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These lecture notes are based on the textbook Linear Algebra, 4th edi-
tion, by Friedberg, Insel, and Spence, ISBN 0-13-008451-4. They are pro-
vided “as is” and as a courtesy only. They do not replace use of the textbook
or attending class.

0 Foundational material: The appendices

0.1 Appendix A: Sets

Definition 0.1. A set is a collection of objects, called elements.

Example 0.2.

• {1, 2, 3} = {2, 1, 1, 1, 2, 3} (no notion of “multiplicity”, no notion of
order)

• [1, 2] = the interval of reals between 1 and 2, including 1 and 2.

• N,Z,Q,R,C (later)

•
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 = set of two vectors

• ∅: the empty set

Given two sets A,B, there are several operations that yield new sets from
these. Most important are the following:

• A ∪B (union of A and B)

• A ∩B (intersection of A and B)

• A×B = {(a, b) : a ∈ A, b ∈ B} (product of A and B)

Definition 0.3. Let A be a set. A relation on A is a subset S of A × A.
Write x ∼ y if and only if (x, y) ∈ S.

Example 0.4. • A = {1, 2, 3}, S = {(1, 2), (1, 3), (2, 3)}. This relation
is “<”.
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• A = {1, 2, 3}, S = {(1, 2), (1, 3), (2, 3), (2, 1), (2, 3), (3, 1), (3, 2)}. This
relation is “6=”.

• A = {1, 2, 3}, S = {(1, 1), (2, 2), (3, 3)}. This relation is “=”.

Recall the following symbols. ∀: “for all”, ∃: “there exists”.

Definition 0.5. Let A be a set with a relation S. Then S is called an
equivalence relation if and only if

i. ∀x ∈ A : x ∼ x (reflexive)

ii. ∀x, y ∈ A : x ∼ y ⇔ y ∼ x (symmetric)

iii. ∀x, y, z ∈ A : (x ∼ y and y ∼ z)⇒ x ∼ z (transitive)

Example 0.6. Let A = Z. Let x ∼ y ⇔ ∃k ∈ Z : x− y = 5k. This defines
an equivalence relation.

i. reflexive: Let x ∈ Z. Then x− x = 0 = 5 · 0. Done.

ii. symmetric: Let x, y ∈ Z with x ∼ y. Then x − y = 5k implies
y − x = 5 · (−k). Done.

iii. transitive: Let x, y, z ∈ Z with x ∼ y and y ∼ z. Then x−y = 5k1 and
y− z = 5k2 implies (by adding the two equalities) x− z = 5 · (k1 +k2).
Done.

0.2 Appendix B: Functions

Definition 0.7. Let A,B be sets. A function f : A → B is a rule that
associates to each element x ∈ A a unique element of B, denoted f(x). The
set A is called the domain, the set B is called the codomain.

Definition 0.8. • For S ⊆ A, f(S) = {f(x) : x ∈ S} (image of S under
f). f(A) is called the range.

• For T ⊆ B, f−1(T ) = {x ∈ A : f(x) ∈ T} (pre-image of T under f)

• f : A→ B = g : A→ B ⇔ ∀x ∈ A : f(x) = g(x)

Definition 0.9. • f : A → B is injective if and only if f(x) = f(y) ⇒
x = y.

• f : A→ B is surjective if and only if ∀b ∈ B∃a ∈ A : f(a) = b.

• For S ∈ A, the restriction of f to S is f |S : S → B, x 7→ f(x).
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0.3 Appendix C: Fields

Definition 0.10. Let A be a set. A binary operation is any map A×A→ A.
We are very familiar with Q and R and the properties that the two binary
operations + and · have.

Definition 0.11. A field F is a set with two binary operations labelled +
and · such that

i. a+ b = b+ a, a · b = b · a (commutativity)

ii. (a+ b) + c = a+ (b+ c) and (a · b) · c = a · (b · c) (associativity)

iii. ∃0 ∈ F : a+ 0 = a ∀a
∃1 ∈ F : 1 · a = a ∀a (neutral elements)

iv. ∀a ∈ A : ∃b ∈ A : a+ c = 0

∀a ∈ A\{0} : ∃b ∈ A : a · b = 1 (inverse elements)

v. a · (b+ c) = a · b+ a · c (distributive law)

Theorem 0.12 (Cancellation Laws). Let F be a field and a, b, c ∈ F .

i. a+ b = c+ b⇒ a = c

ii. a · b = c · b and b 6= 0⇒ a = c

Proof. Part i. Let d be an additive inverse of b. Now, observe that (a+ b) +
d = a and (c+ b) + d = c. Done.

Part ii is done in detail in the textbook.

Proposition 0.13. The neutral element of addition is unique.

Proof. Let 0 and 0′ be two neutral elements of addition. Then

0 = 0 + 0′ = 0′.

Fields enjoy several other important properties (not listed here).

Example 0.14. Some examples of fields.
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• Q,R,C

• Q(
√

2) = {a+ b
√

2|a, b ∈ Q} (see also Homework 1).

0.4 Appendix D: Complex Numbers

Motivation: In R, x2 − 1 = 0 has two solutions, namely −1, 1. However,
the almost identical equation x2 + 1 = 0 has no solutions. This means that
the reals “leave something to be desired.” In response, we introduce the
imaginary unit i, which has the property i2 = −1.

Definition 0.15. A complex number is an expression of the form z = a+ bi
with a, b ∈ R. Sum and product are defined by

z + w = (a+ bi) + (c+ di) = a+ c+ (b+ d)i

and
zw = (a+ bi)(c+ di) = (ac− bd) + (ad+ bc)i.

Remark 0.16. Memorize the multiplication by multiplying out as one would
do naively, and then use i2 = −1. Do some examples!

Theorem 0.17. The complex numbers with sum and multiplication as above
form a field.

Proof. This just involves tedious checking of all the properties–you should
try a few yourself at home.

Remark 0.18. The multiplicative inverse of z = a+ bi is

1

a+ bi
=

a− bi
(a+ bi)(a− bi)

=
a− bi
a2 + b2

=
a

a2 + b2
+ i

−b
a2 + b2

.

