
HW1 P1 Let S, T be sets. We define the set-theoretic difference of the ordered
pairs (S, T ) to be

S\T = {x ∈ S|x 6∈ T}.

(a) Prove that T ∩ (S\T ) = ∅.
(b) Prove that (S\T ) ∪ (S ∩ T ) = S.

Proof. (a) Let x ∈ T ∩ (S\T ), then x ∈ T and x 6∈ T , a contradiction.
Thus, no element in the set T ∩ (S\T ), therefore T ∩ (S\T ) = ∅.

(b) (S\T ) ∪ (S ∩ T ) ⊇ S:
Let x ∈ S, if x ∈ T then x ∈ (S ∩ T ) ⊆ (S\T ) ∪ (S ∩ T ); if x 6∈ T
then x ∈ (S\T ) ⊆ (S\T ) ∪ (S ∩ T ).
(S\T ) ∪ (S ∩ T ) ⊆ S:
Since (S\T ) ⊆ S and (S ∩ T ) ⊆ S, thus (S\T ) ∪ (S ∩ T ) ⊆ S.
Therefore (S\T ) ∪ (S ∩ T ) = S.

�

HW1 P5 The Fibonacci sequence fn is defined by f1 = f2 = 1 and

fn = fn−1 + fn−2

for all integers n ≥ 3. Prove that for every integer k ≥ 1, the Fibonacci
number f5k is divisible by 5.

Proof. By induction
If k = 1, f5 = f4 + f3 = f3 + f2 + f3 = 2f3 + f2 = 2(f2 + f1) + f2 =
3f2 + 2f1 = 3 + 2 = 5, thus f5 is divisible by 5.
Suppose that f5k is divisible by 5, consider

f5(k+1) = f5k+4 + f5k+3 = f5k+3 + f5k+2 + f5k+3 = 2f5k+3 + f5k+2

= 2(f5k+2 + f5k+1) + (f5k+1 + f5k)

= 2f5k+2 + 3f5k+1 + f5k

= 2(f5k+1 + f5k) + 3f5k+1 + f5k

= 5f5k+1 + 2f5k

Since 2f5k is divisible by 5, so is f5(k+1).
Therefore, for all k ≥ 1, f5k is divisible by 5. �

HW2 P2 Let G be the set of all 2× 2 matrices(
a b
−b a

)
,

where a, b ∈ R and a2 + b2 6= 0. Prove that G forms a group with the
usual matrix multiplicative. You may freely use basic facts from linear
algebra without proof.
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Proof. 0◦ Matrix multiplicative is a binary operation on G:(
a1 b1
−b1 a1

)(
a2 b2
−b2 a2

)
=

(
a1a2 − b1b2 a1b2 + b1a2
−b1a2 − a1b2 −b1b2 + a1a2

)
∈ G

where a21 + a22, b
2
1 + b22 6= 0, thus (a1a2 − b1b2)

2 + (a1b2 + b1a2)
2 =

(a21 + a22)(b
2
1 + b22) 6= 0.

1◦ Associative law:
G inherit associativity from usual matrix multiplication.

2◦ Identity exist:

e =

(
1 0
0 1

)
is the identity of G, eA = Ae = A for any A ∈ G.

3◦ Inverse exist:

∀A =

(
a b
−b a

)
∈ G, A−1 =

(
a

a2+b2
−b

a2+b2
b

a2+b2
a

a2+b2

)
∈ G, where ( a

a2+b2
)2 +

( −b
a2+b2

)2 = 1
a2+b2

6= 0.
�

HW2 P4 Let (G, ∗) be a group such that x ∗ x = e for all x ∈ G. Prove that G is
abelian.

Proof. ∀z ∈ G, since z ∗ z = e, thus z = z−1. Let x, y ∈ G, x ∗ y =
(x ∗ y)−1 = y−1 ∗ x−1 = y ∗ x, therefore G is abelian. �

HW2 P5 In class, we defined a binary operation
⊕

on Zn = {0, 1, 2, . . . , n− 1}.
We now define a binary operation

⊙
on Zn by setting a

⊙
b := a · b.

