UH - Math 3330-01 - Dr. Heier - Spring 2017
 HW 1

Due Friday, 01/27, at the beginning of class.
Your solution may be handwritten. Use regular sized sheets of paper, stapled together.

Do not forget to write your name on page 1.

1. Let S, T be sets. We define the set-theoretic difference of the ordered pair (S, T) to be

$$
S \backslash T=\{x \in S \mid x \notin T\}
$$

(a) (1 point) Prove that $T \cup(S \backslash T)=S \cup T$.
(b) (1 point) Prove that $(S \backslash T) \cup(S \cap T)=S$.
2. Let A, B, C be sets.
(a) (1 point) Prove that $A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$.
(b) (1 point) Prove that $A \cup(B \cap C)=(A \cup B) \cap(A \cup C)$.
3. (2 points) Prove that, for all positive integers n,

$$
\sum_{i=1}^{n} 2^{i}=2\left(2^{n}-1\right)
$$

4. (2 points) Prove that, for all integers $n \geq 4$,

$$
2^{n}<n!.
$$

5. (2 points) How many binary operations are there on a set S with n elements? How many of these binary operations are commutative? Justify your answer carefully.