Definition 0.19. The complex conjugate of z = a+ bi is z̄ = a− bi.

Proposition 0.20. i. ¯̄z = z

ii. z + w = z̄ + w̄

iii. zw = z̄ · w̄

iv. z
w = z̄

w̄
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Remark 0.21. It is now clear that there is a bijection C→ R2 via a+ bi 7→
(a, b). By Pythagoras’ Theorem, the length of a straight line from the origin
to the point (a, b) is

√
a2 + b2.

Definition 0.22. The absolute value (or modulus) of z = a + bi is |z| =√
a2 + b2.

Remark 0.23. We have

zz̄ = (a+ bi)(a− bi) = a2 + b2.

Thus,
|z| =

√
zz̄.

Properties 0.24. i. |zw| = |z||w|

ii.
∣∣ z
w

∣∣ = |z|
|w|

iii. |z + w| ≤ |z|+ |w|

Theorem 0.25 (Fundamental Theorem of Algebra). Let p(z) = anz
n +

an−1z
n−1 + . . . + a1z + a0 be a complex polynomial (i.e., ai ∈ C). Then

∃z0 ∈ C : p(z0) = 0.

Proof. No proof is given here. This is a comparatively hard theorem to
prove.

Corollary 0.26. For p as above, ∃r1, . . . , rn ∈ C such that

p(z) = an(z − r1) . . . (z − rn).

Proof. Long division!

Remark 0.27. The formula often taught in high school to solve quadratic
equations still works. For example, to solve x2 − 2x + 5 = 0, write x =
−−2

2 ±
√

1− 5 = 1±
√
−4 = 1±

√
4(−1) = 1± 2

√
−1 = 1± 2i.

1 Vector spaces

1.1 Introduction

Geometrically, a vector in, say, R2, is the datum of a direction and a mag-
nitude. Thus, it can be represented by an arrow which points in the given
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direction and has the given length. Two vector can be added using the
parallelogram rule (see the textbook for some nice pictures explaining this).

Physically, the vectors may, e.g., represent forces that are exerted on an
object. The result of the addition is the resulting net force that the object
experiences when the original two forces are applied.

Algebraically, when v = (a1, a2) and w = (b1, b2), then v + w = (a1 +
b1, a2 + b2). Scalar multiplication is defined via t(a1, a2) = (ta1, ta2).

Definition 1.1. The (non-zero) vectors v and w are parallel if and only if
∃t ∈ R : tv = w.

A vector can be interpreted as the displacement vector between its start
and end point. If the start point is (x1, x2) and the end point is (y1, y2),
then the displacement vector is (y1 − x1, y2 − x2).

Definition 1.2. The line through the points A = (x1, x2) and B = (y1, y2)
is

{(x1, x2) + t(y1 − x1, y2 − x2) : t ∈ R}.

Definition 1.3. The line through the points A = (x1, x2, x3) and B =
(y1, y2, y3) is

{(x1, x2, x3) + t(y1 − x1, y2 − x2, y3 − x3) : t ∈ R}.

Definition 1.4. The plane through the pointsA = (x1, x2, x3), B = (y1, y2, y3)
and C = (z1, z2, z3) (not all three on a line) is

{(x1, x2, x3)+s(y1−x1, y2−x2, y3−x3)+t(z1−x1, z2−x2, z3−x3) : s, t ∈ R}.

Example 1.5. i. The line through (1, 1, 2) and (0, 3,−1) is

{(1, 1, 2) + t(−1, 2− 3) : t ∈ R}.

ii. The plane through the points A = (1, 0,−1), B = (0, 1, 2) and C =
(1, 1, 0) is

{(1, 0,−1) + s(−1, 1, 3) + t(0, 1, 1) : s, t ∈ R}.

Now, observe that vector addition and scalar multiplication satisfy cer-
tain laws, e.g., v + w = w + v, 1 · v = v, (ab)v = a(bv). In Section 1.2, we
will distill these obvious properties into an abstract definition.
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Quiz 1.
1. (5 points) Let R be the set of real numbers. Define a relation R on R by
(x, y) ∈ R if and only if x− y is an integer. Prove that R is an equivalence
relation.

2. Let the function f : Z→ Z be defined by

f(x) =

{
2x if x is even

3x+ 1 if x is odd
.

i. (2.5 points) Is f injective? Prove your answer.

ii. (2.5 points) Is f surjective? Prove your answer.

Answer to 1.

i. Reflexivity. Let x ∈ R. Then x− x = 0 ∈ Z.

ii. Symmetry. Let (x, y) ∈ R. Then there exists an integer k such that
x−y = k. After multiplying both sides by −1, we obtain y−x = −k ∈
Z, which implies (y, x) ∈ R.

iii. Transitivity. Let (x, y), (y, z) ∈ R. Then there exist integer k, ` such
that x − y = k and y − z = `. Adding the two equations yields
x− z = k + ` ∈ Z, which implies (x, z) ∈ R.

Answer to 2.

i. The function f is not injective, because f(2) = 4 = f(1).

ii. The function f is not surjective, because there are no odd numbers in
its Range.

1.2 Vector Spaces

Definition 1.6. A vector space (or linear space) V over a field F (think
F = R, or C) is a set with a binary operation denoted “+” and a second
map · : F × V → V such that

i. ∀x, y ∈ V : x+ y = y + x
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ii. ∀x, y, z ∈ V : (x+ y) + z = x+ (y + z)

iii. ∃0 ∈ V : ∀x ∈ V : x+ 0 = x

iv. ∀x ∈ V ∃y ∈ V : x+ y = 0

v. ∀x ∈ V : 1x = x, where 1 is the neutral element of multiplication in F

vi. ∀a, b ∈ F∀x ∈ V : (ab)x = a(bx)

vii. ∀a ∈ F∀x, y ∈ V : a(x+ y) = ax+ ay

viii. ∀a, b ∈ F∀x ∈ V : (a+ b)x = ax+ bx

Definition 1.7. The elements of F are called scalars. The elements of V
are called vectors. Because of item ii above, sums like x + y + z + w are
well-defined.

