UH - Math 3330-01 - Dr. Heier - Spring 2017 HW 7

Due Friday, 03/10, at the beginning of class.

Your solution may be handwritten. Use regular sized sheets of paper, stapled together.

Do not forget to write your name on page 1.

1.

- (a) (1 point) Let the relation \sim on \mathbb{R} be defined by $x \sim y$ if and only if |x y| < 1. Is this an equivalence relation? Prove your answer.
- (b) (1 point) Let the relation \sim on \mathbb{Z} be defined by $x \sim y$ if and only if $(-1)^x = (-1)^y$. Is this an equivalence relation? Prove your answer.

2.

- (a) (1 point) Find the right cosets of the subgroup $H = \{(0,0), (1,0), (2,0)\}$ in $\mathbb{Z}_3 \times \mathbb{Z}_2$.
- (b) (1 point) Find the right cosets of the subgroup $H = \{(0,0), (0,2)\}$ in $\mathbb{Z}_4 \times \mathbb{Z}_4$.

3. (2 points) Let p, q be two prime numbers, and let G be a group of order pq. Show that every subgroup H of G with $H \neq G$ is cyclic.

4. (2 points) Let G be a group of order p^2 , where p is a prime. Prove that G must have a subgroup of order p.

5. (2 points) Let $G = \{e, x_1, \ldots, x_{r-1}\}$ be an abelian group such that r = |G| is an odd integer. Prove that

 $x_1 \cdot \ldots \cdot x_{r-1} = e.$

Hint: Prove first that $x_1 \cdot \ldots \cdot x_{r-1}$ is its own inverse.