UH - Math 3330 - Dr. Heier - Spring 2019 HW 11

Due MONDAY, 04/29, at the beginning of class.

Your solution may be handwritten. Use regular sized sheets of paper, stapled together.

Do not forget to write your name on page 1.

- 1. (1 point) Prove that \mathbb{Z}_n is a field if and only if n is a prime number.
- **2.** (1 point) Let R be a ring with unity. Assume that for all x and y in R we have $(xy)^2 = x^2y^2$. Prove that R is commutative.
- **3.** Let $S = \{q \in \mathbb{Q} : q = \frac{a}{b}, a, b \in \mathbb{Z} \text{ and } b \text{ odd}\}.$
- (a) (0.5 points) Prove that S is a subring of \mathbb{Q} .
- (b) (0.5 points) Prove that S has a unique maximal ideal.
- **4.** Let R be a commutative ring with unity $1 \neq 0$.
- (a) (0.5 points) Prove that R is an integral domain if and only if $\{0\}$ is a prime ideal in R.
- (b) (0.5 points) Prove that R is a field if and only if $\{0\}$ is a maximal ideal in R.
- 5. (2 points) Let I be an ideal in the commutative ring R. Define

$$\mathrm{rad}(I) = \{r \in R \mid \exists n \in \mathbb{N} : r^n \in I\}.$$

Prove that $\operatorname{rad}(I)$ is an ideal with $I \subset \operatorname{rad}(I)$.

- **6.** (2 points) Let R be a commutative ring and $I \subset R$ a prime ideal. Prove that $\operatorname{rad}(I) = I$.
- 7. Which of the following is a ring homomorphism? Prove your answer.
- (a) (1 point) $\varphi : \mathbb{R} \to \mathbb{R}, \varphi(x) = |x|,$
- (b) (1 point) $\varphi : \mathbb{C} \to \mathbb{C}, \varphi(a+ib) = a-ib$.