UH Math 3330-01 Dr.Heier-Spring 2017
 HW1 Answer Key

Yan He

February 9, 2017

Problem 1

(a)

Proof. We prove (a) by proving $T \cup(S \backslash T) \subset S \cup T$. and $S \cup T \subset T \cup(S \backslash T)$. For arbitrary $x \in T \cup(S \backslash T), x \in T$ or $x \in S \backslash T$. If $x \in T$, then $x \in T \cup S$; If $x \notin T$, then $x \in S \backslash T$, then $x \in S$. So we conclude that $x \in S \cup T$. So $T \cup(S \backslash T) \subset S \cup T$.

If $x \in S \cup T$, then $x \in S$ or $x \in T$. If $x \notin T$, then $x \in S \backslash T$ follows from the definition of $S \backslash T$. So $x \in T \cup(S \backslash T)$. Hence $S \cup T \subset T \cup(S \backslash T)$.
(b)Similar.

Problem 2

(a)

Proof. First we prove LHS RHS. For every $x \in A \cap(B \cup C), x \in A$ and $x \in B \cup C$. This implies $x \in B$ or $x \in C$. If $x \in B$, then $x \in A \cap B$. If $x \in C$, then $x \in A \cap C$. So is in $A \cap B$ or $A \cap C$, which means $x \in(A \cap B) \cup(A \cap C)$.

Then we prove the other direction RHS CLHS, if $x \in(A \cap B) \cup(A \cap C)$, then $x \in A \cap B$ or $x \in A \cap C$. If $x \in A \cap B$, then $x \in A$ and $x \in B$. If $x \in A \cap C$ then $x \in A$ and $x \in C$. Then $x \in A$ and $x \in B$ or $x \in C$. So $x \in A$ and $x \in(B \cup A)$. So $x \in A \cap(B \cup C)$.
(b) Omitted.

Problem 3

Can use induction.

Problem 4

Proof. We use induction. When $n=4$, clearly $2^{4}=16<4!=24$.
Assume the statement is true for an integer $n \geq 4$, i.e. $2^{n}<n!$. Then

$$
\frac{n+1}{2} \geq \frac{4+1}{2}>1
$$

So

$$
n!\left(\frac{n+1}{2}\right)>n!>2^{n}
$$

Then

$$
n!(n+1)=(n+1)!>2 \cdot 2^{n}=2^{n+1}
$$

So we the statement is true for $n+1$. From the principle of mathematical induction we know the statement is true for all integers $n \geq 4$.

Problem 5

A binary operation on a set S can be viewed as a map from $S \times S$ to S. A commutative binary operation on a set S can be viewed as a map from $S \times S / \sim \rightarrow S$, where \sim is a equivalence relation defined by $(a, b) \sim(c, d)$ if and only if $((a=d$ and $b=c)$ or $(a=c$ and $b=d))$. By counting the number of functions from finite sets A to B are $(\# B)^{\# A}$. $\# S=n, \#(S \times S)=n^{2}$ so the number of binary operations on S is $n^{n^{2}} . \#(S \times S / \sim)=C_{2, n}+n=\frac{n(n+1)}{2}$, where $C_{2, n}$ means the number of choices to pick 2 elements from n elements. So the number of commutative binary operations are $n^{\frac{n(n+1)}{2}}$.

