UH - Math 6303 - Dr. Heier - Spring 2016
 HW 5
 Due no later than Wednesday, May 04, 3pm, at my office PGH 666
 (if I am not in, please slide your solution under my office door)
 or by email to heier@math.uh.edu.

Use regular sheets of paper, stapled together. Don't forget to write your name on page 1.

1. (1 point) Let $k=\mathbb{Z}_{2}$ and $V=\{(0,0),(1,1)\} \subset \mathbb{A}^{2}$. Prove that $\mathcal{I}(V)$ is the product ideal $(x, y) \cdot(x-1, y-1)$.
2. (2 points) Let $V=\mathcal{Z}(x y-z) \subset \mathbb{A}^{3}$. Prove that V is isomorphic to \mathbb{A}^{2} and provide an explicit isomorphism φ and associated k-algebra isomorphism $\tilde{\varphi}: k[V] \rightarrow k\left[\mathbb{A}^{2}\right]$, along with their inverses. Is $V=\mathcal{Z}\left(x y-z^{2}\right)$ isomorphic to \mathbb{A}^{2} ? Prove your answer.
3. (0.5 points for each item)
(a) Let V be an affine algebraic set in $\mathbb{A}_{\mathbb{R}}^{n}$. Prove that there is a polynomial $f \in$ $\mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ such that $V=\mathcal{Z}(f)$.
(b) Does the same hold with \mathbb{R} replaced by \mathbb{C} ? Prove your answer.
4. (1 point) Prove that $G L_{n}(k)$ is a Zariski-open subset of $\mathbb{A}^{n^{2}}$ and can be embedded as an affine algebraic set in $\mathbb{A}^{n^{2}+1}$.
5. (2 points) Let I, J be ideals in the ring R. Prove the following statements:
(a) If $I^{k} \subseteq J$ for some $k \geq 1$ then $\operatorname{rad} I \subseteq \operatorname{rad} J$.
(b) If $I^{k} \subseteq J \subseteq I$ for some $k \geq 1$ then $\operatorname{rad} I=\operatorname{rad} J$.
(c) $\operatorname{rad}(I J)=\operatorname{rad}(I \cap J)=\operatorname{rad} I \cap \operatorname{rad} J$.
6. (1 point) Prove that for k a finite field the Zariski topology is the same as the discrete topology, i.e., every subset is closed and open.
7. (2 points) Let k be an algebraically closed field. Prove that every proper radical ideal in $k\left[x_{1}, \ldots, x_{n}\right]$ is the intersection of maximal ideals. Hint: Use Hilbert's Nullstellensatz.
