UH - Math 4377/6308 - Dr. Heier - Spring 2020 HW 1

Due date: 01/23, at the beginning of class.

Use regular sheets of paper, stapled together. Don't forget to write your name on page 1.

1. (1 point) Let $A = \{1, 3, 5, 7, 8\}$, $B = \{4, 5, 7\}$, $C = \{4, 6, 7\}$. Explicitly write down the sets

$$A \cup B \cup C$$
, $A \cap B \cap C$, $A \cap (B \cup C)$, $B \setminus (A \cup C)$, $B \setminus (A \cap C)$, $A \times B$.

- **2.** Let $x, y \in \mathbb{Z}$. Prove or disprove that the following relations are equivalence relations.
- (a) (0.5 points) $x \sim y$ if and only if x y is greater than -1.
- (b) (0.5 points) $x \sim y$ if and only if $x \cdot y \leq 0$.
- (c) (0.5 points) $x \sim y$ if and only if y + 7x is an integer multiple of 8.
- **3.** (1 point) Let $f: A \to B$ and $g: B \to C$ be functions. Assume that f is injective and that $g \circ f$ is injective. Does this imply that g is injective? Prove your answer.
- **4.** Let the function $f: \mathbb{Z} \to \mathbb{Z}$ be defined by

$$f(x) = \begin{cases} 2x + 1 & \text{if } x \text{ is even} \\ 3x + 1 & \text{if } x \text{ is odd} \end{cases}.$$

- (a) (1 point) Is f injective? Prove your answer.
- (b) (1 point) Is f surjective? Prove your answer.
- **5.** (1 point) Prove carefully that in any field F, all $a, b \in F$ satisfy $(-a) \cdot (-b) = a \cdot b$. Here, for any $x \in F$, -x denotes the unique additive inverse of x.
- **6.** (1.5 points) Prove that the set of numbers $\{x+y\sqrt{5} \mid x,y\in\mathbb{Q}\}$ is a field with the usual addition and multiplication of reals.
- 7. (1 point) Let z = 1 + 3i, w = 1 i. Write \overline{w} , 3z 2w, $z\overline{w}$, $|\overline{z}|$, $\frac{w}{z}$ in the form a + bi.
- **8.** (1 point) Find all solutions of the equation $z^2 4z + 8 = 0$ in \mathbb{C} .