UH Math 3330-01 Dr.Heier-Spring 2017 HW8 Answer Key

Yan He

Problem1.

H is not a normal subgroup of $GL(2, \mathbb{R})$. **Problem2.**

PROOF. Let e be the identity of G, From the assumption we know that $g^m = e$. $(Hg)^m = Hg^m = He = H$ so ord(Hg)|m.

Problem3.

PROOF. G is an abelian group of order pq then by Cauchy's Theorem there are elements $a, b \in G$ s.t. ord(a) = p, ord(b) = q. Then ord(ab) = pq = |G|. Then G is cyclic.

Problem4.

PROOF. For every $m \neq n \in \{2, 3, 4, 5...\}$ we have $\frac{1}{m} - \frac{1}{n} \notin \mathbb{Z}$ then $\{\frac{1}{n} + \mathbb{Z}\}$ is an infinite subset of \mathbb{Q}/\mathbb{Z} , so \mathbb{Q}/\mathbb{Z} must be infinite.

Every rational number can be written as $\frac{m}{n}$ for integers m, n, thus for every element $\frac{m}{n} + \mathbb{Z}$,

(1)
$$\frac{m}{n} + \mathbb{Z} + \dots + \frac{m}{n} + \mathbb{Z}(\text{n times}) = m + \mathbb{Z} = \mathbb{Z}.$$

Then $ord(\frac{m}{n} + \mathbb{Z})|n$, which is finite.

Problem5.

Hint:

(a) If H is characteristic then consider the conjugate automorphism on G.

(b) False, consider counter example \mathbb{Q} with automorphism $x \mapsto \frac{1}{2}x$, and normal subgroup \mathbb{Z} .