HW1 P1 Let S, T be sets. We define the set-theoretic difference of the ordered pairs (S, T) to be

$$S \setminus T = \{ x \in S | x \notin T \}.$$

- (a) Prove that $T \cap (S \setminus T) = \emptyset$.
- (b) Prove that $(S \setminus T) \cup (S \cap T) = S$.
- *Proof.* (a) Let $x \in T \cap (S \setminus T)$, then $x \in T$ and $x \notin T$, a contradiction. Thus, no element in the set $T \cap (S \setminus T)$, therefore $T \cap (S \setminus T) = \emptyset$.
- (b) $(S \setminus T) \cup (S \cap T) \supseteq S$: Let $x \in S$, if $x \in T$ then $x \in (S \cap T) \subseteq (S \setminus T) \cup (S \cap T)$; if $x \notin T$ then $x \in (S \setminus T) \subseteq (S \setminus T) \cup (S \cap T)$. $(S \setminus T) \cup (S \cap T) \subseteq S$: Since $(S \setminus T) \subseteq S$ and $(S \cap T) \subseteq S$, thus $(S \setminus T) \cup (S \cap T) \subseteq S$. Therefore $(S \setminus T) \cup (S \cap T) = S$.

HW1 P5 The Fibonacci sequence f_n is defined by $f_1 = f_2 = 1$ and

$$f_n = f_{n-1} + f_{n-2}$$

for all integers $n \geq 3$. Prove that for every integer $k \geq 1$, the Fibonacci number f_{5k} is divisible by 5.

Proof. By induction If k = 1, $f_5 = f_4 + f_3 = f_3 + f_2 + f_3 = 2f_3 + f_2 = 2(f_2 + f_1) + f_2 = 3f_2 + 2f_1 = 3 + 2 = 5$, thus f_5 is divisible by 5. Suppose that f_{5k} is divisible by 5, consider

$$f_{5(k+1)} = f_{5k+4} + f_{5k+3} = f_{5k+3} + f_{5k+2} + f_{5k+3} = 2f_{5k+3} + f_{5k+2}$$
$$= 2(f_{5k+2} + f_{5k+1}) + (f_{5k+1} + f_{5k})$$
$$= 2f_{5k+2} + 3f_{5k+1} + f_{5k}$$
$$= 2(f_{5k+1} + f_{5k}) + 3f_{5k+1} + f_{5k}$$
$$= 5f_{5k+1} + 2f_{5k}$$

Since $2f_{5k}$ is divisible by 5, so is $f_{5(k+1)}$. Therefore, for all $k \ge 1$, f_{5k} is divisible by 5.

HW2 P2 Let G be the set of all 2×2 matrices

$$\begin{pmatrix} a & b \\ -b & a \end{pmatrix},$$

where $a, b \in \mathbb{R}$ and $a^2 + b^2 \neq 0$. Prove that G forms a group with the usual matrix multiplicative. You may freely use basic facts from linear algebra without proof.

Proof. 0° Matrix multiplicative is a binary operation on G:

$$\begin{pmatrix} a_1 & b_1 \\ -b_1 & a_1 \end{pmatrix} \begin{pmatrix} a_2 & b_2 \\ -b_2 & a_2 \end{pmatrix} = \begin{pmatrix} a_1a_2 - b_1b_2 & a_1b_2 + b_1a_2 \\ -b_1a_2 - a_1b_2 & -b_1b_2 + a_1a_2 \end{pmatrix} \in G$$
where $a_1^2 + a_2^2, b_1^2 + b_2^2 \neq 0$, thus $(a_1a_2 - b_1b_2)^2 + (a_1b_2 + b_1a_2)^2 = (a_1^2 + a_2^2)(b_1^2 + b_2^2) \neq 0$.

1° Associative law:

G inherit associativity from usual matrix multiplication.

