UH Math 3330-01 Dr.Heier-Spring 2017 HW3 Answer Key

Yan He

February 22, 2017

Problem1.

Proof. Let $a=b$, then we have $x \in G$ s.t. $a * x=a$. Here the choice of x depends on a, we want to prove that x is actually a right identity, which does not depend on a. For every $b \in G$, we can find $y \in G$ s.t. $y * a=b$. Then $b * x=(y * a) * x=y *(a * x)=y * a=b$. So we have proved $b * x=b$ for arbitary $b \in G$. Then x is right identity. Denote the right identity of G by e. By solving $b * y=e$ we can find the right inverse b^{-1} for every $b \in G$. From the theorem in class we know G is "half" a group with right identity and is right invertible thus G is a group.

Problem2.

Proof. Assume $\operatorname{ord}(a b)=n, \operatorname{ord}(b a)=m$.
Case 1: $n<\infty$ then $b(a b)^{n}=(b a)^{n} b$, hence $(b a)^{n}=e$. Then $m \mid n$. Same argument shows $n \mid m$. Thus $n=m$.

Case 2: $n=\infty$ If $m<\infty$ then from case 1 we know $n=m$, contradiction.

Problem3.

Proof. WLOG assome G is non-trivial. For every $g \neq e \in G$, define a map $f: \mathbb{N} \rightarrow G, n \mapsto g^{n}$. G is finite so G is bijective to $\{1,2, \ldots n\}$ for some $n \in \mathbb{N}$ by definition. Then \mathbb{N} is bijective to a subset of $\{1,2, \ldots, n\}$ so can conclude that \mathbb{N} is finite, which is a contradiction. So f is not injective. There must be $m, n \in \mathbb{N}$ s.t. $f(m)=f(n)$, i.e. $g^{m}=g^{n}$. So ord $(g) \mid(|m-n|)$.

Remark: I assigned 1 point for proving $g^{m}=g^{n}$. Which seems obvious. Problem4.

Proof. omitted.

Problem5.

Proof. First observe that $y^{2}=1, y=y^{-1}, x^{2}=y x y$ then $x^{4}=x^{2} x^{2}=$ $y x y y x y=y x^{2} y=y y x=x$ thus $\operatorname{ord}(x)=3$.

