# UH - Math 4377/6308 - Dr. Heier - Spring 2020 <br> HW 6 

Due 02/27, at the beginning of class.
Use regular sheets of paper, stapled together. Don't forget to write your name on page 1.

1. (1 point) Prove explicitly that $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}, T\left(a_{1}, a_{2}, a_{3}\right)=\left(0, a_{1}+7 a_{2}-a_{3}, a_{2}+3 a_{3}\right)$ is a linear transformation.
2. (1 point) Prove explicitly that $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}, T\left(a_{1}, a_{2}\right)=\left(a_{1}, a_{1}^{2}+a_{2}^{2}\right)$ is not a linear transformation.
3. (1 point) Let $T: \mathbb{R}^{5} \rightarrow \mathbb{R}^{4}, T\left(a_{1}, a_{2}, a_{3}, a_{4}, a_{5}\right)=\left(a_{1}+a_{2}-a_{5}, a_{2}-a_{4}, a_{1}+2 a_{2}-a_{4}-\right.$ $\left.a_{5}, a_{1}+a_{4}-a_{5}\right)$. Find bases for the kernel and range of $T$.
4. (1 point) Section 2.1, Problem 10
5. (1 point) Determine explicitly the linear transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ such that $T(1,1)=(1,1,2)$ and $T(0,1)=(1,1,1)$.
6. (2 points) Section 2.1, Problem 13
7. (2 points) Section 2.1, Problem 14
8. (1 point) Section 2.1, Problem 17
