UH - Math 4377/6308 - Dr. Heier - Spring 2020
 HW 3

Due $02 / 06$, at the beginning of class.
Use regular sheets of paper, stapled together.
Don't forget to write your name on page 1 .

1. Determine if the following subsets of \mathbb{R}^{3} are subspaces.
(a) (0.5 points) $\left\{\left(a_{1}, a_{2}, a_{3}\right) \in \mathbb{R}^{3}: 2 a_{1}-3 a_{3}=0\right\}$
(b) (0.5 points) $\left\{\left(a_{1}, a_{2}, a_{3}\right) \in \mathbb{R}^{3}: a_{1}-2 a_{2}+a_{3}=1\right\}$
(c) $\left(0.5\right.$ points) $\left\{\left(a_{1}, a_{2}, a_{3}\right) \in \mathbb{R}^{3}: 2 a_{1}=a_{3}\right\}$
(d) (0.5 points) $\left\{\left(a_{1}, a_{2}, a_{3}\right) \in \mathbb{R}^{3}: 2 a_{1}=5 a_{3}\right.$ and $\left.4 a_{2}=a_{1}+a_{3}\right\}$
2. Determine if the following subsets of the vector space of 2×2 matrices with real entries are subspaces. You may assume as true that the set of 2×2 matrices with real entries forms a vector space with the usual addition and scalar multiplication.
(a) $\left(0.5\right.$ points) $\left\{\left(\begin{array}{ll}a_{1} & a_{2} \\ a_{2} & a_{2}\end{array}\right): a_{1}, a_{2} \in \mathbb{R}\right\}$
(b) (0.5 points) $\left\{\left(\begin{array}{ll}a_{1}^{2} & a_{3} \\ a_{2} & a_{1}^{2}\end{array}\right): a_{1}, a_{2}, a_{3} \in \mathbb{R}\right\}$
3. (2 points) Let W_{1}, W_{2} be two subspaces of a vector space V. Prove that the intersection $W_{1} \cap W_{2}$ is a subspace of V.
4. (2 points) Let W_{1}, W_{2} be two subspaces of a vector space V. Prove that the union $W_{1} \cup W_{2}$ is a subspace of V if and only if $W_{2} \subseteq W_{1}$ or $W_{1} \subseteq W_{2}$.
5. (2 points) Section 1.3, Problem 30
6. (1 point) Which vectors $(a, b, c) \in \mathbb{R}^{3}$ are in $\operatorname{span}(\{(2,1,4),(1,0,1),(3,1,5)\})$?
