UH - Math 6353-Dr. Heier - Take Home Final Exam - Spring 2017 Due: Monday, May 8, 2017, at 5pm, as a (scanned) pdf to heier@math.uh.edu

1. (20 points) Let (M, g) be a hermitian manifold with associated (1, 1)-form ω. Prove that g is Kähler (i.e., $d \omega=0)$ if and only if for every $p \in M$, there exists an open neighborhood $U \ni p$ and a smooth real function ϕ defined on U such that $\omega=\sqrt{-1} \partial \bar{\partial} \phi$ on U. Hint: This is a local statement and the $\partial \bar{\partial}$-Lemma does not apply. Use the Poincaré-Lemma instead, which you may cite freely.
2. (20 points) Prove that the set of upper triangular invertible $(n \times n)$-matrices is a solvable subgroup of $G L_{n}(\mathbb{C})$. Is it normal? Prove your answer.
3. (20 points) Using Matsushima's criterion, prove that there does not exist a Kähler-Einstein metric on \mathbb{P}^{2} blown up at two distinct points.
4. (20 points) On the unit two ball \mathbb{B}^{2} in \mathbb{C}^{2} consider the Bergman metric, i.e., the hermitian metric g whose associated $(1,1)$-form is given by

$$
\omega=-\frac{\sqrt{-1}}{2} \partial \bar{\partial} \log \left(1-z_{1} \bar{z}_{1}-z_{2} \bar{z}_{2}\right)
$$

Compute the Ricci curvature form Ric. Compare Ric and ω. Also, using the trace formula, compute the scalar curvature.
5. (10 points) Let M be a non-singular cubic surface in \mathbb{P}^{3}. Let C be an irreducible curve in M with $C^{2}<0$. Prove that C must be satisfy $C^{2}=-1$ and is a line in the ambient projective space \mathbb{P}^{3}.
6. (10 points) Let X be a K3 surface. Prove that X is not the blow-up of any smooth compact complex surface.