Remark 1.8. To simplify typing, we will usually not adorn vectors with an
arrow, i.e., we will write x instead of ~x and 0 instead of ~0. Note that the
neutral element of addition in the field is also denoted with 0, but it should
always be clear from the context what is meant.

Example 1.9. i. (THE example, see later section on isomorphisms) Take
a field F . (We will mostly just take R, or perhaps C.) An n-tuple is
(a1, . . . , an), where a1, . . . , an ∈ F . Note that {n-tuples} ∼= Fn natu-
rally. Define (a1, . . . , an) + (b1, . . . , bn) = (a1 + b1, . . . , an + bn). Also,
c(a1, . . . , an) = (ca1, . . . , can) for c ∈ F .

ii. Matm,n(F ) is a vector space with componentwise addition and scalar
multiplication

The following examples of vector spaces are substantially different from
the examples above. They are “infinite dimensional,” more about that later.

Example 1.10. i. Let S be a set of real numbers Let F be the set of
all real-valued functions on S. Then F is a vector space (over R) with
the usual addition and scalar multiplication of real-valued functions.

ii. Let S now be an interval of reals. Consider in F only those functions
that are continuous. This is also a vector space (use the summation
theorem for continuous functions from calculus)

iii. Consider in F only those functions that are differentiable. This is also
a vector space (use the summation theorem for differentiable functions
from calculus)
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iv. Assume that x0 ∈ S. Then {f : S → R | f(x0) = 0} is a vector space.
(check it!). {f : S → R | f(x0) = 1} is not!

Again, we would like to infer more properties of vector spaces from the
original list of 8 properties. To start, we observe that the zero vector is
unique, with the same proof as in the case of fields in the Introduction.
Moreover, we also have a cancellation law:

Theorem 1.11 (Cancellation law for vector spaces). Let V be a vector space
and x, y, z ∈ V . If x+ z = y + z, then x = y.

Proof. Let v be such that z + v = 0 (condition iv). Then

x = x+ 0 = x+ (z + v) = (x+ z) + v

= (y + z) + v = y + (z + v) = y + 0 = y

due to conditions ii and iii.

Corollary 1.12. The additive inverse is unique.

Theorem 1.13. Let V be a vector space. Then the following statements are
true.

i. ∀x ∈ V : 0x = ~0

ii. ∀x ∈ V ∀a ∈ F : (−a)x = −(ax) = a(−x)

iii. ∀a ∈ F : a~0 = ~0

Proof. The textbook has detailed proofs of i and ii. The item iii is left to
the reader.

1.3 Subspaces

Definition 1.14. A subset W of a vector space V over the field F is called
a subspace of V if W is a vector space with + and scalar multiplication from
V .

Example 1.15. • {~0}, V

• R2 ∼= {(a, b, 0)|a, b ∈ R} ⊂ R3
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• The above examples 1.10ii and 1.10iii in 1.10i.

In order to verify that W is a subspace of V , it is not necessary to
check all the vector space axioms in the definition of a vector space. For
example, the restricted addition is clearly commutative since it was already
commutative before the restriction.

Theorem 1.16. A nonempty subset W of the vector space V is a subspace
of V if and only if

i. ∀x, y ∈W : x+ y ∈W (closedness under +)

ii. ∀c ∈ F∀x ∈W : c · x ∈W (closedness under scalar multiplication)

Proof. First, observe that the implication ⇒ is trivial. The proof of the
other direction consists of some easy verifications. For example, let’s see
why ~0 ∈W : Take an arbitrary element x of W . Since W is nonempty, such
an element exists. Now, simply observe that 0 · x = ~0, which is an element
of W by ii. The remaining details are left to the reader.

More examples:

Example 1.17. • Let W = {(a, b)|a + b = 0} ⊂ R2. Closedness under
+ is checked as follows. Let (a, b), (c, d) ∈ W . Then the result of the
addition is (a+c, b+d), which satisfies (a+c)+(b+d) = (a+b)+(c+d) =
0+0 = 0. Closedness under scalar multiplication is seen as follows. Let
(a, b) ∈W and c a scalar. Then the result of the scalar multiplication
is (ca, cb), which satisfies ac+ cb = c(a+ b) = c0 = 0.

• Let W = {(a, b, c)|3a− b+ 2c = 0} ⊂ R3. Check it as in i.

• What aboutW = {(a, b, c)|3a−b+2c = 1} ⊂ R3? Let (a, b, c), (d, e, f) ∈
W . Then the result of their addition is (a+d, b+e, c+f), which satis-
fies 3(a+d)−b−e+2(c+f) = 3a−b+2c+3d−e+2f = 1+1 = 2 6= 1.
Thus, W is not closed under addition and not a subspace.

• Let V = {f : S → R}. Let p ∈ S. Let Wp = {f ∈ V : f(p) = 0}.
Then Wp is a subspace of V : for f, g ∈Wp, (f + g)(p) = f(p) + g(p) =
0 + 0 = 0. Furthermore, for c ∈ R, (cf)(p) = cf(p) = c0 = 0.

• Any intersection of subspaces in a vector space is itself a subspace.
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A major class of examples is given by sums and direct sums of subspaces.

Definition 1.18. Let V be a vector space. Let S, T be nonempty subsets
of V . Then let S + T = {x + y|x ∈ S, y ∈ T}. We call S + T the sum of S
and T .

Definition 1.19. Let V be a vector space. Let W,U be subspaces of V .
Then we call V the direct sum of W,U if W + U = V and W ∩ U = {0}.
Write V = W ⊕ U .

Proposition 1.20. Let V be a vector space. Let W,U be subspaces of V .
Then the sum W + U is a subspace of V (containing both W and U).

Proof. (w1 + u1) + (w2 + u2) = (w1 + w2) + (u1 + u2), which is the sum of
a vector in W , namely w1 + w2, and a vector in U , namely u1 + u2. Thus,
W +U is closed under addition. The closedness under scalar multiplication
is completely analogous.