2° Identity exist: $e = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \text{ is the identity of } G, \ eA = Ae = A \text{ for any } A \in G.$ 3° Inverse exist: $\forall A = \begin{pmatrix} a & b \\ -b & a \end{pmatrix} \in G, \ A^{-1} = \begin{pmatrix} \frac{a}{a^2+b^2} & \frac{-b}{a^2+b^2} \\ \frac{b}{a+b^2} & \frac{a}{a+b^2} \end{pmatrix} \in G, \text{ where } \left(\frac{a}{a^2+b^2} + \frac{a}{a^2+b^2}\right)$

$$\forall A = \begin{pmatrix} a & b \\ -b & a \end{pmatrix} \in G, \ A^{-1} = \begin{pmatrix} \frac{a^2 + b^2}{b} & \frac{a^2 + b^2}{a} \\ \frac{a^2 + b^2}{a^2 + b^2} & \frac{a^2}{a^2 + b^2} \end{pmatrix} \in G, \ \text{where} \ \left(\frac{a}{a^2 + b^2}\right)^2 + \left(\frac{-b}{a^2 + b^2}\right)^2 = \frac{1}{a^2 + b^2} \neq 0.$$

HW2 P4 Let (G, *) be a group such that x * x = e for all $x \in G$. Prove that G is abelian.

Proof. $\forall z \in G$, since z * z = e, thus $z = z^{-1}$. Let $x, y \in G$, $x * y = (x * y)^{-1} = y^{-1} * x^{-1} = y * x$, therefore G is abelian.

HW2 P5 In class, we defined a binary operation \bigoplus on $\mathbb{Z}_n = \{\overline{0}, \overline{1}, \overline{2}, \dots, \overline{n-1}\}$. We now define a binary operation \bigodot on \mathbb{Z}_n by setting $\overline{a} \bigcirc \overline{b} := \overline{a \cdot b}$.

- (a) Prove that \bigcirc is associative.
- (b) Does $\mathbb{Z}_4 \setminus \{\overline{0}\}$ form a group with \bigcirc ? Prove your answer.
- (c) Does $\mathbb{Z}_5 \setminus \{\overline{0}\}$ form a group with \bigcirc ? Prove your answer.

Proof. (a)

$$(\overline{a} \bigodot \overline{b}) \bigodot \overline{c} = \overline{a \cdot b} \bigodot \overline{c} = \overline{(a \cdot b) \cdot c}$$
$$\overline{a} \bigodot (\overline{b} \bigodot \overline{c}) = \overline{a} \bigodot \overline{b \cdot c} = \overline{(a \cdot b) \cdot c}$$

 $(a \cdot b) \cdot c = (a \cdot b) \cdot c$ implies $(\overline{a} \odot \overline{b}) \odot \overline{c} = \overline{a} \odot (\overline{b} \odot \overline{c})$, where $a, b, c \in \mathbb{Z}$. (b) No, it is not a group. Since $\overline{0} \neq \overline{2} \in \mathbb{Z}_4 \setminus \{0\}$ but $\overline{2} \odot \overline{2} = \overline{2 \cdot 2} = \overline{0} \notin \overline{2}$

- (b) No, it is not a group. Since $0 \neq 2 \in \mathbb{Z}_4 \setminus \{0\}$ but $2 \odot 2 = 2 \cdot 2 = 0 \notin \mathbb{Z}_4 \setminus \{\overline{0}\}$, it is not closed under \bigcirc .
- (c) The table under \bigcirc

\odot	1	$\overline{2}$	$\overline{3}$	$\overline{4}$
$\frac{\bigcirc}{1}$	1	$\frac{-}{2}$	$\frac{3}{3}$	$\overline{4}$
$\frac{1}{2}$	$\frac{1}{2}$	$\frac{-}{4}$	1	$\overline{3}$
$\frac{-}{3}$	$\frac{-}{3}$	1	$\frac{1}{4}$	$\frac{3}{2}$
4	$\overline{4}$	$\frac{1}{3}$	$\overline{2}$	-
_	-	- ×	_	_

 $\overline{1}$ is the identity in $\mathbb{Z}_5 \setminus \{\overline{0}\}$; every element has inverse in $\mathbb{Z}_5 \setminus \{\overline{0}\}$. Therefore, $\mathbb{Z}_5 \setminus \{\overline{0}\}$ is a group.

