HW1 P1 Let S, T be sets. We define the set-theoretic difference of the ordered pairs (S, T) to be

$$
S \backslash T=\{x \in S \mid x \notin T\} .
$$

(a) Prove that $T \cap(S \backslash T)=\emptyset$.
(b) Prove that $(S \backslash T) \cup(S \cap T)=S$.

Proof. (a) Let $x \in T \cap(S \backslash T)$, then $x \in T$ and $x \notin T$, a contradiction. Thus, no element in the set $T \cap(S \backslash T)$, therefore $T \cap(S \backslash T)=\emptyset$.
(b) $(S \backslash T) \cup(S \cap T) \supseteq S$:

Let $x \in S$, if $x \in T$ then $x \in(S \cap T) \subseteq(S \backslash T) \cup(S \cap T)$; if $x \notin T$ then $x \in(S \backslash T) \subseteq(S \backslash T) \cup(S \cap T)$.
$(S \backslash T) \cup(S \cap T) \subseteq S:$
Since $(S \backslash T) \subseteq S$ and $(S \cap T) \subseteq S$, thus $(S \backslash T) \cup(S \cap T) \subseteq S$.
Therefore $(S \backslash T) \cup(S \cap T)=S$.

HW1 P5 The Fibonacci sequence f_{n} is defined by $f_{1}=f_{2}=1$ and

$$
f_{n}=f_{n-1}+f_{n-2}
$$

for all integers $n \geq 3$. Prove that for every integer $k \geq 1$, the Fibonacci number $f_{5 k}$ is divisible by 5 .

Proof. By induction
If $k=1, f_{5}=f_{4}+f_{3}=f_{3}+f_{2}+f_{3}=2 f_{3}+f_{2}=2\left(f_{2}+f_{1}\right)+f_{2}=$ $3 f_{2}+2 f_{1}=3+2=5$, thus f_{5} is divisible by 5 .
Suppose that $f_{5 k}$ is divisible by 5 , consider

$$
\begin{aligned}
f_{5(k+1)}=f_{5 k+4}+f_{5 k+3} & =f_{5 k+3}+f_{5 k+2}+f_{5 k+3}=2 f_{5 k+3}+f_{5 k+2} \\
& =2\left(f_{5 k+2}+f_{5 k+1}\right)+\left(f_{5 k+1}+f_{5 k}\right) \\
& =2 f_{5 k+2}+3 f_{5 k+1}+f_{5 k} \\
& =2\left(f_{5 k+1}+f_{5 k}\right)+3 f_{5 k+1}+f_{5 k} \\
& =5 f_{5 k+1}+2 f_{5 k}
\end{aligned}
$$

Since $2 f_{5 k}$ is divisible by 5 , so is $f_{5(k+1)}$.
Therefore, for all $k \geq 1, f_{5 k}$ is divisible by 5 .
HW2 P2 Let G be the set of all 2×2 matrices

$$
\left(\begin{array}{cc}
a & b \\
-b & a
\end{array}\right)
$$

where $a, b \in \mathbb{R}$ and $a^{2}+b^{2} \neq 0$. Prove that G forms a group with the usual matrix multiplicative. You may freely use basic facts from linear algebra without proof.

```
2
```

Proof. $\quad 0^{\circ}$ Matrix multiplicative is a binary operation on G :

$$
\left(\begin{array}{cc}
a_{1} & b_{1} \\
-b_{1} & a_{1}
\end{array}\right)\left(\begin{array}{cc}
a_{2} & b_{2} \\
-b_{2} & a_{2}
\end{array}\right)=\left(\begin{array}{cc}
a_{1} a_{2}-b_{1} b_{2} & a_{1} b_{2}+b_{1} a_{2} \\
-b_{1} a_{2}-a_{1} b_{2} & -b_{1} b_{2}+a_{1} a_{2}
\end{array}\right) \in G
$$