Example 1.21. • {(a, b, 0, c)|a, b, c ∈ R} + {(d, 0, e, f)|d, e, f ∈ R} =
R4. But this is not a direct sum.

• {(a, 0, 0, b)|a, b ∈ R}⊕{(0, c, d, 0)|c, d ∈ R} = R4. This is a direct sum.

• {(a, 0, 0)|a ∈ R} ⊕ {(0, b, 0)|b ∈ R} = {(a, b, 0)|a, b ∈ R}

1.4 Linear Combinations and systems of linear equations

Definition 1.22. Let V be a vector space and S a nonempty subset of V .
We call v ∈ V a linear combination of vectors in S if there exist vectors
u1, . . . , un ∈ S and scalars a1, . . . , an ∈ F such that v = a1u1 + . . .+ anun.

Example 1.23. • (3, 4, 1) = 3(1, 0, 0) + 4(0, 1, 0) + 1(0, 0, 1).

• If we want to write (3, 1, 2) as a linear combination of (1, 0, 1), (0, 1, 1), (1, 2, 1),
how do we find the coefficients a1, a2, a3? Answer: Make the Ansatz

(3, 1, 2) = a1(1, 0, 1) + a2(0, 1, 1) + a3(1, 2, 1)

and solve the system of linear equations

a1 + a3 = 3, a2 + 2a3 = 1, a1 + a2 + a3 = 2.

Solution: a1 = 2, a2 = −1, a3 = 1.
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Quiz 2.
1. (5 points) Let V = R2. Let W = {(a, b) ∈ V : a2 − b2 = 0}. Is W a
subspace of V ? Prove your answer.

2. (5 points) Let V = R3. Let W = {(s, s − t, t) ∈ V : s, t ∈ R}. Is W a
subspace of V ? Prove your answer.

Answer to 1. No. We have (1, 1) and (1,−1) in W , but their sum (1, 1) +
(1,−1) = (2, 0) is not in W .

Answer to 2. Yes. W is clearly non-empty. Moreover, if (s1, s1 − t1, t1) and
(s2, s2− t2, t2) are in W , then so is their sum (s1 +s2, s1 +s2− t1− t2, t1 + t2)
(take s = s1 + s2 and t = t1 + t2). Also, if c ∈ R, then c(s1, s1 − t1, t1) =
(cs1, cs1 − ct1, ct1) is in W (take s = cs1).

Example 1.24. • Finding the ai in a given situation may or may not
be possible. E.g., writing

(3, 1, 2) = a1(1, 0, 0) + a2(0, 1, 0) + a3(1, 2, 0)

is clearly impossible.

• There may be many choices for the ai:

(2, 6, 8) = a1(1, 2, 1)+a2(−2,−4,−2)+a3(0, 2, 3)+a4(2, 0,−3)+a5(−3, 8, 16)

is equivalent to

(a1, a2, a3, a4, a5) ∈ {(−4 + 2s− t, s, 7− 3t, 3 + 2t, t)|s, t ∈ R}.

(There are two “free variables”.)

There are three types of operations that we used to solve the above
systems of linear equations:

i. Interchange the order of any two equations.

ii. Multiply an equation by a nonzero scalar.

iii. Add one equation to another.

Key point: These operations do not change the set of solutions.

Definition 1.25. Let V be a vector space. Let S be a nonempty subset of
V . We call span(S) the set of all vectors in V that can be written as a linear
combination of vectors in S.
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Example 1.26. Let S = {(1, 0, 0), (0, 1, 0), (2, 1, 0)}. Then span(S) =
{(s, t, 0)|s, t ∈ R}.

Theorem 1.27. The span of any subset S of a vector space V is a subspace
of V .

Proof. Let v = a1u1 + . . . + anun ∈ span(S). Then cv = (ca1)u1 + . . . +
(can)un ∈ span(S). Thus, closedness under scalar multiplication is ok.

Let v = a1v1 + . . . + anvn ∈ span(S) and let w = b1w1 + . . . + bmwm ∈
span(S). Then

v + w = a1v1 + . . .+ anvn + b1w1 + . . .+ bmwm.

Thus, closedness under addition is ok.

Example 1.28. • S = {(1, 0, 0), (0, 1, 0), (0, 0, 1)} spans R3.

• S = {(1, 2), (2, 1)} spans R2.

• S = {(1, 1), (2, 2)}. span(S) = {(s, s)|s ∈ R} 6= R2.

• S = {(1, 2)} does not span R2.

• Which (a, b, c) are in span({(1, 1, 2), (0, 1, 1), (2, 1, 3)})? Answer: Those
that satisfy a+ b = c.

1.5 Linear dependence and linear independence

Motivation: Let W be a subspace of V . We are interested in a set S ⊂ W
such that span(S) = W and S is “as small as possible”.

Definition 1.29. A subset S of a vector space V is called linearly dependent
if there exist a finite number of vectors u1, . . . , un ∈ S and scalars a1, . . . , an,
not all equal to zero, such that

a1u1 + . . .+ anun = 0.

We also say that the vectors in S are linearly dependent.

Example 1.30. Let S = {(1, 3,−4, 2), (2, 2,−4, 0), (1,−3, 2−4), (−1, 0, 1, 0)}.
Then

4(1, 3,−4, 2)− 3(2, 2,−4, 0) + 2(1,−3, 2− 4) + 0(−1, 0, 1, 0) = (0, 0, 0, 0).

Thus, S is linearly dependent.
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Definition 1.31. If S is not linearly dependent, we say S is linearly inde-
pendent.

Remark 1.32. Linear independence is equivalent to: “
∑
aivi = ~0 ⇒

all ai = 0”.

Remark 1.33. The empty set ∅ is linearly independent. The singleton set
{v} is linearly independent if and only if v 6= ~0.

Theorem 1.34. Let V be a vector space. If S1 ⊆ S2 and S1 is linearly
dependent, then S2 is linearly dependent.

Proof. This is immediate from the definition.

Theorem 1.35. Let S be a linearly independent subset of V . Let v ∈ V \S.
Then S ∪ {v} is linearly dependent if and only if v ∈ span(S).

