UH - Math 6303 - Dr. Heier - Spring 2016 HW 5 Due no later than Wednesday, May 04, 3pm, at my office PGH 666 (if I am not in, please slide your solution under my office door)

or by email to heier@math.uh.edu.

Use regular sheets of paper, stapled together. Don't forget to write your name on page 1.

1. (1 point) Let $k = \mathbb{Z}_2$ and $V = \{(0,0), (1,1)\} \subset \mathbb{A}^2$. Prove that $\mathcal{I}(V)$ is the product ideal $(x, y) \cdot (x - 1, y - 1)$.

2. (2 points) Let $V = \mathcal{Z}(xy - z) \subset \mathbb{A}^3$. Prove that V is isomorphic to \mathbb{A}^2 and provide an explicit isomorphism φ and associated k-algebra isomorphism $\tilde{\varphi} : k[V] \to k[\mathbb{A}^2]$, along with their inverses. Is $V = \mathcal{Z}(xy - z^2)$ isomorphic to \mathbb{A}^2 ? Prove your answer.

3. (0.5 points for each item)

- (a) Let V be an affine algebraic set in $\mathbb{A}^n_{\mathbb{R}}$. Prove that there is a polynomial $f \in \mathbb{R}[x_1, \ldots, x_n]$ such that $V = \mathcal{Z}(f)$.
- (b) Does the same hold with \mathbb{R} replaced by \mathbb{C} ? Prove your answer.

4. (1 point) Prove that $GL_n(k)$ is a Zariski-open subset of \mathbb{A}^{n^2} and can be embedded as an affine algebraic set in \mathbb{A}^{n^2+1} .

- 5. (2 points) Let I, J be ideals in the ring R. Prove the following statements:
- (a) If $I^k \subseteq J$ for some $k \ge 1$ then rad $I \subseteq \text{rad } J$.
- (b) If $I^k \subseteq J \subseteq I$ for some $k \ge 1$ then rad I = rad J.
- (c) $\operatorname{rad}(IJ) = \operatorname{rad}(I \cap J) = \operatorname{rad} I \cap \operatorname{rad} J$.

6. (1 point) Prove that for k a finite field the Zariski topology is the same as the discrete topology, i.e., every subset is closed and open.

7. (2 points) Let k be an algebraically closed field. Prove that every proper radical ideal in $k[x_1, \ldots, x_n]$ is the intersection of maximal ideals. Hint: Use Hilbert's Nullstellensatz.