where $a_{1}^{2}+a_{2}^{2}, b_{1}^{2}+b_{2}^{2} \neq 0$, thus $\left(a_{1} a_{2}-b_{1} b_{2}\right)^{2}+\left(a_{1} b_{2}+b_{1} a_{2}\right)^{2}=$ $\left(a_{1}^{2}+a_{2}^{2}\right)\left(b_{1}^{2}+b_{2}^{2}\right) \neq 0$.
1° Associative law:
G inherit associativity from usual matrix multiplication.
2° Identity exist:
$e=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$ is the identity of $G, e A=A e=A$ for any $A \in G$.
3° Inverse exist:
$\forall A=\left(\begin{array}{cc}a & b \\ -b & a\end{array}\right) \in G, A^{-1}=\left(\begin{array}{cc}\frac{a}{a^{2} b^{2}} & \frac{-b}{a^{2}+b^{2}} \\ \frac{a^{2}+b^{2}}{} & \frac{a}{a^{2}+b^{2}}\end{array}\right) \in G$, where $\left(\frac{a}{a^{2}+b^{2}}\right)^{2}+$ $\left(\frac{-b}{a^{2}+b^{2}}\right)^{2}=\frac{1}{a^{2}+b^{2}} \neq 0$.

HW2 P4 Let $(G, *)$ be a group such that $x * x=e$ for all $x \in G$. Prove that G is abelian.

Proof. $\forall z \in G$, since $z * z=e$, thus $z=z^{-1}$. Let $x, y \in G, x * y=$ $(x * y)^{-1}=y^{-1} * x^{-1}=y * x$, therefore G is abelian.
HW2 P5 In class, we defined a binary operation \bigoplus on $\mathbb{Z}_{n}=\{\overline{0}, \overline{1}, \overline{2}, \ldots, \overline{n-1}\}$. We now define a binary operation \odot on \mathbb{Z}_{n} by setting $\bar{a} \bigodot \bar{b}:=\overline{a \cdot b}$.
(a) Prove that \odot is associative.
(b) Does $\mathbb{Z}_{4} \backslash\{\overline{0}\}$ form a group with \odot ? Prove your answer.
(c) Does $\mathbb{Z}_{5} \backslash\{\overline{0}\}$ form a group with \bigodot ? Prove your answer.

Proof. (a)

$$
\begin{aligned}
& (\bar{a} \bigodot \bar{b}) \bigodot \bar{c}=\overline{a \cdot b} \bigodot \bar{c}=\overline{(a \cdot b) \cdot c} \\
& \bar{a} \bigodot(\bar{b} \bigodot \bar{c})=\bar{a} \bigodot \overline{b \cdot c}=\overline{(a \cdot b) \cdot c}
\end{aligned}
$$

$(a \cdot b) \cdot c=(a \cdot b) \cdot c$ implies $(\bar{a} \bigodot \bar{b}) \odot \bar{c}=\bar{a} \bigodot(\bar{b} \odot \bar{c})$, where $a, b, c \in \mathbb{Z}$.
(b) No, it is not a group. Since $\overline{0} \neq \overline{2} \in \mathbb{Z}_{4} \backslash\{0\}$ but $\overline{2} \odot \overline{2}=\overline{2 \cdot 2}=\overline{0} \notin$ $\mathbb{Z}_{4} \backslash\{\overline{0}\}$, it is not closed under \odot.
(c) The table under \odot

\odot	$\overline{1}$	$\overline{2}$	$\overline{3}$	$\overline{4}$
$\overline{1}$	$\overline{1}$	$\overline{2}$	$\overline{3}$	$\overline{4}$
$\overline{2}$	$\overline{2}$	$\overline{4}$	$\overline{1}$	$\overline{3}$
$\overline{3}$	$\overline{3}$	$\overline{1}$	$\overline{4}$	$\overline{2}$
$\overline{4}$	$\overline{4}$	$\overline{3}$	$\overline{2}$	$\overline{1}$

$\overline{1}$ is the identity in $\mathbb{Z}_{5} \backslash\{\overline{0}\}$; every element has inverse in $\mathbb{Z}_{5} \backslash\{\overline{0}\}$. Therefore, $\mathbb{Z}_{5} \backslash\{\overline{0}\}$ is a group.

HW3 P2 Let G be a nonempty set and let $*$ be an associative binary operation on G. Assume that for any elements $a, b \in G$, we can find $x \in G$ such that $a * x=b$, and we can find $y \in G$ such that $y * a=b$. Prove that G is a group. Carefully write the proof in your own words.

