UH - Math 3330 - Dr. Heier - Spring 2020
 HW 2

Due Thursday, $01 / 30$, at the beginning of class.
Your solution may be handwritten. Use regular sized sheets of paper, stapled together.

Do not forget to write your name on page 1.

1. Does addition yield a binary operation ...
(a) (1 point) on the set $\{\ldots,-9,-6,-3,0,3,6,9, \ldots\}$ of multiples of 3 ? If yes, is the set with the binary operation a group?
(b) (1 point) on the set $\{\ldots,-3,-1,1,3, \ldots\}$ of odd integers? If yes, is the set with the binary operation a group?
2. (2 points) Let G be the set of all 2×2 matrices

$$
\left(\begin{array}{cc}
a & b \\
-b & a
\end{array}\right)
$$

where $a, b \in \mathbb{R}$ and $a^{2}+b^{2} \neq 0$. Prove that G forms a group with the usual matrix multiplication. You may freely use basic facts from linear algebra without proof.
3. (1 point) Let G be a group. Let a_{1}, \ldots, a_{n} be elements of G. Prove that $\left(a_{1} \ldots a_{n}\right)^{-1}=$ $a_{n}^{-1} \ldots a_{1}^{-1}$. You must use induction to carefully prove this statement.
4. (1 point) Let $(G, *)$ be a group such that $x * x=e$ for all $x \in G$. Prove that G is abelian.
5. In class, we defined a binary operation \oplus on $\mathbb{Z}_{n}=\{0,1,2, \ldots, n-1\}$. We now define a binary operation \odot on \mathbb{Z}_{n} by setting $a \odot b:=\overline{a \cdot b}$.
(a) (1 point) Prove that \odot is associative.
(b) (0.5 points) Does $Z_{4} \backslash\{0\}$ form a group with \odot ? Prove your answer.
(c) (0.5 points) Does $Z_{5} \backslash\{0\}$ form a group with \odot ? Prove your answer.
6. In \mathbb{Z}_{13}, solve
(a) (1 point) the equation $2 \oplus 8 \oplus x \oplus 4=7$ for x.
(b) (1 point) the equation $11 \odot x=10$ for x.