Proof. “⇒”. Write a1u1 + . . . + anun + an+1v = 0 with not all ai equal to
zero and ui ∈ S.

Claim: an+1 6= 0.

Proof of claim: If an+1 = 0, then at least one of a1, . . . , an is not equal
to zero and a1u1 + . . .+ anun = 0. Contradiction to linear independence of
S.

So, an+1 6= 0, and we can write v = −a1
an+1

u1 + . . .+ −an
an+1

un, qed.

“⇐”. Write v = a1u1 + . . .+ anun. Then a1u1 + . . .+ anun + (−1)v = 0.
Thus, S ∪ {v} is linearly dependent, qed.

Quiz 3.
(10 points) Let V be a vector space over R. Let v, w ∈ V . Prove that if
{v, w} is linearly independent then {v − w, v + w} is linearly independent.

Answer: Make the Ansatz a(v − w) + b(v + w) = 0. We have to prove
that a = b = 0. The Ansatz implies (a + b)v + (b − a)w = 0. By the linear
independence of {v, w}, we can infer that a+ b = 0 and b− a = 0, which is
a linear system of two homogeneous equations in 2 variables a, b. The only
solution of this system is a = b = 0, q.e.d.
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1.6 Bases and dimension

Definition 1.36. Let V be a vector space. A basis β is a linearly indepen-
dent subset of V which satisfies span(β) = V .

Theorem 1.37. Let V be a vector space. Let β = {u1, . . . , un} be a subset
of V . Then

β is a basis ⇔ ∀v ∈ V : ∃! a1, . . . , an ∈ F : v = a1u1 + . . .+ anun.

(Recall that ∃! means unique existence.)

Proof. “⇒”. Spanning property is already known. We just have to prove
uniqueness.

Let
a1u1 + . . .+ anun = v = b1u1 + . . .+ bnun.

This implies
(a1 − b1)u1 + . . .+ (an − bn)un = 0.

Linear independence implies a1 − b1 = 0, . . . , an − bn = 0. Done.

“⇐”. Spanning property is already known. To show lin. indep., just
observe that

a1u1 + . . .+ anun = 0

is solved by the trivial solution a1 = . . . = an = 0. However, by assumption,
this is the only solution. Thus, we have established linear independence.
Done.

Theorem 1.38. Let V be a vector space. Let S be a finite subset of V with
span(S) = V . Then there exists a subset of S which is a basis for V . In
particular, V has a finite basis.

Proof. We conduct this proof by induction over the cardinality of S.

If #S = 1, then S = {v}, and S is clearly linearly independent (unless
we are in a trivial cases).

Now, assume that we know the theorem for #S = n. We have to prove
it for #S = n+ 1.

16



If S is not a basis, then S is lin. dep. Claim: ∃v ∈ S : V = span(S) =
span(S \ {v}). Proof of Claim: lin. dep. means that there is a linear
combination

a1u1 + . . .+ anun = 0

with some ai0 6= 0. We can solve the above equation for ui0 . It is now clear
that a linear combination of the vectors u1, . . . , un can be expressed as a
linear combination of the vectors u1, . . . , ui0−1, ui0+1, . . . un. Thus, letting
v = ui0 establishes the Claim.

If we let S̃ = S \ {ui0}, then we can apply the induction hypothesis to
obtain that S̃ contains a basis. Since S̃ ⊂ S, we can conclude that S contains
a basis. Done.

Example 1.39. • Let S = {(1, 0), (1, 1), (2, 3)}. Observe that S spans
R2, but S is lin. dep. After removing any one of the three vectors from
S, we obtain a basis.

• Let S = {(1, 0), (0, 1), (0, 2)}. Observe that S spans R2, but S is lin.
dep. After removing the second or third vector, we obtain a basis.
However, removing the first vector does not yield a basis.

• Let S = {(2,−3, 5), (8,−12, 20), (1, 0,−2), (0, 2,−1), (7, 2, 0)}. Observe
that S spans R3, but S is lin. dep.. Consider the span of the first vec-
tor. Obviously, the span remains unchanged after adding the second
vector (which is 4 times the first), so the second vector should be re-
moved. The third vector is not a multiple of the first, so we keep it.
A direct computation shows that the first, third and fourth vector are
lin. indep. and span R3. The fifth can be disregarded.

Theorem 1.40 (Replacement Theorem). Let V be a vector space. Let V =
span(G), where G is a subset of V of cardinality n. Let L be a linearly
independent subset of V of cardinality m. Then the following holds.

• m ≤ n

• there exists a subset H ⊆ G of cardinality n −m such that span(L ∪
H) = V

Remark 1.41. A typical situation is for example m = 2 and n = 5, i.e.,
L = {v1, v2} and G = {w1, w2, w3, w4, w5}. The replacement theorem now
says that there are two vectors in G that can be replaced with the two
vectors from L such that the set obtained by the replacement still spans V .
In other words, L can be injected into G and the result still spans V .
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Corollary 1.42. Let V be a vector space with a finite basis. Then all bases
contain the same number of elements.

Proof. Let β basis of cardinality m and γ basis of cardinality n. Since β lin.
indep. and γ spans, we have m ≤ n. By symmetry, we have m = n.

Definition 1.43. A vector space is called finite dimensional if there exists
a basis consisting of finitely many vectors. The unique cardinality of a basis
of a finite dimensional vector space is called the dimension of V , denoted
dim(V ).

Example 1.44. dim(Rn) = n, dim(Matm×n) = mn. (Consider the stan-
dard bases.)

Here are some more Corollaries.

Corollary 1.45. Let V be a vector space of dimension n. Then any gener-
ating set S of V contains at least n elements.

Proof. By Theorem 1.38, S contains a basis. By Corollary 1.42, that basis
has n elements. So S contains at least n elements.

Corollary 1.46. Let V be a vector space and S ⊂ V a subset. If V =
span(S) and #S = dim(V ), then S is a basis.

Proof. By Theorem 1.38, S contains a basis. This basis must have dimV =
#S elements. Thus, this basis is S itself.

