UH - Math 3330 - Dr. Heier - Spring 2019 HW 6 Due Wednesday, 02/27, at the beginning of class.

Your solution may be handwritten. Use regular sized sheets of paper, stapled together.

Do not forget to write your name on page 1.

1. (1 point) Write the following permutation as a product of transpositions. Determine whether it is odd or even.

 $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 \\ 11 & 5 & 14 & 10 & 6 & 15 & 12 & 13 & 1 & 7 & 8 & 4 & 9 & 2 & 3 \end{pmatrix}.$

2. (1 point) Find elements $x, y \in S_{\mathbb{Z}}$ such that x and y have finite order, yet xy has infinite order.

3.

- (a) (1 point) Let G be a group and $a, b \in G$. Let $a \sim b$ hold if and only if there exists $x \in G$ such that $a = xbx^{-1}$. Prove that \sim is an equivalence relation.
- (b) (1 point) For integers x, y, let $x \sim y$ hold if and only if 11x 3y is an integer multiple of 8. Prove that \sim is an equivalence relation.

4. (2 points) Let n be a positive integer. Let x, y be integers. We say that x, y are congruent mod n (written $x \equiv y \mod n$) if x - y is an integer multiple of n. Prove that this defines an equivalence relation on the integers.

5. (2 points) Let p, q be two prime numbers, and let G be a group of order pq. Show that every subgroup H of G with $H \neq G$ is cyclic.

6. (2 points) Let G be a group of order p^2 , where p is a prime. Prove that G must have a subgroup of order p.