(a) Prove that
⊙

is associative.
(b) Does Z4\{0} form a group with

⊙
? Prove your answer.

(c) Does Z5\{0} form a group with
⊙

? Prove your answer.

Proof. (a)

(a
⊙

b)
⊙

c = a · b
⊙

c = (a · b) · c

a
⊙

(b
⊙

c) = a
⊙

b · c = (a · b) · c

(a·b)·c = (a·b)·c implies (a
⊙

b)
⊙

c = a
⊙

(b
⊙

c), where a, b, c ∈ Z.
(b) No, it is not a group. Since 0 6= 2 ∈ Z4\{0} but 2

⊙
2 = 2 · 2 = 0 6∈

Z4\{0}, it is not closed under
⊙

.
(c) The table under

⊙
⊙

1 2 3 4
1 1 2 3 4
2 2 4 1 3
3 3 1 4 2
4 4 3 2 1
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1 is the identity in Z5\{0}; every element has inverse in Z5\{0}.
Therefore, Z5\{0} is a group.

�

HW3 P2 Let G be a nonempty set and let ∗ be an associative binary operation on
G. Assume that for any elements a, b ∈ G, we can find x ∈ G such that
a ∗ x = b, and we can find y ∈ G such that y ∗ a = b. Prove that G is a
group. Carefully write the proof in your own words.

Proof. Choose a ∈ G, we can find x, y ∈ G, such that a ∗ x = a and
y ∗ a = a.
x is the right inverse of G and y is the left inverse of G:
∀z ∈ G, there exists z′ ∈ G, such that z = z′ ∗a, then z ∗x = (z′ ∗a)∗x =
z′ ∗ (a ∗ x) = z′ ∗ a = z. Similarly, y ∗ z = z. Define e = x = xy = y, thus
e is the identity in G.
∀z ∈ G, there exists z−1l and z−1r in G, such that z−1l ∗ z = z ∗ z−1r = e.
And then z−1l = z−1l ∗ e = z−1l ∗ (z ∗ z−1r ) = (z−1l ∗ z) ∗ z−1r = e ∗ z−1r = z−1r .
Thus, z−1 = z−1l = z−1r is the inverse of z.
Therefore, (G, ∗) is a group. �

HW3 P5 Let G be a group. Let x, y ∈ G. Assume that y 6= e, o(x) = 2, and
xyx−1 = y2. Determine o(y).

Proof. (1) y2 6= e:
BWOC, if y2 = e, thus e = y2 = xyx−1, so e = x−1ex = x−1xyx−1x =
eye = y, contradiction to y 6= e.

(2) y3 = e :
Since o(x) = 2, then x2 = x−2 = e, thus

y4 = (y2)(y2) = xyx−1xyx−1 = xy2x−1

= x(xyx−1)x−1 = x2yx−2 = eye = y

So, y4 = y ⇒ y3 = e, therefore o(y) = 3. �

HW4 P3 Let H, K be subgroups of a group G.
(a) Prove that H ∩K is a subgroup of G.
(b) Prove that H ∪K is a subgroup of G iff H ⊆ K or K ⊆ H.

Proof. (a) e ∈ H,K implies e ∈ H ∩ K; ∀x ∈ H ∩ K, H and K are
subgroups of G, thus x−1 ∈ H and K, therefore x−1 ∈ H ∩K.

(b) ⇒ BWOC
Suppose that H 6⊂ K and K 6⊂ H. Choose h ∈ H\K and k ∈ K\H,
since H ∪K is a subgroup of G and h, k ∈ H ∪K, then hk ∈ H ∪K.
Without lose of generality, suppose hk ∈ H, then k = h−1hk ∈ H,
contradiction to k 6∈ H. Therefore hk ∈ K ⇒ h = hkk−1 ∈ K, also
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contradiction to h 6∈ K. So H ⊆ K or K ⊆ H.
⇐ easy to verify.