HW3 P2 Let G be a nonempty set and let * be an associative binary operation on G. Assume that for any elements $a, b \in G$, we can find $x \in G$ such that a * x = b, and we can find $y \in G$ such that y * a = b. Prove that G is a group. Carefully write the proof in your own words.

Proof. Choose $a \in G$, we can find $x, y \in G$, such that a * x = a and y * a = a.

x is the right inverse of G and y is the left inverse of G:

 $\begin{array}{l} \forall z \in G, \text{ there exists } z' \in G, \text{ such that } z = z' * a, \text{ then } z * x = (z' * a) * x = z' * (a * x) = z' * a = z. \text{ Similarly, } y * z = z. \text{ Define } e = x = xy = y, \text{ thus } e \text{ is the identity in } G. \\ \forall z \in G, \text{ there exists } z_l^{-1} \text{ and } z_r^{-1} \text{ in } G, \text{ such that } z_l^{-1} * z = z * z_r^{-1} = e. \\ \text{And then } z_l^{-1} = z_l^{-1} * e = z_l^{-1} * (z * z_r^{-1}) = (z_l^{-1} * z) * z_r^{-1} = e * z_r^{-1} = z_r^{-1}. \\ \text{Thus, } z^{-1} = z_l^{-1} = z_r^{-1} \text{ is the inverse of } z. \\ \end{array}$

- HW3 P5 Let G be a group. Let $x, y \in G$. Assume that $y \neq e$, o(x) = 2, and $xyx^{-1} = y^2$. Determine o(y).
 - Proof. (1) $y^2 \neq e$: BWOC, if $y^2 = e$, thus $e = y^2 = xyx^{-1}$, so $e = x^{-1}ex = x^{-1}xyx^{-1}x = eye = y$, contradiction to $y \neq e$. (2) $y^3 = e$: Since o(x) = 2, then $x^2 = x^{-2} = e$, thus $y^4 = (y^2)(y^2) = xyx^{-1}xyx^{-1} = xy^2x^{-1}$ $= x(xyx^{-1})x^{-1} = x^2yx^{-2} = eye = y$ So, $y^4 = y \Rightarrow y^3 = e$, therefore o(y) = 3.

HW4 P3 Let H, K be subgroups of a group G.

- (a) Prove that $H \cap K$ is a subgroup of G.
- (b) Prove that $H \cup K$ is a subgroup of G iff $H \subseteq K$ or $K \subseteq H$.

Proof. (a) $e \in H, K$ implies $e \in H \cap K$; $\forall x \in H \cap K, H$ and K are subgroups of G, thus $x^{-1} \in H$ and K, therefore $x^{-1} \in H \cap K$.

(b) \Rightarrow BWOC Suppose that $H \not\subset K$ and $K \not\subset H$. Choose $h \in H \setminus K$ and $k \in K \setminus H$, since $H \cup K$ is a subgroup of G and $h, k \in H \cup K$, then $hk \in H \cup K$. Without lose of generality, suppose $hk \in H$, then $k = h^{-1}hk \in H$, contradiction to $k \notin H$. Therefore $hk \in K \Rightarrow h = hkk^{-1} \in K$, also

contradiction to $h \notin K$. So $H \subseteq K$ or $K \subseteq H$. \Leftarrow easy to verify.

HW5 P3 Let $f : A \to B$ and $g : B \to C$ be functions.