Corollary 1.47. Let V be a vector space and S ⊂ V a subset. If S is lin.
indep. and #S = dim(V ), then S is a basis.

Proof. Take any basis G. Apply the Replacement Theorem with G and L =
S. Since #G = #S = dimV , we have H = ∅ and V = spanG = spanS.

Corollary 1.48. Let V be a vector space. Every lin. indep. subset S of V
can be extended to a basis.

Proof. Take any basis G of V . Apply the Replacement Theorem with S = L
and G.

Finally, let us prove the Replacement Theorem.
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Proof of Replacement Theorem. For a fixed n = #G, we do induction over
#L = m.

For m = 0, we have L = ∅. Take H = G. Done.

Induction step: “m→ m+ 1”.

Let L = {v1, . . . , vm+1}, let L̃ = {v1, . . . , vm}.

Induction hypothesis ⇒ ∃H̃ = {u1, . . . , un−m} such that V = span(L̃ ∪
H̃).

Write

vm+1 = a1v1 + . . .+ amvm + b1u1 + . . .+ bn−mun−m. (1)

Since L is lin. indep. we know that there exists i such that bi 6= 0. Thus
n−m > 0, i.e., n ≥ m+ 1. This proves the first part of the claim for m+ 1.

It remains to show that if, w.l.o.g., b1 6= 0, then H = {u2, . . . , un−m}
works, i.e., V = span(L ∪ H). Let v ∈ V be arbitrary. We know we can
write

v = α1v1 + . . .+ αmvm + γ1u1 + . . .+ γn−mun−m. (2)

If we solve (1) for u1 and substitute into (2), we see that v can be written
as a linear combination of v1, . . . , vm+1, u2, . . . , un−m. Done.

Now, let us discuss the dimension of subspaces.

Theorem 1.49. Let V be a vector space. Let W be a subspace of V . Assume
dimV is finite. Then dimW ≤ dimV and equality holds if and only if
V = W .

Proof. This is immediate from the Replacement Theorem.

In the following examples, the task is to find a basis for (and the dimen-
sion of) the subspace W .

Example 1.50. • Let V = R3. Let W = {(a1, a2, a3) | a1 + a3 =
0 and a1 + a2 − a3 = 0}. Solving the system

a1 + a3 = 0 and a1 + a2 − a3 = 0

yields W = {(−t, 2t, t) | t ∈ R}. Thus {(−1, 2, 1)} is a basis, and the
dimension of W is one.
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Quiz 4:

(10 points) Let G = {(1, 0, 1, 0), (1, 1, 0, 1), (1,−2, 1, 2), (0, 2, 1, 2)}. Let L =
{(2,−1, 1, 3)}. You may assume without proof that G spans R4. Find a
subset H ⊂ G of cardinality 3 such that H∪L spans R4. Prove the spanning
property with an explicit computation.

Answer. Note that (2,−1, 1, 3) = (1, 1, 0, 1) + (1,−2, 1, 2), so (2,−1, 1, 3)
may replace either (1, 1, 0, 1) or (1,−2, 1, 2). To show that, e.g.,

{(1, 0, 1, 0), (2,−1, 1, 3), (1,−2, 1, 2), (0, 2, 1, 2)}

spans R4, start solving a system as follows:

1a1 + 2a2 + 1a3 + 0a4 = a

0a1 − 1a2 − 2a3 + 2a4 = b

1a1 + 1a2 + 1a3 + 1a4 = c

0a1 + 3a2 + 2a3 + 2a4 = d

This system can be transformed to echelon form (do it!) and is thus solvable.

Example 1.51. • Let V = R5. Let W = {(a1, a2, a3, a4, a5) | a1 + a3 +
a5 = 0 and a2 = a4}. Solving the system

a1 + a3 + a5 = 0 and a2 = a4

yields

W = {(−a3 − a5, a4, a3, a4, a5) | a3, a4, a5 ∈ R}
= {a3(−1, 0, 1, 0, 0) + a4(0, 1, 0, 1, 0) + a5(−1, 0, 0, 0, 1)| a3, a4, a5 ∈ R}

Thus {(−1, 0, 1, 0, 0), (0, 1, 0, 1, 0), (−1, 0, 0, 0, 1)} is a basis for W , and
the dimension of W is three.

2 Linear transformations and matrices

2.1 Linear transformations, null spaces, and ranges

Definition 2.1. Let V,W be vector spaces over the same field F . We call
a function T : V →W a linear transformation from V to W if
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i. ∀x, y ∈ V : T (x+ y) = T (x) + T (y)

ii. ∀c ∈ F∀x ∈ V : T (cx) = cT (x)

Remark 2.2. We say T is linear for short.

Properties 2.3. • T (~0) = ~0

• T (x− y) = T (x)− T (y)

• T (a1v1 + . . .+ anvn) = a1T (v1) + . . .+ anT (vn)

Example 2.4. • T (a1, a2) = (2a1 + a2, a1) (Check it!)

• T : R5 → R7, T (a1, . . . , a5) = (a1, a2, 0, a5, 0, 0, a1)

• T : C∞(R)→ C∞(R), T (f) = df
dx

Definition 2.5. LetV,W be vector spaces. Let T : V → W linear. We
define the null space (aka kernel) of T to be

N(T ) = {x ∈ V : T (x) = ~0}.

Remark 2.6. Recall that the range of T is

R(T ) = {T (x) : x ∈ V }.

Example 2.7. Let T : R3 → R2, T (a1, a2, a3) = (a1 − a2, 2a3). To find the
null space, set

T (a1, a2, a3) = (0, 0)⇔ a1 − a2 = 0 and 2a3 = 0.

The solution of the above system of two equations in three variables is

N(T ) = {(t, t, 0)|t ∈ R}.

Moreover, it is clear that T is onto, so R(T ) = R2.

