UH - Math 3330 - Dr. Heier - Spring 2020 HW 2 Due Thursday, 01/30, at the beginning of class.

Your solution may be handwritten. Use regular sized sheets of paper, stapled together.

Do not forget to write your name on page 1.

- 1. Does addition yield a binary operation ...
- (a) (1 point) on the set $\{\ldots, -9, -6, -3, 0, 3, 6, 9, \ldots\}$ of multiples of 3? If yes, is the set with the binary operation a group?
- (b) (1 point) on the set $\{\ldots, -3, -1, 1, 3, \ldots\}$ of odd integers? If yes, is the set with the binary operation a group?
- **2.** (2 points) Let G be the set of all 2×2 matrices

$$\begin{pmatrix} a & b \\ -b & a \end{pmatrix},$$

where $a, b \in \mathbb{R}$ and $a^2 + b^2 \neq 0$. Prove that G forms a group with the usual matrix multiplication. You may freely use basic facts from linear algebra without proof.

3. (1 point) Let G be a group. Let a_1, \ldots, a_n be elements of G. Prove that $(a_1 \ldots a_n)^{-1} = a_n^{-1} \ldots a_1^{-1}$. You must use induction to carefully prove this statement.

4. (1 point) Let (G, *) be a group such that x * x = e for all $x \in G$. Prove that G is abelian.

5. In class, we defined a binary operation \oplus on $\mathbb{Z}_n = \{0, 1, 2, \dots, n-1\}$. We now define a binary operation \odot on \mathbb{Z}_n by setting $a \odot b := \overline{a \cdot b}$.

- (a) (1 point) Prove that \odot is associative.
- (b) (0.5 points) Does $Z_4 \setminus \{0\}$ form a group with \odot ? Prove your answer.
- (c) (0.5 points) Does $Z_5 \setminus \{0\}$ form a group with \odot ? Prove your answer.

6. In \mathbb{Z}_{13} , solve

- (a) (1 point) the equation $2 \oplus 8 \oplus x \oplus 4 = 7$ for x.
- (b) (1 point) the equation $11 \odot x = 10$ for x.