UH Math 3330-01 Dr.Heier-Spring 2017 HW11 Key

Yan He

(1)Sufficient to prove (-1) $a+a=0$. In fact, by distributive law $(-1) a+a=$ $[(-1)+1] a=0 a=0$.
(2)(a) Direct computation.
(b) $r(1-r)=0$
(3)(a) $r+r=(r+r)^{2}=r^{2}+r^{2}+r^{2}+r^{2}=r+r+r+r \Longrightarrow r+r=0$.
(b) $(r+s)(r+s)=(r+s) \Longrightarrow r^{2}+s r+r s+s^{2}=r+s \Longrightarrow r+s+s r+r s+s=$ $r+s \Longrightarrow s r=r s$.
(4) $b=b 1=b a b$ Since b is not a zero divisor, $1=b a$ by canceling b both sides.
(5)By showing
(i) F is a commutative subring with identity.
(ii)Every non-zero matrix in F is invertible(determinant $a^{2}+b^{2}$), and inverse still in F.

