UH Math 3330-01 Dr.Heier-Spring 2017 HW5 Answer Key

Yan He

March 6, 2017

Problem1. (a) The group $\mathbb{Z}_2 \times \mathbb{Z}_4$ is of order 8. Thus every subgroup the order must be divisor of 8. For every order list cyclic group first and then non cyclic. order 1: $\{(0,0)\}$ order 2: $\langle (1,0) \rangle, \langle (0,2) \rangle, \langle (1,2) \rangle$ order 4: $\langle (0,1) \rangle, \langle 1,1 \rangle, \{(0,0), (0,2), (1,0), (1,2)\}$ order 8: $\mathbb{Z}_2 \times \mathbb{Z}_4$ (b) Similarly, the group $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$ is also order 8. Then the subgroups: order 1: $\{(0,0,0)\}$ order 2: $\langle (1,0,0) \rangle$, $\langle (0,1,0) \rangle$, $\langle (0,0,1) \rangle$, $\langle (0,1,1) \rangle$, $\langle (1,0,1) \rangle$ <(1,1,0)>,<(1,1,1)>7 choices. order 4: cannot be cyclic because \mathbb{Z}_2 only has at most order 2 element. $\{(1,0,0), (0,1,0), (1,1,0), (0,0,0)\}$ $\{(1,0,0), (0,0,1), (1,0,1), (0,0,0)\}$ $\{(1,0,0), (0,1,1), (1,1,1), (0,0,0)\}$ $\{(0,1,0), (0,0,1), (0,1,1), (0,0,0)\}$ $\{(0,1,0), (1,0,1), (1,1,1), (0,0,0)\}$ 5 choices. order 8: itself. Problem2.

(a)omitted. (b)

Proof. From (a) we know both G and H are cyclic. By Theorem 6.1 we know |G| and |H| are co-prime. So if $G \times H$ is cyclic, so its subgroups are all cyclic. Let $K = \langle (g,h) \rangle \leq G$ for $g \in G, h \in H$ then ord(g)||G|, ord(h)||H|, $\langle g \rangle \times \langle h \rangle \leq K$, thus gcd(ord(g), ord(h)) = 1 because gcd(|G|, |H|) = 1. So

$$|K| = ord(g,h) = lcm(ord(g), ord(h)) = ord(g)ord(h).$$

So $|K| = |\langle g \rangle ||h| = |\langle g \rangle \times \langle h \rangle |$. So $K = \langle g \rangle \times \langle h \rangle$. \Box

Problem3.

(a) omitted. (b) omitted. (c) $A = \{0, 1\}, B = 0.$ $f : A \to B$ s.t f(0) = f(1) = 0. $S = \{0\}, T = \{1\}$ Then $f(S \cap T) = f(\emptyset) = \emptyset$ where $f(S) \cap f(T) = \{1\}$. **Problem4.** (a) *Proof.* First suppose $f : A \to B$ is injective. Then for every $y \in Im(f)$ corresponds to one and only one $x_y \in A$ s.t. f(x) = y, in other words we have $x_{f(x)} = x$. Fix $x_0 \in A$, define $g : B \to A, y \mapsto x_y$ for $y \in Imf$ and $y \mapsto x_0$ for $y \notin Imf$. Then for every $x \in A, g \circ f(x) = g(f(x)) = x_{f(x)} = x$ so $g \circ f = id_A$. On the other hand, suppose there exists function $g : B \to A$ s.t. $g \circ f = id_A$. Then for every $x, y \in A$ s.t. f(x) = f(y) then

$$g(f(x)) = g(f(y)).$$

So $g(f(x)) = g \circ f(x) = id_A(x) = x$, g(f(y)) = y for the same reason, so x = y. We have f(x) = f(y) implies x = y so f is injective.

(b)

Proof. If f is surjective, then for every $y \in B$ there exists $x \in A$ s.t. f(x) = y. Define $g: B \to A$, let g(y) be arbitrary $x \in A$ such that f(x) = y. Then for every $y \in B$, $f \circ g(y) = f(g(y)) = y$. So $f \circ g = id_B$. On the other hand, if there exists a function $g: B \to A$ s.t. $f \circ g = id_B$, then for every $y \in B$ corresponds to $g(y) \in A$ s.t. f(g(y)) = y. So f surjective.

Problem5. (a) not true. For example (b)not true. For example

2