UH - Math 4377/6308 - Dr. Heier - Spring 2020 HW 1

Due date: $01 / 23$, at the beginning of class.

Use regular sheets of paper, stapled together.
 Don't forget to write your name on page 1.

1. (1 point) Let $A=\{1,3,5,7,8\}, B=\{4,5,7\}, C=\{4,6,7\}$. Explicitly write down the sets

$$
A \cup B \cup C, A \cap B \cap C, A \cap(B \cup C), B \backslash(A \cup C), B \backslash(A \cap C), A \times B
$$

2. Let $x, y \in \mathbb{Z}$. Prove or disprove that the following relations are equivalence relations.
(a) (0.5 points) $x \sim y$ if and only if $x-y$ is greater than -1 .
(b) (0.5 points) $x \sim y$ if and only if $x \cdot y \leq 0$.
(c) (0.5 points) $x \sim y$ if and only if $y+7 x$ is an integer multiple of 8 .
3. (1 point) Let $f: A \rightarrow B$ and $g: B \rightarrow C$ be functions. Assume that f is injective and that $g \circ f$ is injective. Does this imply that g is injective? Prove your answer.
4. Let the function $f: \mathbb{Z} \rightarrow \mathbb{Z}$ be defined by

$$
f(x)= \begin{cases}2 x+1 & \text { if } x \text { is even } \\ 3 x+1 & \text { if } x \text { is odd }\end{cases}
$$

(a) (1 point) Is f injective? Prove your answer.
(b) (1 point) Is f surjective? Prove your answer.
5. (1 point) Prove carefully that in any field F, all $a, b \in F$ satisfy $(-a) \cdot(-b)=a \cdot b$. Here, for any $x \in F,-x$ denotes the unique additive inverse of x.
6. (1.5 points) Prove that the set of numbers $\{x+y \sqrt{5} \mid x, y \in \mathbb{Q}\}$ is a field with the usual addition and multiplication of reals.
7. (1 point) Let $z=1+3 i, w=1-i$. Write $\bar{w}, 3 z-2 w, z \bar{w},|\bar{z}|, \frac{w}{z}$ in the form $a+b i$.
8. (1 point) Find all solutions of the equation $z^{2}-4 z+8=0$ in \mathbb{C}.

