UH - Math 6303 - Dr. Heier - Spring 2016 HW 4

Due Monday, 04/18, at the beginning of class.

Use regular sheets of paper, stapled together. Don't forget to write your name on page 1.

1. (3 points) Let $f(x) \in \mathbb{Q}[x]$ be an irreducible polynomial of degree p, where p is a prime. Assume that f(x) has precisely two nonreal roots in the complex numbers. Prove that the Galois group of the splitting field of f(x) is the full symmetric group S_p .

2. (3 points) Let $f(x) \in \mathbb{Q}[x]$ be the polynomial $x^9 - 1$. Determine the Galois group of the splitting field of f(x). Hint: You may assume without proof that the polynomial $x^6 + x^3 + 1$ is irreducible over \mathbb{Q} .

3. (2 points) Let K be the splitting field over F of a separable polynomial. Prove that if $\operatorname{Gal}(K/F)$ is cyclic, then for each divisor d of [K:F] there is exactly one field E with $F \subset E \subset K$ auch that [E:F] = d. (Hint: Use the Fundamental Theorem of Galois Theory.)

4. (2 points) Suppose K/F is a Galois extension of degree p^n for some prime p and positive integer n. Prove that there are Galois extensions of F contained in K of degrees p and p^{n-1} . (Hint: Use the Fundamental Theorem of Galois Theory.)