Theorem 2.8. Let V,W be vector spaces and T : V →W linear. Then

i. N(T ) is a subspace of V

ii. R(T ) is a subspace of W
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Proof. i. N(T ) is non-empty because ~0 ∈ N(T ). Now, we just have to check
closedness. If T (x) = 0 and T (y) = 0, then T (ax + by) = aT (x) + bT (y) =
0 + 0 = 0. Done.

ii. Again, just closedness. If T (x) = v1 and T (y) = v2, then av1 + bv2 =
aT (x) + bT (y) = T (ax+ by). Done.

Theorem 2.9. Let V,W be vector spaces and T : V → W linear. Let
{v1, . . . , vn} be a basis for V . Then R(T ) = span{T (v1), . . . , T (vn)}.

Proof. Let v = a1v1 + . . . + anvn. Then T (v) = T (a1v1 + . . . + anvn) =
a1T (v1) + . . .+ anT (vn) ∈ span{T (v1), . . . , T (vn)}. Done.

Example 2.10. Problem: Find (a basis for)R(T ) when T : R3 → R3, T (a1, a2, a3) =
(a1 − 2a2, a2 + a3, 2a1 + a2 + 5a3).

First, we note T (1, 0, 0) = (1, 0, 2), T (0, 1, 0) = (−2, 1, 1), T (0, 0, 1) =
(0, 1, 5). Thus, according to Theorem 2.9, R(T ) = span{(1, 0, 2), (−2, 1, 1), (0, 1, 5)}.
Now, note that twice the first vector plus the second equals the third, so
R(T ) = span{(1, 0, 2), (−2, 1, 1)}. The set {(1, 0, 2), (−2, 1, 1)} is clearly a
basis for R(T ), and dimR(T ) = 2.

Note thatN(T ) is easily computed to be one-dimensional, and dimN(T )+
dimR(T ) = 3.

Definition 2.11. Let V,W be vector spaces and T : V → W linear. If
N(T ), R(T ) are finite dimensional, then let

nullity(T ) = dimN(T ), rank(T ) = dimR(T ).

Theorem 2.12 (Dimension Theorem). Let V,W be vector spaces and T :
V →W linear. If V is finite-dimensional, then

nullity(T ) + rank(T ) = dimV.

Proof. Let {v1, . . . , vk} be a basis for N(T ). In particular, k = nullity(T ).
Let n = dimV . The Replacement Theorem implies that there are vectors
vk+1, . . . , vn ∈ V such that {v1, . . . , vn} is a basis for V .

Claim: {T (vk+1), . . . , T (vn)} is a basis for R(T ).

Spanning: Let v = a1v1 + . . .+ anvn ∈ V arbitrary. Then

T (v) = a1T (v1) + . . .+ akT (vk) + ak+1T (vk+1) + . . .+ anT (vn).
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However, the first k summands are zero due to v1, . . . , vk ∈ N(T ).

Lin. indep.: Write

bk+1T (vk+1) + . . .+ bnT (vn) = 0.

We have to conclude bk+1 = . . . = bn = 0. To do this, note that bk+1T (vk+1)+
. . .+ bnT (vn) = T (bk+1vk+1 + . . .+ bnvn), i.e., bk+1vk+1 + . . .+ bnvn ∈ N(T ).
Thus, there exist a1, . . . , ak :

a1v1 + . . .+ akvk = bk+1vk+1 + . . .+ bnvn.

Since {v1, . . . , vn} is a basis for V and thus lin. indep., this is only possible
if

a1 = . . . = ak = bk+1 = . . . = bn = 0.

Theorem 2.13. Let V,W vector spaces. Let T : V →W linear. Then T is
one-to-one if and only if N(T ) = {~0}.

Proof. ⇒. Saw: T (~0) = ~0. Since T is one-to-one, this implies N(T ) = {~0}.

⇐. Assume T (x) = T (y). Then T (x) − T (y) = 0. By linearity of T ,
T (x− y) = ~0. By assumption, x− y = ~0. Done.

Theorem 2.14. Let V,W vector spaces. Let {v1, . . . , vn} be a basis for V .
Let w1, . . . , wn be a list of arbitrary vectors in W . Then there exists a unique
T : V →W linear such that T (vi) = wi for all i = 1, . . . , n.

Proof. Recall that an arbitrary v ∈ V can be written as v =
∑

i aivi with
unique coefficients ai. Then set T (v) =

∑
i aiwi. It is easy to check that this

defines a well-defined linear map as required in the Theorem. Uniqueness is
also clear.

Corollary 2.15. Let V,W vector spaces. Let U, T : V → W linear with
U(vi) = T (vi) on a basis {v1, . . . , vn} for V . Then U = T .

Quiz 5:

(10 points) Let T : R4 → R4 be given by

(a1, a2, a3, a4) 7→ (a1 +a2−a3, a2 +a4, a1−a2−a3−2a4, 2a1 +3a2−2a3 +a4).
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Find bases for the null space and range of T . Justify your reasoning carefully.

Answer. To find the null space N(T ), solve T (a1, a2, a3, a4) = (0, 0, 0, 0).
This turns out to be equivalent to the system

a1 + a2 − a3 = 0, a2 + a4 = 0.

Thus, N(T ) = {(s+ t,−t, s, t) | s, t ∈ R}.

By the Dimension Theorem, the rank of T is 4 − 2 = 2, so any two
linearly independent vectors in the range of T will form a basis. Simply take
T (1, 0, 0, 0) = (1, 0, 1, 2) and T (0, 1, 0, 0) = (1, 1,−1, 3) (which are clearly
linearly independent).

2.2 The matrix representation of a linear transformation

Definition 2.16. Let V be a finite dimensional vector space. An ordered
basis for V is a basis endowed with a specific order.

Example 2.17. As ordered bases,

{(1, 0, 0), (0, 1, 0), (0, 0, 1)} 6= {(0, 1, 0), (1, 0, 0), (0, 0, 1)}.

Definition 2.18. Let β = {u1, . . . , un} ordered basis for V . We saw earlier:

∀x ∈ V ∃!a1, . . . , an : x = a1u1 + . . .+ anun.

Write
[x]β = (a1, . . . , an)

for the coordinate vector of x relative to β. In particular, [ui]β = ei.

