UH Math 3330-01 Dr.Heier-Spring 2017 HW4 Answer Key

Yan He

February 24, 2017

Problem1. (a)
Proof. $G=\langle x\rangle$ so $x^{-1} \in G$. So $\left\langle x^{-1}\right\rangle \leq G$ by definition of $\left\langle x^{-1}\right\rangle$. Since $x=$ $\left(x^{-1}\right)^{-1}$, we have $x \in\left\langle x^{-1}\right\rangle$, hence $G \leq\left\langle x^{-1}\right\rangle$ by definition of $\langle x\rangle$.
(b) omitted.

Problem2.

(a)omitted.
(b)

Proof. (\Leftarrow) Obvious. (\Rightarrow) Assume it is not true. Then we have $H \cup K \leq G$ with $H \not \subset G$ and $G \not \subset H$. So we can find x, y such that $x \in H, x \notin G$ and $y \in G, y \notin H$. Then $x y \in H \cup G$ because $H \cup G$ is a subgroup. If $x y \in H$, then $y=x^{-1}(x y) \in H$; If $x y \in G$, then $x=(x y) y^{-1} \in G$; Either leads to contradiction.

Remark: Recall there is a similar property for vector spaces.

Problem3.

(a)

Proof. For $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ and $B=\left(\begin{array}{ll}e & f \\ g & h\end{array}\right) \in H, \mathrm{AB}=\left(\begin{array}{ll}a e+b g & a f+b h \\ c e+d g & c f+d h\end{array}\right)$ then

$$
\begin{aligned}
(a e+b g)+(c e+d g) & =(a+c) e+(b+d) g=e+g=1 \\
(a f+b h)+(c f+d h) & =(a+c) f+(b+d) h=f+h=1
\end{aligned}
$$

and $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B) \neq 0$, thus $A B \in H . A^{-1}=\left(\begin{array}{cc}\frac{d}{\operatorname{det}(A)} & -\frac{b}{\operatorname{det}(A)} \\ -\frac{c}{\operatorname{det}(A)} & \frac{a}{\operatorname{det}(A)}\end{array}\right)$ then

$$
\begin{aligned}
& \frac{d-c}{a d-b c}=\frac{d-c}{(1-c) d-(1-d) c}=\frac{d-c}{d-c}=1 . \\
& \frac{a-b}{a d-b c}=\frac{a-b}{a(1-b)-b(1-a)}=\frac{a-b}{a-b}=1 .
\end{aligned}
$$

Hence $A^{-1} \in H$. We have proved H is closed under multiplication and inverse thus H is a subgroup of G.
(b)Similar. Don't forget to check $a^{2}+b^{2}=1$ when checking closedness. Problem4. Not true. Can take $G=(\mathbb{Z},+)$ and $H=\{+1,-1\}$ for example. Problem5.

Proof. For every $x \in H$ Take $x=y$ in the condition we have $x x^{-1}=e \in H$. So H has identity. Take e, x in the condition we have $e x^{-1}=x^{-1} \in H$. So H is closed under inverse. For $x, y \in H$, take x, y^{-1} in the condition we have

$$
x\left(y^{-1}\right)^{-1}=x y \in H
$$

Then H is closed under operation of G. Hence H is a subgroup of G.

