UH Math 3330-01 Dr.Heier-Spring 2017 HW2 Answer Key

Yan He

February 12, 2017

Problem1.

(a) is a group.
(b) is not a group because + is not a (closed) binary operation.

Remarks:

- You cannot prove a property by taking specific examples, such as $2+4=6$. However, you can do so if you want to prove that a property does not hold. This is called providing a "counterexample."

Problem2.

(a)

Proof. For every $a, b, c \in \mathbb{Z}_{n},(a \odot b) \odot c=\overline{a \cdot b} \odot c=\overline{(a \cdot b) \cdot c}=\overline{a \cdot(b \cdot c)}=$ $a \odot \overline{(b \cdot c)}=a \odot(b \odot c)$.
(b) \odot is not a binary operation on $\mathbb{Z}_{4} \backslash\{0\}$ because $2 \odot 2=0 \notin \mathbb{Z}_{4} \backslash\{0\}$.
(c) $\mathbb{Z}_{5} \backslash\{0\}$ is a group. (Generally, $\left\{\mathbb{Z}_{p} \backslash\{0\}, \odot\right\}$ is a group if and only if p is prime. This will be discussed later in this course.)

Problem3.

(a) omitted.
(b) To solve $7 \odot x=5$ for $x \in \mathbb{Z}_{13}$, one simply has to test all $x=$ $0,1,2,3,4, \ldots, 12$. Doing so shows that $x=10$ is the unique solution.

Problem4.

Proof. For every $x, y \in G, x * y=e *(x * y) * e=(y * y) * x * y *(x * x)=$ $y *(x * y) *(x * y) * x=y * e * e * x=y * x$.

Problem5.

Remarks

- To prove "if and only if" you need to prove both two directions. Though in this problem the operations are invertible so essentially don't have to, a complete proof should mention this.

Proof. If G is commutative then the statement holds obviously. If for every $x, y \in G,(x * y)^{2}=x^{2} * y^{2}$, then $(x * y)^{2}=x * y * x * y=x *(y * x) * y=$ $x^{2} * y^{2}=x * x * y * y$. So

$$
x * x * y * y=x * y * x * y
$$

Multiply by x^{-1} on the left and by y^{-1} on the right to the equation we get

$$
x * y=y * x
$$

