UH Math 3330-01 Dr.Heier-Spring 2017 HW7 Answer Key

Yan He

March 17, 2017

Problem1. (a)Not an equivalence relation because transitivity fails.
(b)Is an equivalence relation, obviously.

Problem2.
(a) $H, H+(0,1)=\{(0,1),(1,1),(2,1)\}$
(b) H,
$H+(0,3)=\{(0,3),(0,1)\}$,
$H+(1,2)=\{(1,2),(1,0)\}$,
$H+(1,3)=\{(1,3),(3,1)\}$
$H+(2,2)=\{(2,2),(2,0)\}$,
$H+(2,3)=\{(2,3),(2,5)\}$,
$H+(3,2)=\{(3,2),(3,0)\}$
$H+(3,3)=\{(3,3),(3,1)\}$

Problem3.

Follows from the Lagrange's theorem, and the fact that every group of prime order must be cyclic.

Problem4.

Proof. (i)If G has one element $g \in G$ of order p^{2}, then G must be cyclic because $\left|<g>\left|=|G|\right.\right.$ and $<g>$ is a subgroup of $G \Longrightarrow<g>=G$. Then g^{p} is the element of order p, thus we can find a subgroup of order p.
(ii)If G has no element of order p^{2}, then every element of G must have order 1orp by Lagrange theorem. But G must have at least one element of order g which generates a cyclic subgroup of G of order p, otherwise G would be $\{e\}$, which contradicts $|G|=p^{2}$.

Problem5.

Proof. $\left(x_{1} \cdot \ldots \cdot x_{r-1}\right)^{2}=x_{1} x_{1}^{-1} \cdot x_{2} x_{2}^{-1} \cdot \ldots \cdot x_{r-1} x_{r-1}^{-1}=e$. Then the order of $\left(x_{1} \cdot \ldots \cdot x_{r-1}\right)$ divides 2 . But $|G|$ is odd, so the order can only be one, which means $\left(x_{1} \cdot \ldots \cdot x_{r-1}\right)=e$.

