UH - Math 4377/6308- Dr. Heier - Spring 2020
 HW 5

Due 02/20, at the beginning of class.
Use regular sheets of paper, stapled together. Don't forget to write your name on page 1.

1. (1 point) Section 1.6, Problem 1 (Just say true or false, no further explanation necessary.)
2. (1 point) Section 1.6, Problem 8
3. (1 point) Let V be a vector space over \mathbb{R}. Let $v, w \in V$. Prove that if $\{v-w, v+w\}$ is linearly independent, then $\{v, w\}$ is linearly independent.
4. For each of the following subspaces of \mathbb{R}^{5}, find a basis.
(a) (0.5 points) $W_{1}=\left\{(a, b, c, d, e) \in \mathbb{R}^{5}: a-b+c-d+e=0\right\}$
(b) (0.5 points) $W_{2}=\left\{(a, b, c, d, e) \in \mathbb{R}^{5}: a=c\right.$ and $a+b+c=d$ and $\left.c+d+e=0\right\}$

The next two problems give examples of how the Replacement Theorem 1.10 discussed in class works in concrete situations.
5. Let $G=\{(1,-1,3,2),(1,1,0,1),(1,-2,1,7),(0,2,1,1)\}$. Let $L=\{(1,-1,-1,0)\}$.
(a) (1 point) Show that G spans \mathbb{R}^{4}. (Since it has 4 elements, G is then automatically a basis, but we are only interested in the spanning property.)
(b) (1 point) Find a subset $H \subset G$ of cardinality 3 such that $H \cup L$ spans \mathbb{R}^{4}. Prove the spanning property with an explicit computation.
6. (2 points) Let $L=\{(1,2,1,3),(0,0,1,1)\}$. Let $G=\left\{v_{1}=(1,2,-2,0), v_{2}=\right.$ $\left.(1,0,0,-1), v_{3}=(0,1,1,1), v_{4}=(1,2,2,4)\right\}$. You can assume without proof that G spans \mathbb{R}^{4}. Find two vectors in G that can be replaced by the two elements of L in such a way that the spanning property is preserved.
7. (2 points) Section 1.6, Problem 30

