UH Math 3330-01 Dr.Heier-Spring 2017 HW7 Answer Key

Yan He

March 17, 2017

Problem1. (a)Not an equivalence relation because transitivity fails. (b)Is an equivalence relation, obviously.

Problem2.

 $\begin{array}{l} (a)H,H + (0,1) = \{(0,1),(1,1),(2,1)\} \\ (b)H, \\ H + (0,3) = \{(0,3),(0,1)\}, \\ H + (1,2) = \{(1,2),(1,0)\}, \\ H + (1,3) = \{(1,3),(3,1)\} \\ H + (2,2) = \{(2,2),(2,0)\}, \\ H + (2,3) = \{(2,3),(2,5)\}, \\ H + (3,2) = \{(3,2),(3,0)\} \\ H + (3,3) = \{(3,3),(3,1)\} \end{array}$

Problem3.

Follows from the Lagrange's theorem, and the fact that every group of prime order must be cyclic.

Problem4.

Proof. (i) If G has one element $g \in G$ of order p^2 , then G must be cyclic because $|\langle g \rangle| = |G|$ and $\langle g \rangle$ is a subgroup of $G \implies \langle g \rangle = G$. Then g^p is the element of order p, thus we can find a subgroup of order p.

(ii) If G has no element of order p^2 , then every element of G must have order $1 \operatorname{orp} p$ by Lagrange theorem. But G must have at least one element of order g which generates a cyclic subgroup of G of order p, otherwise G would be $\{e\}$, which contradicts $|G| = p^2$.

Problem5.

Proof. $(x_1 \cdot \ldots \cdot x_{r-1})^2 = x_1 x_1^{-1} \cdot x_2 x_2^{-1} \cdot \ldots \cdot x_{r-1} x_{r-1}^{-1} = e$. Then the order of $(x_1 \cdot \ldots \cdot x_{r-1})$ divides 2. But |G| is odd, so the order can only be one, which means $(x_1 \cdot \ldots \cdot x_{r-1}) = e$.