- (a) Assume that $g \circ f$ is injective. Does this imply that both f and g are injective? Prove your answer.
- (b) Assume that $g \circ f$ is surjective. Does this imply that both f and g are surjective? Prove your answer.
- *Proof.* (a) $g \circ f$ is injective implies f is injective: Let $x_1, x_2 \in A$, if $f(x_1) = f(x_2)$, then $(g \circ f)(x_1) = (g \circ f)(x_2)$. Since $g \circ f$ is injective, thus $x_1 = x_2$. Therefore, f is injective. But, g needn't be injective.
- (b) $g \circ f$ is surjective implies g is surjective:

 $\forall c \in C$, since $g \circ f$ is surjective, there exists $x \in A$, such that $(g \circ f)(x) = c$, i.e. g(f(x)) = c with $f(x) \in B$. Therefore, g is surjective.

f needn't be surjective.

HW6 P4 Let p, q be two prime numbers, and let G be a group of order pq. Show that every subgroup H of G with $H \neq G$ is cyclic.

Proof. By Lagrange's Theorem, #H divides #G = pq, thus #H equal to 1, p or q ($\#H \neq pq$, since $H \neq G$). Since p and q are prime numbers, then H is cyclic.

HW6 P5 Let G be a group of order p^2 , where p is a prime. Prove that G must have a subgroup of order p.

Proof. Let $e \neq x \in G$ (since $G \neq \{e\}$), by Lagrange's theorem, $o(x) = \sharp\langle x \rangle$ divides $\sharp G = p^2$, thus o(x) equal to p or p^2 ($o(x) \neq 1$, since $x \neq e$). If o(x) = p, then $\sharp\langle x \rangle = p$; if $o(x) = p^2$, then $\langle x^p \rangle = o(x^p) = p$.

HW6 P6 Let G be a group. Let H, K be subgroups of G. Assume that #H = 12and #K = 17. Prove that $H \cap K = \{e\}$.

Proof. Since H and K are subgroups of G, so is $H \cap K$. Thus $H \cap K$ also subgroup of H and K ($H \cap K \subseteq H, K$). By Lagrange's Theorem, $\sharp(H \cap K)$ divides $\sharp H$ and $\sharp K$, thus $\sharp(H \cap K) \mid gcd(12, 17) = 1$. Therefore, $\sharp(H \cap K) = 1$ i.e. $H \cap K = \{e\}$.

HW7 P5 Let G be a group and let N a normal subgroup of G. Let H be a subgroup of G. Set $NH = \{nh | n \in N, h \in H\}$. Prove that NH is a subgroup of G.

Proof. 0° NH is closed under group multiplicative:

Let $n_1, n_2 \in N$ and $h_1, h_2 \in H$, $n_1h_1n_2h_2 = n_1h_1n_2h_1^{-1}h_1h_2$. N is a normal subgroup of G, implies $h_1n_2h_1^{-1} \in N$, thus $n_1(h_1n_2h_1^{-1}) \in N$. H is a subgroup of G, implies $h_1h_2 \in H$. Therefore $n_1h_1n_2h_2 = n_1h_1n_2h_1^{-1}h_1h_2 \in NH$.

- $1^{\circ} e \in NH: e = ee \in NH.$
- 2° NH is closed under inverses: Let $n \in N$ and $h \in H$, $(nh)^{-1} = h^{-1}n^{-1} = h^{-1}n^{-1}hh^{-1}$. Since N is a normal subgroup of G, thus $h^{-1}n^{-1}h \in N$. Therefore, $(nh)^{-1} = h^{-1}n^{-1} = h^{-1}n^{-1}hh^{-1} \in NH$.

Therefore, NH is a subgroup of G.

HW7 P6 Let G be a group and let H a normal subgroup of G such that [G : H] = 20and $\sharp H = 7$. Suppose $x \in G$ and $x^7 = e$. Prove that $x \in H$.

> *Proof.* Since H is a normal subgroup of G, thus G/H is a group under natural multiplicative. $\sharp(G/H) = [G:H] = 20$ and $xH \in G/H$, implies $x^{20}H = (xH)^{20} = H \in G/H$, i.e. $x^{20} \in H$. 7 coprime with 20, we can find $7 \times 3 - 20 = 1$, $x = x^{7 \times 3 - 20} = (x^7)^3 x^{-20} = e^3 x^{-20} = x^{-20} \in H$. \Box