UH - Math 3330 - Dr. Heier - Spring 2019 HW 7

Due Wednesday, 03/06, at the beginning of class.

Your solution may be handwritten. Use regular sized sheets of paper, stapled together.

Do not forget to write your name on page 1.

1. (1 point) Let $G = \{e, x_1, \ldots, x_{r-1}\}$ be an abelian group such that r = #G is an odd integer. Prove that

$$x_1 \cdot \ldots \cdot x_{r-1} = e.$$

Hint: Prove first that $x_1 \cdot \ldots \cdot x_{r-1}$ is its own inverse. Carefully explain your reasoning.

2.

- (a) (1 point) Find the right cosets of the subgroup $H = \{(0,0), (1,0), (2,0)\}$ in $\mathbb{Z}_3 \times \mathbb{Z}_3$.
- (b) (1 point) Find the right cosets of the subgroup $H = \{(0,0), (0,2)\}$ in $\mathbb{Z}_3 \times \mathbb{Z}_4$.

3. (2 points) Prove that $(\mathbb{Q}, +)/(\mathbb{Z}, +)$ is an infinite group such that each of its elements has finite order.

4. (1 point) Let G be a group and let H, K be two normal subgroups of G with $H \cap K = \{e\}$. Prove that for $x \in H$ and $y \in K$, xy = yx holds.

5. (2 points) Let G be a group and let N a normal subgroup of G. Let H be a subgroup of G. Set $NH = \{nh \mid n \in N, h \in H\}$. Prove that NH is a subgroup of G.

6. A subgroup H of a group G is characteristic if $\varphi(H) \subseteq H$ for every automorphism φ of G.

- (a) (1 point) Prove that every characteristic subgroup is normal.
- (b) (1 point) Prove that the converse of (a) is false.