UH - Math 3330 - Dr. Heier - Spring 2019
 HW 10

Due Wednesday, 04/17, at the beginning of class.
Your solution may be handwritten. Use regular sized sheets of paper, stapled together.

Do not forget to write your name on page 1.

1. (2 points) Consider $(\mathbb{Q}, \oplus, \odot)$, where \oplus is the addition given by $a \oplus b=a+b-1$ and \odot is the multiplication given by $a \odot b=a+b-a b$. Is $(\mathbb{Q}, \oplus, \odot)$ a field?
2. An element r in a ring is called idempotent if $r^{2}=r$. Let R be a ring with unity 1 . Let $r \in R$ be idempotent. Prove that
(a) (1 point) $1-r$ is also idempotent;
(b) (1 point) r or $1-r$ is a zero-divisor.
3. Let R be a ring with unity. Then R is called Boolean if every element of R is idempotent. Prove that if R is Boolean, then
(a) (1 point) $r=-r$ for every $r \in R$;
(b) (1 point) R is commutative.
4. (2 points) Let R be a ring with unity. Assume that R has no non-zero zero-divisors. Let $a, b \in R$ with $a b=1$. Prove that $b a=1$.
5. (2 points) Let F be the set of all 2×2 matrices of real numbers of the form

$$
\left(\begin{array}{cc}
a & b \\
-b & a
\end{array}\right) .
$$

Prove that F forms a field under the usual addition and multiplication of matrices.

