# UH Math 3330-01 Dr.Heier-Spring 2017 HW5 Answer Key 

Yan He

March 6, 2017

Problem1. (a) The group $\mathbb{Z}_{2} \times \mathbb{Z}_{4}$ is of order 8 . Thus every subgroup the order must be divisor of 8 . For every order list cyclic group first and then non cyclic. order 1: $\{(0,0)\}$
order 2: $<(1,0)>,<(0,2)>,<(1,2)>$
order 4 : $<(0,1)>,<1,1>,\{(0,0),(0,2),(1,0),(1,2)\}$
order 8: $\mathbb{Z}_{2} \times \mathbb{Z}_{4}$
(b) Similarly, the group $\mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2}$ is also order 8 . Then the subgroups: order 1: $\{(0,0,0)\}$
order 2: $<(1,0,0)>,<(0,1,0)>,<(0,0,1)>,<(0,1,1)>,<(1,0,1)>$ ,$<(1,1,0)>,<(1,1,1)>7$ choices.
order 4: cannot be cyclic because $\mathbb{Z}_{2}$ only has at most order 2 element.
$\{(1,0,0),(0,1,0),(1,1,0),(0,0,0)\}$
$\{(1,0,0),(0,0,1),(1,0,1),(0,0,0)\}$
$\{(1,0,0),(0,1,1),(1,1,1),(0,0,0)\}$
$\{(0,1,0),(0,0,1),(0,1,1),(0,0,0)\}$
$\{(0,1,0),(1,0,1),(1,1,1),(0,0,0)\}$
5 choices.
order 8: itself.
Problem2.
(a)omitted.
(b)

Proof. From (a) we know both $G$ and $H$ are cyclic. By Theorem 6.1 we know $|G|$ and $|H|$ are co-prime. So if $G \times H$ is cyclic, so its subgroups are all cyclic. Let $K=<(g, h)>\leq G$ for $g \in G, h \in H$ then $\operatorname{ord}(g) \| G \mid$, ord $(h) \| H \mid,<g>$ $\times<h>\leq K$, thus $\operatorname{gcd}(\operatorname{ord}(g), \operatorname{ord}(h))=1$ because $\operatorname{gcd}(|G|,|H|)=1$. So

$$
|K|=\operatorname{ord}(g, h)=\operatorname{lcm}(\operatorname{ord}(g), \operatorname{ord}(h))=\operatorname{ord}(g) \operatorname{ord}(h) .
$$

So $|K|=|<g>||h|=|<g>\times<h>|$. So $K=<g>\times<h>$.
Problem3.
(a) omitted. (b) omitted. (c) $A=\{0,1\}, B=0 . f: A \rightarrow B$ s.t $f(0)=$ $f(1)=0 . S=\{0\}, T=\{1\}$ Then $f(S \cap T)=f(\emptyset)=\emptyset$ where $f(S) \cap f(T)=\{1\}$. Problem4. (a)

Proof. First suppose $f: A \rightarrow B$ is injective. Then for every $y \in \operatorname{Im}(f)$ corresponds to one and only one $x_{y} \in A$ s.t. $f(x)=y$, in other words we have $x_{f(x)}=x$. Fix $x_{0} \in A$, define $g: B \rightarrow A, y \mapsto x_{y}$ for $y \in \operatorname{Imf}$ and $y \mapsto x_{0}$ for $y \notin \operatorname{Im} f$. Then for every $x \in A, g \circ f(x)=g(f(x))=x_{f(x)}=x$ so $g \circ f=i d_{A}$. On the other hand, suppose there exists function $g: B \rightarrow A$ s.t. $g \circ f=i d_{A}$. Then for every $x, y \in A$ s.t. $f(x)=f(y)$ then

$$
g(f(x))=g(f(y))
$$

So $g(f(x))=g \circ f(x)=i d_{A}(x)=x, g(f(y))=y$ for the same reason, so $x=y$. We have $f(x)=f(y)$ implies $x=y$ so $f$ is injective.
(b)

Proof. If $f$ is surjective, then for every $y \in B$ there exists $x \in A$ s.t. $f(x)=y$. Define $g: B \rightarrow A$, let $g(y)$ be arbitrary $x \in A$ such that $f(x)=y$. Then for every $y \in B, f \circ g(y)=f(g(y))=y$. So $f \circ g=i d_{B}$. On the other hand, if there exists a function $g: B \rightarrow A$ s.t. $f \circ g=i d_{B}$, then for every $y \in B$ corresponds to $g(y) \in A$ s.t. $f(g(y))=y$. So $f$ surjective.

Problem5. (a) not true. For example (b)not true. For example

