UH Math 3330-01 Dr.Heier-Spring 2017 HW12 Key

Yan He

(1)Note that a finite integral domain is a field. Then it's sufficient to show that \mathbb{Z}_n has no zero-divisors iff n is prime.

 \mathbb{Z}_n has no zero-divisors if and only if for $[a], [b] \in \mathbb{Z}_n$ we have $[ab] = [0] \iff$ [a] = [0] or [b] = [0]. Then we have $n|ab \iff n|a$ or n|b for $a, b \in \mathbb{Z}$. This holds only when n is prime.

(2)From assumption we have x(xy - yx)y = 0. The problem becomes very easy if R has no zero divisor. However, if R might has zero divisor we may not naively cancel x and y. We need some clever way to do this.

Use the assumption on (1-x)y we have

$$(1+x)y(1+x)y = (1-x)^2y^2$$

Simplify we get $yxy = xy^2$, or (xy - yx)y = 0. Then substitute y with (y + 1):

$$(y+1)x(y+1) = x(y+1)^2$$

Simplify we get yx = xy.

(3) \Rightarrow If a is a unit then every $r \in R$ we have $r = r1 = raa^{-1} = a(ra^{-1}) \in aR$. \Leftarrow If aR = R then $1 \in aR$. Then there exists $b \in R$ s.t. 1 = ab.

 $(4)(a)\frac{a_1}{b_1} \in S, \frac{a_2}{b_2} \in S$, then $\frac{a_1}{b_1} + \frac{a_2}{b_2} = \frac{a_1b_2 + a_2b_1}{b_1b_2}$ where b_1, b_2 are odds so b_1b_2 is odd, then $\frac{a_1}{b_1} + \frac{a_2}{b_2} \in S$.

Claim: $S_0 = \{\frac{a}{b} \in S : a \text{ is even}\}$ is the unique maximal ideal. Actually, every element in $S - S_0$ is unit. For $\frac{a}{b} \in S - S_0$, a is odd, so its inverse $\frac{b}{a} \in S$, then it is unit.

(5)Note that $\{0\}$ is the kernel of the identity map $id : R \to R$. The rest of proof follows from the fact that R/I is integral domain iff I is prime and is a field iff I is maximal.