UH - Math 3330 - Dr. Heier - Spring 2019 HW 5

Due Wednesday, 02/20, at the beginning of class.

Your solution may be handwritten. Use regular sized sheets of paper, stapled together.

Do not forget to write your name on page 1.

1. Let $f: A \rightarrow B$ be a function between non-empty sets A, B.
(a) (1 point) Prove that for all subsets $S, T \subseteq A, f(S \cup T)=f(S) \cup f(T)$.
(b) (0.5 points) Prove that for all subsets $S, T \subseteq A, f(S \cap T) \subseteq f(S) \cap f(T)$.
(c) (0.5 points) Give an example where the containment relation in item (b) is strict.
2. Let $f: A \rightarrow B$ be a function between non-empty sets A, B.
(a) (1 point) Prove that f is injective if and only if there exists a function $g: B \rightarrow A$ such that $g \circ f=\operatorname{id}_{A}$, where $\operatorname{id}_{A}: A \rightarrow A, a \mapsto a$ is the identity function.
(b) (1 point) Prove that f is surjective if and only if there exists a function $g: B \rightarrow A$ such that $f \circ g=\operatorname{id}_{B}$.
3. Let $f: A \rightarrow B$ and $g: B \rightarrow C$ be functions.
(a) (1 point) Assume that $g \circ f$ is injective. Does this imply that both f and g are injective? Prove your answer.
(b) (1 point) Assume that $g \circ f$ is surjective. Does this imply that both f and g are surjective? Prove your answer.
4. Execute the following multiplications in S_{7}.
(a) (1 point) $\left(\begin{array}{lllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 5 & 7 & 1 & 3 & 2 & 6 & 4\end{array}\right) \circ\left(\begin{array}{lllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 6 & 1 & 3 & 5 & 7 & 4 & 2\end{array}\right)$.
(b) (1 point) $\left(\begin{array}{lllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 2 & 3 & 1 & 5 & 7 & 4 & 6\end{array}\right) \circ\left(\begin{array}{lllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 7 & 5 & 6 & 4 & 2 & 3 & 1\end{array}\right)$.
5. Write each of the following permutations as a product of disjoint cycles and then as a product of transpositions. Determine whether each permutation is odd or even.
(a) (1 point) $\left(\begin{array}{llllllllcc}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 4 & 3 & 9 & 6 & 7 & 8 & 5 & 1 & 10 & 2\end{array}\right)$.
(b) (1 point) $\left(\begin{array}{cccccccccc}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 7 & 3 & 1 & 6 & 4 & 5 & 8 & 9 & 10 & 2\end{array}\right)$.
