UH Math 3330-01 Dr.Heier-Spring 2017 HW3 Answer Key

Yan He

February 22, 2017

Problem1.

Proof. Let a = b, then we have $x \in G$ s.t. a * x = a. Here the choice of x depends on a, we want to prove that x is actually a right identity, which does not depend on a. For every $b \in G$, we can find $y \in G$ s.t. y * a = b. Then b * x = (y * a) * x = y * (a * x) = y * a = b. So we have proved b * x = b for arbitrary $b \in G$. Then x is right identity. Denote the right identity of G by e. By solving b * y = e we can find the right inverse b^{-1} for every $b \in G$. From the theorem in class we know G is "half" a group with right identity and is right invertible thus G is a group.

Problem2.

Proof. Assume ord(ab) = n, ord(ba) = m.

Case 1: $n < \infty$ then $b(ab)^n = (ba)^n b$, hence $(ba)^n = e$. Then m|n. Same argument shows n|m. Thus n = m.

Case 2: $n = \infty$ If $m < \infty$ then from case 1 we know n = m, contradiction.

Problem3.

Proof. WLOG assome G is non-trivial. For every $g \neq e \in G$, define a map $f: \mathbb{N} \to G, n \mapsto g^n$. G is finite so G is bijective to $\{1, 2, ..., n\}$ for some $n \in \mathbb{N}$ by definition. Then \mathbb{N} is bijective to a subset of $\{1, 2, ..., n\}$ so can conclude that \mathbb{N} is finite, which is a contradiction. So f is not injective. There must be $m, n \in \mathbb{N}$ s.t. f(m) = f(n), i.e. $g^m = g^n$. So ord(g)|(|m - n|).

Remark: I assigned 1 point for proving $g^m = g^n$. Which seems obvious. **Problem4.**

Proof. omitted.

Problem5.

Proof. First observe that $y^2 = 1$, $y = y^{-1}$, $x^2 = yxy$ then $x^4 = x^2x^2 = yxyyxy = yx^2y = yyx = x$ thus ord(x) = 3.