UH - Math 3330 - Dr. Heier - Spring 2019 HW 1

Due Wednesday, 01/23, at the beginning of class.
Your solution may be handwritten. Use regular sized sheets of paper, stapled together.

Do not forget to write your name on page 1.

1. Let S, T be sets. We define the set-theoretic difference of the ordered pair (S, T) to be

$$
S \backslash T=\{x \in S \mid x \notin T\} .
$$

(a) (0 points) Prove that $T \cup(S \backslash T)=S \cup T$.
(b) (2 points) Prove that $(S \backslash T) \cup(S \cap T)=S$.
2. Let A, B, C be sets.
(a) (0 points) Prove that $A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$.
(b) (2 points) Prove that $A \cup(B \cap C)=(A \cup B) \cap(A \cup C)$.
3. (2 points) Prove that, for all $n \in \mathbb{N}=\{0,1,2,3, \ldots\}$,

$$
\sum_{i=0}^{n} 3^{i}=\frac{1}{2}\left(3^{n+1}-1\right)
$$

4. (2 points) Prove that, for all integers $n \geq 5$,

$$
4 n<2^{n}
$$

5. (2 points) The Fibonacci sequence f_{n} is defined by $f_{1}=f_{2}=1$ and

$$
f_{n}=f_{n-1}+f_{n-2}
$$

for all integers $n \geq 3$. Prove that for every integer $k \geq 1$, the Fibonacci number $f_{5 k}$ is divisible by 5 .