Proof. Choose $a \in G$, we can find $x, y \in G$, such that $a * x=a$ and $y * a=a$.
x is the right inverse of G and y is the left inverse of G :
$\forall z \in G$, there exists $z^{\prime} \in G$, such that $z=z^{\prime} * a$, then $z * x=\left(z^{\prime} * a\right) * x=$ $z^{\prime} *(a * x)=z^{\prime} * a=z$. Similarly, $y * z=z$. Define $e=x=x y=y$, thus e is the identity in G.
$\forall z \in G$, there exists z_{l}^{-1} and z_{r}^{-1} in G, such that $z_{l}^{-1} * z=z * z_{r}^{-1}=e$. And then $z_{l}^{-1}=z_{l}^{-1} * e=z_{l}^{-1} *\left(z * z_{r}^{-1}\right)=\left(z_{l}^{-1} * z\right) * z_{r}^{-1}=e * z_{r}^{-1}=z_{r}^{-1}$. Thus, $z^{-1}=z_{l}^{-1}=z_{r}^{-1}$ is the inverse of z.
Therefore, $(G, *)$ is a group.
HW3 P5 Let G be a group. Let $x, y \in G$. Assume that $y \neq e, o(x)=2$, and $x y x^{-1}=y^{2}$. Determine $o(y)$.

Proof. (1) $y^{2} \neq e$:
BWOC, if $y^{2}=e$, thus $e=y^{2}=x y x^{-1}$, so $e=x^{-1} e x=x^{-1} x y x^{-1} x=$ eye $=y$, contradiction to $y \neq e$.
(2) $y^{3}=e$:

Since $o(x)=2$, then $x^{2}=x^{-2}=e$, thus

$$
\begin{aligned}
y^{4} & =\left(y^{2}\right)\left(y^{2}\right)=x y x^{-1} x y x^{-1}=x y^{2} x^{-1} \\
& =x\left(x y x^{-1}\right) x^{-1}=x^{2} y x^{-2}=e y e=y
\end{aligned}
$$

So, $y^{4}=y \Rightarrow y^{3}=e$, therefore $o(y)=3$.
HW4 P3 Let H, K be subgroups of a group G.
(a) Prove that $H \cap K$ is a subgroup of G.
(b) Prove that $H \cup K$ is a subgroup of G iff $H \subseteq K$ or $K \subseteq H$.

Proof. (a) $e \in H, K$ implies $e \in H \cap K ; \forall x \in H \cap K, H$ and K are subgroups of G, thus $x^{-1} \in H$ and K, therefore $x^{-1} \in H \cap K$.
(b) \Rightarrow BWOC

Suppose that $H \not \subset K$ and $K \not \subset H$. Choose $h \in H \backslash K$ and $k \in K \backslash H$, since $H \cup K$ is a subgroup of G and $h, k \in H \cup K$, then $h k \in H \cup K$. Without lose of generality, suppose $h k \in H$, then $k=h^{-1} h k \in H$, contradiction to $k \notin H$. Therefore $h k \in K \Rightarrow h=h k k^{-1} \in K$, also
contradiction to $h \notin K$. So $H \subseteq K$ or $K \subseteq H$. \Leftarrow easy to verify.

HW5 P3 Let $f: A \rightarrow B$ and $g: B \rightarrow C$ be functions.
(a) Assume that $g \circ f$ is injective. Does this imply that both f and g are injective? Prove your answer.
(b) Assume that $g \circ f$ is surjective. Does this imply that both f and g are surjective? Prove your answer.

Proof. (a) $g \circ f$ is injective implies f is injective: Let $x_{1}, x_{2} \in A$, if $f\left(x_{1}\right)=f\left(x_{2}\right)$, then $(g \circ f)\left(x_{1}\right)=(g \circ f)\left(x_{2}\right)$. Since $g \circ f$ is injective, thus $x_{1}=x_{2}$. Therefore, f is injective. But, g needn't be injective.
(b) $g \circ f$ is surjective implies g is surjective:
$\forall c \in C$, since $g \circ f$ is surjective, there exists $x \in A$, such that $(g \circ f)(x)=c$, i.e. $g(f(x))=c$ with $f(x) \in B$. Therefore, g is surjective.
f needn't be surjective.

