H (or G, respectively).
Example 1. $(\mathbb{Z},+)=<1>=<-1>$
$H=\{e\} \quad$ Note: $1^{3}=3^{0}$
$1^{3}=3 \cdot 1 \quad 3^{0}=1 * 1 * 1$
Example 2. Consider $G=(\mathbb{Z},+)$
$H=<2>=\{\ldots,-6,-4,-2,0,2,4,6, \ldots\}$ is the cyclic subgroup of \mathbb{Z} generated by 2 .

Example 3. $G=\left(\mathbb{Z}_{6},+\right)$
$\mathbb{Z}_{6}=\{[0],[1],[2],[3],[4],[5]\}$
Let's find all the cyclic subgroups of G.

$$
\begin{aligned}
& H=<[0]>=\{[0]\} \\
& H=<[1]>=G \\
& {[1]=\{[0],[1],[1]+[1]=[2] \quad[2]+[1]=[3], \ldots\}} \\
& H=<[2]>=\{[0],[2],[4]\} \\
& H=<[3]>=\{[0],[3]\} \\
& H=<[4]>=\{[0],[4],[2]\} \\
& H=<[5]>=\{[0],[5],[4],[3],[2],[1],[0]\}=G
\end{aligned}
$$

Saw: $G=<[1]>=<[5]>$

$$
<[2]>=<[4]>\cong \mathbb{Z}_{3}
$$

$<[3]>\cong \mathbb{Z}_{3}$
$<[0]>=\{e\}$

Remark. Let G be a group. Then any group element $x \in G$ yields a cyclic group $\langle x\rangle=\left\{x^{n} \mid n \in \mathbb{Z}\right\}$.

Thursday March 62014

Timetable:

Today in class: Q6 solution and new material.
Later today: New HW 7 on my www, due $03 / 18$.
Class of $03 / 18$: Solutions to HW 7 discussed in class. Further exam prep.
No new material.
Class of $03 / 20$: MT Exam
Sample exams: See my earlier Math 3330 on my www.

Theorem 3.15 Infinite Cyclic Groups

Let $a \in G$. If $a^{n} \neq e$ for all $n>0$, then $a^{p} \neq a^{q}$ for all $p \neq q=\mathbb{Z}$ and $<a>$ is infinite cyclic.

Proof. If $a^{p}=a^{q}$ for $p \neq q$, then $a^{p-q}=e($ without loss of generality $p>q$) By assumption: $p-q=0$ 々

Corollary. If $\# G$, then $a^{n}=e$ for some $n \in \mathbb{N}>0$.

Theorem 3.20 (Subgroups of Cyclic Groups)
Let G cyclic group with generator a. Let $H \subset G$ subgroup. Then either
a) $H=\{e\}=<e>$ or
b) $H=<a^{k}>$ where k is the least positive integer such that $a^{k} \in H$.

Proof. Let $b \neq e \in H$. Have to show: $\exists l \in \mathbb{Z} \neq 0: b=a^{e k}$. Assume false. Because $b \in G: \exists j: b=a^{j}$
Do division with remainder $j=m \cdot k+r$ with $0<r<k$. Since H is a subgroup, $b \cdot\left(a^{m k}\right)^{-1} \in H$.
$a^{r} \leqslant$ minimality of k.
Definition. The order $(\operatorname{ord}(\mathrm{a}))$ of $a \in G$ is $\#<a>$. Clear: $\operatorname{ord}(\mathrm{a})=\min \left\{m \in \mathbb{N}>0: a^{m}=e\right\}$