Definition 2.19. Take V with β = {v1, . . . , vn}, W with γ = {w1, . . . , wm}.
Let T : V →W linear. Write

T (vj) =

m∑
i=1

aijwi

for j = 1, . . . , n. Call the matrix (aij) the matrix representation of T with
respect to β and γ. When V = W and β = γ, write A = [T ]β.

Remark 2.20. The key fact to remember is that the j-th column of the
matrix representation is [T (vj)]γ .

24



Example 2.21. (a) Let T : R2 → R3 be given by T (a1, a2) = (a1 +
3a2, 0, 2a1 − 4a2). Let β and γ be the respective standard bases. Then

T (1, 0) = (1, 0, 2), T (0, 1) = (3, 0,−4).

Thus,

[T ]γβ =

1 3
0 0
2 −4

 .

(b) Same map, but with γ′ = {e2, e1, e3}:

[T ]γ
′

β =

0 0
1 3
2 −4

 .

(c) Same map as in (a), but with β′ = {e2, e1}:

[T ]γβ′ =

 0 0
3 1
−4 2

 .

(d) Let T : R2 → R3 be given by T (a1, a2) = (a1−a2, a1, 2a1 +a2). Let β be
the standard basis and γ = {(1, 1, 0), (0, 1, 1), (2, 2, 3)}. By solving a system
of linear equations, we find

T (1, 0) = (1, 1, 2) = −1

3
(1, 1, 0) +

2

3
(2, 2, 3),

and
T (0, 1) = (−1, 0, 1) = −(1, 1, 0) + (0, 1, 1).

Thus,

[T ]γβ =

−1
3 −1

0 1
2
3 0

 .

Definition 2.22. Let U, T : V →W be linear. Then

(U + T )(x) = U(x) + T (x)

and
(cT )(x) = cT (x).
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Theorem 2.23. Let V,W be given vector spaces. The set of all linear trans-
formations V → W is a vector space with + and · defined as above. Write
L(V,W ) for this vector space. Write L(V ) for L(V, V ). (Write V ∗ for
L(V, F ).)

Proof. Check the axioms!

Definition 2.24. Let U, T : V →W linear. Then

i. [U + T ]γβ = [U ]γβ + [T ]γβ

ii. [aT ]γβ = a[T ]γβ

Proof. Write U(vj) =
∑
aijwi, T (vj) =

∑
bijwi. Then

(U + T )(vj) = U(vj) + T (vj) =
∑

aijwi +
∑

bijwi =
∑

(aij + bij)wi.

Thus, the ij entry of [U + T ]γβ is aij + bij .

2.3 Composition of linear transformations and matrix mul-
tiplication

Theorem 2.25. Let V,W,Z be vector spaces over the same field. Let T :
V →W and U : W → Z be linear. Then U ◦ T : V → Z is linear.

Proof.

(U◦T )(ax+by) = U(T (ax+by)) = U(aT (x)+bT (y)) = aU(T (x))+bU(T (y))

= a(U ◦ T )(x) + b(U ◦ T )(y).

Theorem 2.26. Let U, S, T : V → V linear. Then

• U ◦ (S + T ) = U ◦ S + U ◦ T

• (U + S) ◦ T = U ◦ T + S ◦ T

• U ◦ (S ◦ T ) = (U ◦ S) ◦ T
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• id ◦U = U ◦ id = U

• a(U ◦ S) = (aU) ◦ S = U ◦ (aS)

Now, let us investigate the matrix of a composition of linear transfor-
mations. Let T : V → W , U : W → Z. Let α = {vj |j = 1, . . . , n}, β =
{wk|k = 1, . . . ,m}, γ = {zi|i = 1, . . . , p} be the corresponding ordered basis,

in alphabetical order. Let [T ]βα = B, [U ]γβ = A. Then

(U ◦ T )(vj) = U(T (vj)) = U(
∑
k

bkjwk) =
∑
k

bkjU(wk) =

∑
k

bkj(
∑
i

aikzi) =
∑
i

(
∑
k

aikbkj)zi.

Consequently, if C = [U ◦ T ]γα, cij =
∑

k aikbkj .

Quiz 6:

1. (5 points) Let T : R2 → R2, T (a1, a2) = (a1 + 2a2, a1 − a2). Let
β = {(1, 0), (0, 1)} and γ = {(−1, 2), (1,−1)}. Compute [T ]γβ.

2. (5 points) Let V be an n-dimensional vector space. Let T : V → V be a
linear transformation. Let W be a subspace of V with

T (W ) := {T (w) | w ∈W} ⊂W.

Assume that dimW = k. Prove that there is an ordered basis for V such
that [T ]β is of the form (

A B
0 C

)
,

where A is a k × k matrix and 0 is the (n− k)× k zero matrix.

Answer. 1. Solve T (1, 0) = (1, 1) = a(−1, 2) + b(1,−1) for a and b. This
gives a = 2, b = 3.

Solve T (0, 1) = (2,−1) = a(−1, 2) + b(1,−1) for a and b. This gives
a = 1, b = 3. Thus,

[T ]γβ =

(
2 1
3 3

)
.

2. Pick an ordered basis {v1, . . . , vk} for W and complete it to an ordered
basis {v1, . . . , vn} for V , which can be done due to the Replacement Theorem.
Now, note that for j = 1, . . . , k:

T (vj) = a1,jv1 + . . .+ ak,jvk + 0vk+1 + . . .+ 0vn
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due to T (W ) ⊂ W and the uniqueness of coordinates. Recall that the n-
tuples (a1,j , . . . , ak,j , 0, . . . , 0) (j = 1, . . . , k) form the first k columns of the
matrix [T ]β. Done.

Definition 2.27. Let A be a p×m matrix and B an m× n matrix. Define
the matrix product of A and B to be the p× n matrix given by

(AB)ij =

m∑
k=1

aikbkj ,

where i = 1, . . . , p, j = 1, . . . , n.

We have just established the following theorem.

Theorem 2.28. Let T : V →W , U : W → Z. Then [U ◦ T ]γα = [U ]γβ[T ]βα.
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