HW6 P4 Let p, q be two prime numbers, and let G be a group of order $p q$. Show that every subgroup H of G with $H \neq G$ is cyclic.

Proof. By Lagrange’s Theorem, $\sharp H$ divides $\sharp G=p q$, thus $\sharp H$ equal to 1 , p or $q(\sharp H \neq p q$, since $H \neq G)$. Since p and q are prime numbers, then H is cyclic.

HW6 P5 Let G be a group of order p^{2}, where p is a prime. Prove that G must have a subgroup of order p.

Proof. Let $e \neq x \in G$ (since $G \neq\{e\}$), by Lagrange's theorem, $o(x)=\sharp\langle x\rangle$ divides $\sharp G=p^{2}$, thus $o(x)$ equal to p or $p^{2}(o(x) \neq 1$, since $x \neq e)$. If $o(x)=p$, then $\sharp\langle x\rangle=p$; if $o(x)=p^{2}$, then $\left\langle x^{p}\right\rangle=o\left(x^{p}\right)=p$.

HW6 P6 Let G be a group. Let H, K be subgroups of G. Assume that $\sharp H=12$ and $\sharp K=17$. Prove that $H \cap K=\{e\}$.

Proof. Since H and K are subgroups of G, so is $H \cap K$. Thus $H \cap K$ also subgroup of H and $K(H \cap K \subseteq H, K)$. By Lagrange's Theorem, $\sharp(H \cap K)$ divides $\sharp H$ and $\sharp K$, thus $\sharp(H \cap K) \mid g c d(12,17)=1$. Therefore, $\sharp(H \cap K)=1$ i.e. $H \cap K=\{e\}$.

HW7 P5 Let G be a group and let N a normal subgroup of G. Let H be a subgroup of G. Set $N H=\{n h \mid n \in N, h \in H\}$. Prove that $N H$ is a subgroup of G.

Proof. $\quad 0^{\circ} \mathrm{NH}$ is closed under group multiplicative: Let $n_{1}, n_{2} \in N$ and $h_{1}, h_{2} \in H, n_{1} h_{1} n_{2} h_{2}=n_{1} h_{1} n_{2} h_{1}^{-1} h_{1} h_{2} . N$ is a normal subgroup of G, implies $h_{1} n_{2} h_{1}^{-1} \in N$, thus $n_{1}\left(h_{1} n_{2} h_{1}^{-1}\right) \in N$. H is a subgroup of G, implies $h_{1} h_{2} \in H$. Therefore $n_{1} h_{1} n_{2} h_{2}=$ $n_{1} h_{1} n_{2} h_{1}^{-1} h_{1} h_{2} \in N H$.
$1^{\circ} e \in N H: e=e e \in N H$.
$2^{\circ} \mathrm{NH}$ is closed under inverses:
Let $n \in N$ and $h \in H,(n h)^{-1}=h^{-1} n^{-1}=h^{-1} n^{-1} h h^{-1}$. Since N is a normal subgroup of G, thus $h^{-1} n^{-1} h \in N$. Therefore, $(n h)^{-1}=$ $h^{-1} n^{-1}=h^{-1} n^{-1} h h^{-1} \in N H$.
Therefore, $N H$ is a subgroup of G.
HW7 P6 Let G be a group and let H a normal subgroup of G such that $[G: H]=20$ and $\sharp H=7$. Suppose $x \in G$ and $x^{7}=e$. Prove that $x \in H$.

Proof. Since H is a normal subgroup of G, thus G / H is a group under natural multiplicative. $\sharp(G / H)=[G: H]=20$ and $x H \in G / H$, implies $x^{20} H=(x H)^{20}=H \in G / H$, i.e. $x^{20} \in H .7$ coprime with 20 , we can find $7 \times 3-20=1, x=x^{7 \times 3-20}=\left(x^{7}\right)^{3} x^{-20}=e^{3} x^{-20}=x^{-20} \in H$.