�

HW5 P3 Let f : A→ B and g : B → C be functions.
(a) Assume that g ◦f is injective. Does this imply that both f and g are

injective? Prove your answer.
(b) Assume that g ◦ f is surjective. Does this imply that both f and g

are surjective? Prove your answer.

Proof. (a) g ◦ f is injective implies f is injective:
Let x1, x2 ∈ A, if f(x1) = f(x2), then (g ◦ f)(x1) = (g ◦ f)(x2). Since
g ◦ f is injective, thus x1 = x2. Therefore, f is injective.
But, g needn’t be injective.

(b) g ◦ f is surjective implies g is surjective:
∀c ∈ C, since g ◦ f is surjective, there exists x ∈ A, such that
(g ◦ f)(x) = c, i.e. g(f(x)) = c with f(x) ∈ B. Therefore, g is
surjective.
f needn’t be surjective.

�

HW6 P4 Let p, q be two prime numbers, and let G be a group of order pq. Show
that every subgroup H of G with H 6= G is cyclic.

Proof. By Lagrange’s Theorem, ]H divides ]G = pq, thus ]H equal to 1,
p or q (]H 6= pq, since H 6= G). Since p and q are prime numbers, then
H is cyclic. �

HW6 P5 Let G be a group of order p2, where p is a prime. Prove that G must have
a subgroup of order p.

Proof. Let e 6= x ∈ G (since G 6= {e}), by Lagrange’s theorem, o(x) = ]〈x〉
divides ]G = p2, thus o(x) equal to p or p2 (o(x) 6= 1, since x 6= e). If
o(x) = p, then ]〈x〉 = p; if o(x) = p2, then 〈xp〉 = o(xp) = p. �

HW6 P6 Let G be a group. Let H, K be subgroups of G. Assume that ]H = 12
and ]K = 17. Prove that H ∩K = {e}.

Proof. Since H and K are subgroups of G, so is H ∩ K. Thus H ∩ K
also subgroup of H and K (H ∩ K ⊆ H,K). By Lagrange’s Theorem,
](H ∩K) divides ]H and ]K, thus ](H ∩K) | gcd(12, 17) = 1. Therefore,
](H ∩K) = 1 i.e. H ∩K = {e}. �

HW7 P5 Let G be a group and let N a normal subgroup of G. Let H be a subgroup
of G. Set NH = {nh|n ∈ N, h ∈ H}. Prove that NH is a subgroup of G.
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Proof. 0◦ NH is closed under group multiplicative:
Let n1, n2 ∈ N and h1, h2 ∈ H, n1h1n2h2 = n1h1n2h

−1
1 h1h2. N is a

normal subgroup of G, implies h1n2h
−1
1 ∈ N , thus n1(h1n2h

−1
1 ) ∈ N .

H is a subgroup of G, implies h1h2 ∈ H. Therefore n1h1n2h2 =
n1h1n2h

−1
1 h1h2 ∈ NH.

1◦ e ∈ NH: e = ee ∈ NH.
2◦ NH is closed under inverses:

Let n ∈ N and h ∈ H, (nh)−1 = h−1n−1 = h−1n−1hh−1. Since N
is a normal subgroup of G, thus h−1n−1h ∈ N . Therefore, (nh)−1 =
h−1n−1 = h−1n−1hh−1 ∈ NH.

Therefore, NH is a subgroup of G. �

HW7 P6 Let G be a group and let H a normal subgroup of G such that [G : H] = 20
and ]H = 7. Suppose x ∈ G and x7 = e. Prove that x ∈ H.

Proof. Since H is a normal subgroup of G, thus G/H is a group under
natural multiplicative. ](G/H) = [G : H] = 20 and xH ∈ G/H, implies
x20H = (xH)20 = H ∈ G/H, i.e. x20 ∈ H. 7 coprime with 20, we can
find 7× 3− 20 = 1, x = x7×3−20 = (x7)3x−20 = e3x−20 = x−20 ∈ H. �


