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1 Introduction

Let X and Y be compact, connected Riemannian manifolds and denote by d the L1 distance on

X×Y . Denote by πX and πY the natural projection maps from X×Y onto X and Y , respectively.

We will refer to X as the base and {Yx = {x} × Y }x∈X as the fibers of the product since

X × Y =
⋃
x∈X

{x} × Y.

Note that each fiber Yx can be identified with Y . We will make the necessary distinctions as needed.

Let F be a skew product on X × Y ; i.e. there are maps f : X → X and {gx : Yx → Yfx| x ∈ X}

such that

F (x, y) = (f(x), gx(y)).

In their 1999 paper, Denker and Gordin showed that if such a fibred system is fiberwise expand-

ing and topologically exact along fibers, then there is a unique family of fiberwise Gibbs meausures

that are the conditional measures for a Gibbs measure on the product X × Y . In this paper, we

aim to extend this result non-uniformly expanding maps. Castro and Varandas [] proved that for

non-uniformly expanding systems equipped with a certain class of Hölder continuous potentials,

the Ruelle operator

Lφψ(x, y) =
∑

(x̄,ȳ)∈F−1(x,y)

eφ(x̄,ȳ)ψ(x̄, ȳ).

acting on the space of α-Hölder potentials admit a unique equilibrium state µ. In Section 2, we shall

describe fiberwise transfer operators Lx : C(Yx) → C(Yfx) defined such that for any ψ ∈ C(X×Y ),

Lxψx(y) =
∑

ȳ∈g−1
x y

eφ(x̄,ȳ)ψ(x̄, ȳ).

Hafouta [20] uses these operators to construct a sequential family of fiberwise measures along every

fiber. In Section 3, we will use cone techniques analogous to Piraino [4] to construct a potential on
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X for which µ̂ = µ ◦ π−1
X is an equilibrium state, namely

Φ(x) = lim
n→∞

log
⟨Ln+1

x 1, σ⟩
⟨Lnfx1, σ⟩

(1)

for some probability measure σ on Y . This is the same potential [4] and [5] studied in the symbolic

case. With these things in hand, we will be able to prove the following.

Theorem A. Let (X × Y, F ) be a Lipschitz non-uniformly expanding skew product with fiberwise

exactness. Let φ be a Hölder continuous potential on X ×Y and µ be its corresponding equilibrium

state. Then

1. the potential Φ in equation (1) exists independent of σ and µ̂ = µ◦π−1
X is an equilibrium state

for Φ, and

2. there is a family of fiberwise Gibbs measures {µx : x ∈ X} that form a system of conditional

measures for µ relative to the partition of X × Y into vertical fibers. That is,

µ =

∫
X
µx dµ̂(x).

Before we get into it, I’d like to take a moment to thank my advisor Vaughn Climenhaga for

many insightful discussions during the writing of this paper.
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2 Setting

2.1 Non-Unifomrnly Expanding Skew Products

A map F : X × Y → X × Y is uniformly expanding if there exists C, δF > 0 and σ > 1 such that

d(Fn(x, y), Fn(x′, y′)) ≥ Cγnd((x, y), (x′, y′))

whenever d((x, y), (x′, y′)) ≤ δF . One can assume without loss of generality that C = 1 by passing

to an adapted metric. This reduces locally expanding to

d(F (x, y), F (x′, y′)) ≥ γd((x, y), (x′, y′))

whenever d((x, y), (x′, y′)) ≤ δF .

We shall assume that F is a local homeomorphism and that the map f : X → X is locally

uniformly expanding. Moreover, we assume there is a continuous function (x, y) 7→ L(x, y) such

that, for every (x, y) ∈ X ×Y there is a neighborhood Ux,y of (x, y) so that F |Ux,y is invertible and

d(F−1(ux, uy), F
−1(vx, vy)) ≤ L(x, y)d((ux, uy), (vx, vy))

for all (ux, uy), (vx, vy) ∈ F (Ux,y). Futhermore, we assume that every point in X has the same

number of preimages under f and that |g−1
x (y)| is constant for all x ∈ X and y ∈ Yx. Additionally,

we shall assume that there exist constants γ > 1 and L ≥ 1, and an open region A ⊂ X × Y such

that

1. L(x, y) ≤ L for every x ∈ A and L(x, y) < γ−1 for all x ̸∈ A, and L is close to 1.

2. There exists a finite covering U of X × Y by open sets for which F is injective such that A

can be covered by q < deg(F ). Moreover, we assume that the elements of U are small enough

to separate curves on X×Y in the sense that if c is a distance-minimizing geodesic on X×Y ,

then each element of U can intersect at most one curve in F−1(c).
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The first condition means that F is uniformly expanding outside of A and not too contracting in

A. Thus, if A is empty, then everything is reduced to the uniformly expanding case. The second

condition ensures that every point has at least one preimage in the expanding region. Note that

H2’ is a strengthened version of H2 from [Castro Varandas]. We need this to prove that fiberwise

we are in the setting of Hafouta 20 as described below. But first we state a techincal lemma that

gives us control on the distances between pre-images of points.

Lemma 2.1. For any n ≥ 1 and (x, y), (x′, y′) ∈ X × Y , there exists a bijection between the sets

of preimages {(x̄, ȳ) ∈ X × Y : Fn(x̄, ȳ) = (x, y)} and {(x̄′, ȳ′) ∈ X × Y : Fn(x̄, ȳ) = (x′, y′)}.

Moreover, for every n ∈ N, there exists δ(n) > 0 such that for every 0 < δ ≤ δ(n) the distance

between paired n-preimages is such that if d((x, y), (x′, y′)) < δ, then

d(F−n(ux, uy), F
−n(vx, vy)) ≤ Lnd((x, y), (x′, y′))

for every i = 1, . . . , deg(F )n.

Proof. See Lemma 3.8 in Castro Varandas.

Lemma 2.2. If F satisfies H1 and H2, thenthereexistsfamilies{Lx}, {σx}, and {qx} so that Lx ≤

L for some L ≥ 1 and for each x ∈ X, we have σx > 1, Lx ≥ 1, q ∈ N such that q < deggx and for

any y, y′ ∈ Yfx, we can pair off the preimages of g−1
x (y) = {y1, . . . , yqx} and g−1

x (y′) = {y′1, . . . , y′qx}

where for any k = 1, 2, . . . , qx,

dY (yk, y
′
k) ≤ LxdY (y, y

′)

while for any k = qx + 1, . . . , ρ̄,

dY (yk, y
′
k) ≤ σ−1

x dY (y, y
′).

Proof. Let (x, y), (x′, y′) ∈ X ×Y and c be a distance-minimizing geodesic between the points. Let

g−1
x (y) = {x1, . . . , xd}. Since F is a covering map, we can lift c to curves c1, . . . , cd such that each

ck starts at
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start by letting c be a distance-minimizing geodesic from x to x’, then enumerate the preimages

of x however you want and lift c (using the fact that T is a covering map) to curves c1, . . . , cd

such that each ci starts at xi and T (ci) = c. Let x′i be the other endpoint of ci, and then cover

each ci with “small” domains of injectivity. By (H2’), at most q of these domains can intersect A,

and moreover each such domain intersects at most one of the curves ci (this is where we need the

strengthened condition, and this is what is violated in the counterexample I will show you). Thus

there are at most q curves ci that intersect A, and then applying (H1) gives the desired result.

2.2 Dynamics on Skew Products

To understand the dynamics of F on X × Y , define for any n ≥ 0 and x ∈ X,

gnx := gfn−1x ◦ · · · ◦ gx.

Then for any (x, y) ∈ X ×Y , the behavior of this system can be investigated through the sequence

Fn(x, y) = (fn(x), gnxy).

For each n ≥ 0, define the nth-Bowen metric as

dn((x, y), (x
′, y′)) = max

0≤i≤n
{d(F i(x, y), F i(x′, y′))}.

Also, call Bn((x, y), δ) = {(x′, y′) : dn((x, y), (x′, y′)) < δ} the nth-Bowen ball centered at (x, y) of

radius δ > 0.

We shall write Bx(y, ε) ⊂ Yx to denote the ball centered at y ∈ Yx of radius ε > 0. Note that

Bx(y, ε) = B((x, y), ε) ∩ Yx.
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Definition 2.3. An expanding map F : X × Y → X × Y is fiberwise exact if for every ε > 0 and

x ∈ X, there exists N ∈ N such that FNBx(y, ε) = YfNx for any y ∈ Yx.

Remark 1. An important class of examples of such maps is the case when X and Y are compact,

connected manifolds. In chapter 11 of [6], it is shown that an expanding map f on a compact

manifold M is topologically exact: i.e. for any open U ⊂ M , there exists N ≥ 1 such that

fNU =M . Fix x ∈ X. Note that F is topologically exact. Then there exists N ≥ 0 such that for

any y ∈ Yx, F
N (B((x, y), ε)) = X × Y . Fix y ∈ Y . Since B((x, y), ε)) ⊂ F−N (X × Y ), there is a

yN ∈ Bx(y, ε) such that FN (x, yN ) = (fNx, y). Since Y is compact, N can be chosen independent

of y ∈ Y . Then F is fiberwise exact.

The following lemma gives us control on the distances between pre-images of points.

Lemma 2.4. For any n ≥ 1 and (x, y), (x′, y′) ∈ X × Y , there exists a bijection between the sets

of preimages {(x̄, ȳ) ∈ X × Y : Fn(x̄, ȳ) = (x, y)} and {(x̄′, ȳ′) ∈ X × Y : Fn(x̄, ȳ) = (x′, y′)}.

Moreover, for every n ∈ N, there exists δ(n) > 0 such that for every 0 < δ ≤ δ(n) the distance

between paired n-preimages is such that if d((x, y), (x′, y′)) < δ, then

d(F−n(ux, uy), F
−n(vx, vy)) ≤ Lnd((x, y), (x′, y′))

for every i = 1, . . . , deg(F )n.

Proof. See Lemma 3.8 in Castro Varandas.

2.3 Existence and uniqueness of equilibrium states

We say φ : X × Y → R is α-Hölder continuous if

|φ|α := sup
(x,y),(x′,y′)∈X×Y

∣∣∣φ(x, y)− φ(x′, y′)
∣∣∣

d((x, y), (x′, y′))α
<∞.
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We denote by Cα = Cα(X×Y ) the space of α-Hölder continuous functions on X×Y . We say that

φ has the Bowen property if φ is continuous and there is a constant K such that supn≥1 |Snφ(x, y)−

Snφ(x
′, y′)| ≤ K.

We denote by M(X × Y ) the space of Borel probability measures on X × Y and M(X × Y, F )

those that are F -invariant. Given a continuous map F : X×Y → X×Y and a pitetnital φ : X×Y →

R, the variational principle asserts that

Ptop(F,φ) = sup
{
hν(F ) +

∫
φdν : ν ∈ M(X × Y, F )

}
(2)

where Ptop(F,φ) denotes the topological pressure of F with respect to φ and hµ(F ) denotes the

metric entropy of F . An equilibrium state for F with respect to φ is an invariant measure that

achieves the supremum in the right-hand side of equation (2). Equivalently, an equilibrium state µ

is an invariant probability measure that satisfies the Gibbs property: for any ε > 0, there exists a

C > 0 such that

C−1 ≤
µ
(
Bn((x, y), ε)

)
e−nP (φ)+Snφ(x,y)

≤ C

for any (x, y) ∈ X × Y and n ∈ N.

For our purposes in this paper, we fix a Hölder potential φ ∈ Cα. We assume that φ satisfies

the following

supφ− inf φ < εφ and |eφ|α < εφe
inf φ

for some εφ > 0 depending only on the constants L, γ, q, and deg(F ).

Theorem 2.5. Let F : M → M be a local homeomorphism with Lipschitz continuous inverse and

φ : M → R be a Hölder continuous potential satisfying (H1), (H2), and (P). Then the Ruelle-

Perron-Frobenius has a spectrial gap property in the space of Hölder continuous observables, there

exists a unique equilbrium state µ for F with respect to φ and the density dµ/dν is Hölder contin-

uous.

Theorem gives us a unique equilibrium state µ. Denote by µ̂ = µ ◦ π−1
X the pushforward of the
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equilibrium state µ onto the base X. Throughout this paper, we shall refer to this measure as the

transverse measure for our skew product.

2.4 Fiberwise Transfer Operators for Skew Products

As common in the literature, we will utilize Ruelle operators to study the equilibrium state on

(X × Y, F ). Define the transfer operator Lφ acting on C(X × Y ) by sending ψ ∈ C(X × Y ) to

Lφψ(x, y) =
∑

(x̄,ȳ)∈F−1(x,y)

eφ(x̄,ȳ)ψ(x̄, ȳ).

Note that under the skew product representation of F , we may write

∑
(x̄,ȳ)∈F−1(x,y)

eφ(x̄,ȳ)ψ(x̄, ȳ) =
∑

x̄∈f−1x

∑
ȳ∈g−1

x̄ y

eφ(x̄,ȳ)ψ(x̄, ȳ).

This gives rise to a fiberwise transfer operator on the fibers of X × Y . For every x ∈ X, let

Lx : C(Yx) → C(Yfx) be defined by

Lxψx(y) =
∑

ȳ∈g−1
x y

eφ(x̄,ȳ)ψ(x̄, ȳ)

for any ψ ∈ C(X × Y ). We shall iterate the transfer operator by letting

Lnx = Lfn−1x ◦ · · · ◦ Lx : C(Yx) → C(Yfnx).

Along with each of these fiberwise operators, we define its dual L∗
x by sending a probability measure

η ∈ M(Yfx) to the measure L∗
xη ∈ M(Yx) such that for any ψ ∈ C(X × Y ),

∫
ψ d(L∗

xη) =

∫
Lxψ dη.
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3 Proof of Theorem A.1

Piraino [4] shows that for subshifts of finite type, µ̂ is an equilibrium state for a potential analogous

to

Φ(x) = lim
n→∞

log
⟨Ln+1

x 1, σ⟩
⟨Lnfx1, σ⟩

where σ is any probability measure supported on Y . We will show that this potential exists in our

setting and is independent of the choice σ. Furthermore, it is Hölder continuous. We will then

show that µ̂ is Gibbs for Φ. Thus, the push-forward µ̂ is the unique equilibrium state for Φ on the

factor.

3.1 Birkhoff Contraction Theorem

Consider Cα = Cα(X ×Y ) as vector space over R. A subset Λ ⊂ Cα is called a cone if aΛ = Λ for

all a > 0. A cone Λ is convex if ψ+ ζ ∈ Λ for all ψ, ζ ∈ Λ.We say that Λ is a closed cone if Λ∪{0}

is closed. We assume our cones are closed, convex, and Λ ∩ (−Λ) = ∅. Define a partial ordering ⪯

on Cα by saying ϕ ⪯ ψ if and only if ψ − ϕ ∈ Λ ∪ {0} for any ϕ, ψ ∈ Cα. Let

A = A(ϕ, ψ) = sup{t > 0: tϕ ⪯ ψ} and B = B(ϕ, ψ) = inf{t > 0: ψ ⪯ tϕ}.

The Hilbert projective metric with respect to a closed cone Λ is defined as

Θ(ϕ, ψ) = log
B

A
.

This definition isn’t very useful for calculating distances. For that, we have the following lemma.

For a proof, see Section 4 in [3].

Lemma 3.1. Let Λ be a closed cone and Λ∗ its dual. For any ϕ, ψ ∈ Λ,

Θ(ϕ, ψ) = log

(
sup

{
⟨ϕ, σ⟩⟨ψ, η⟩
⟨ψ, σ⟩⟨ϕ, η⟩

: σ, η ∈ Λ∗ and ⟨ψ, σ⟩⟨ϕ, η⟩ ≠ 0

})
.
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The main idea of the proof of Theorem A is to find a cone on which long occurrences of

the fiberwise transfer operator is a contraction. To accomplish this, we will need the Birkhoff

Contraction theorem:

Theorem 3.2. Let Λ1,Λ2 be closed cones and L : Λ1 → Λ2 a linear map such that LΛ1 ⊂ Λ2.

Then for all ϕ, ψ ∈ Λ1

ΘΛ2(Lϕ,Lψ) ≤ tanh
(diamΛ2(LΛ1)

4

)
ΘΛ1(ϕ, ψ)

where diamΛ2(LΛ1) = sup{ΘΛ1(ϕ, ψ) : ϕ, ψ ∈ LΛ1} and tanh∞ = 1.

3.2 Existence and Regularity of Φ

We will use cones of the form

ΛK = ΛαK = {∈ Cα(X × Y ) : ψ > 0 and |ψ|α ≤ K inf ψ} ∪ {0}.

It can be shown that ΛK is a closed cone in Cα.

Lemma 3.3. For any x ∈ X, Lx(ΛxK) ⊂ ΛfxK and there exists a constant M > 0 such that

diam(LxΛK) ≤M <∞ with respect to the Hilbert projective metric.

Proof. Fix x ∈ X. Recall the definition of s in (). Let δ > 0 and K > 0 be so that β :=

(1 + (1 +K)δ)s < 1 and supx |ϕ|α < Kδ. Denote by {yk} and {y′k} be the inverse images of two

points y and ȳ in Yx, respectively. We have

|Lxψ(fx, y)− Lxψ(fx, y′)|
inf Lψx

≤ |Lxψ(fx, y)− Lxψ(fx, y′)|
deinf ψ inf ψ

≤ d−1
d∑

k=1

eφ(x,yk)−inf φ
∣∣ψ(x, yk)− ψ(x, y′k)

∣∣(inf ψ)−1

+ d−1
d∑

k=1

(ψ(yk)/ inf ψ)e
− inf φ

∣∣eφ(x,yk) − eφ(x,y
′
k)
∣∣ := I1 + I2
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Since d(yk, y
′
k) ≤ Lxd(y, y

′) for any 1 ≤ k ≤ qx and d(yk, y
′
k) ≤ γ−1

x d(y, y′) for all other

preimages,

I1 ≤ d(y, y′)αeεxd−1(Lαxq + (d− q)γ−1
x ) = sKd(y, y′)α

where s is defined in ().

Next, note that supψ ≤ inf ψ + |ψ|α ≤ (1 +K) inf ψ and

∣∣eφ(x,yk) − eφ(x,y
′
k)
∣∣ ≤ esupx φ|φ(x, yk)− φ(x, y′k)| ≤ einfx φ+εx |φx|αd(x, yk), (x, y′k))α.

Then I2 ≤ s(1 +K) · supx |φ|α.

Thus, we have that |Lx|α ≤ s(K+(1+K) supx |φ|α) inf Lxψ ≤ sK(1+(1+K)δ) = βK inf Lxψ.

The existence of M is given by Proposition 4.3 in Castro Varandas.

Theorem 3.4. Let Φn(x) = log
⟨Ln+1

x 1, σ⟩
⟨Lnfx1, σ⟩

. There exists 0 < τ < 1 and C1 > 0 such that for all

x ∈ X, n ≥ 0, ∣∣Φ(x)− Φn(x)
∣∣ ≤ C1 τ

n.

Proof. Let ε > 0 and fix x ∈ X. Let N be as in Definition 2.3. Suppose n,m ≥ k ≥ N . Then

∣∣Φn(x)− Φm(x)
∣∣ = ∣∣∣∣∣ log ⟨Ln+1

x 1, σ⟩
⟨Lnfx1, σ⟩

− log
⟨Lm+1

x 1, σ⟩
⟨Lmfx1, σ⟩

∣∣∣∣∣
=

∣∣∣∣∣ log ⟨Lk−1
fx (Lx1), σfx,n⟩⟨Lk−1

fx 1, σfx,m⟩
⟨Lk−1

fx 1, σfx,n⟩⟨L
k−1
fx (Lx1), σfx,m⟩

∣∣∣∣∣
where σfx,n = (Lfk+1x)

∗ · · · (Lfnx)∗σ. By Lemma 3.1, we see that

∣∣Φn(x)− Φm(x)
∣∣ ≤ Θ(Lk−1

fx (Lx1),Lk−1
fx 1).

Clearly, 1 ∈ ΛK for any K > 0. Then Lx1 ∈ ΛβK by Lemma 3.3. Write k − 1 = qN + r where
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0 ≤ r < N and let M be as in Lemma 3.3. Set η = tanh (M/4). By Lemma 3.2, we have

Θ(Lk−1
fx (Lx1),Lk−1

fx 1) ≤ ηq−1Θ(LNfx(Lx1),LNfx1)

≤ ηq−1M = (η1/N )kMη−1−(r+1)/N

≤ (η1/N )kMη−2.

Hence, the sequence {Φn}n≥0 is Cauchy and exists at every x ∈ X.

This proves the existence of Φ. Now we will show that Φ is Hölder continuous. Fix ε > 0 and

γ < 1. Let n ∈ N, dn(x, x
′) be small, and y ∈ Y . An orbit segement of length n starting from

(x, ȳ) is okay if for all m ∈ N, F k(x, ȳ) ∈ A at most γm iterates. Such an orbit segement is called

good if it is okay in hyperbolic time.

Lemma 3.5. There is a Q > 0 such that for all m ∈ N, if (x, ȳ) and (x′, ȳ′) are in a good preimage

branch, then

d(F k(x, ȳ), F k(x, ȳ)) ≤ Qme−2c(n−k)d(fnx, fnx′)

for all 0 ≤ k < n.

Proof. Write k = jm+ i for 0 ≤ i < m. Since our preimage branches are assumed to be good, we

know

d(F k(x, ȳ), F k(x′, ȳ′)) ≤ Ljmd(F i(f jmx, gjmx ȳ), F i(f jmx, gjmx′ ȳ
′))

≤ (Lγσ−(1−γ))jmd(F i(f jmx, gxȳ), F
i(f jmx, gx′ ȳ

′))

≤ Lie−2cjmd((fkx, gkxȳ), (f
kx′, gkx′ ȳ

′))

≤ (Le2c)me−2ckd((fkx, gkxȳ), (f
kx′, gkx′ ȳ

′))

Lemma 3.6. There are C > 0 and θ ∈ (0, 1) such that Σbe
Snφ(x,ȳ) ≤ CθmΣge

Snφ(x,ȳ).
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Proof. If (x, ȳ) and (x, ȳ) start bad orbits of length n, then for some jm ∈ N, at least γjm of the

interates will be in A. By Lemma 3.1 in Varandas Viana 2010, there are at most Cqjmeεjmdn−jm

such trajectories. Thus, in g−nx y, there are at most ΣjCq
jmeεjmdn−jm bad trajectories. So

Σbe
Snφ(x,ȳ)

Σg−n
x ye

Snφ(x,ȳ)
≤ en(supφ−inf φ)ΣjC

(
qeε

d

)jm

3.3 µ̂ is an Equilibrium State for Φ

It remains to show that the equilibrium state for Φ, µΦ, is equal to the transverse measure µ̂. The

following lemma will show that the two measures are mutually absolutely continuous. Our theorem

then follows since both measures are ergodic.

Fix x ∈ X and n ∈ N. Note that

SnΦ(x) =
n−1∑
k=0

lim
m→∞

log
⟨Lm+1

xk
1, σ⟩

⟨Lmxk+1
1, σ⟩

= lim
m→∞

log
⟨Lm+1

xn−1
1, σ⟩ · · · ⟨Lm+1

x 1, σ⟩
⟨Lmxn1, σ⟩ · · · ⟨Lmx11, σ⟩

= lim
m→∞

log
⟨Lm+1

x 1, σ⟩
⟨Lm−n

xn 1, σ⟩
.

Thus,

eSnΦ(x) = lim
m→∞

⟨Lm+1
x 1, σ⟩

⟨Lm−n
xn 1, σ⟩

= lim
m→∞

〈
Lnx1,

σx,m
⟨1, σx,m⟩

〉

= lim
m→∞

∫ ∑
y∈g−n

x y

eSnφ(x,y) d

(
σx,m

⟨1, σx,m⟩

)

Choose ε > 0 such that 2ε < δ0. Let Q ⊂ Y be a maximal (n, ε)-separated set. Note that
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card(Q) = l < ∞ and write Q = {a1, . . . , al}. Also, note that Y = ∪a∈QBY
n (a, ε). Indeed, if

y ∈ Y but y /∈ ∪a∈QBY
n (a, ε), then dn(y, a) > ε for all a ∈ Q. Thus, Q ∪ {y} is (n, ε)-separated, a

contradiction. To estimate the integral above, we construct an adapted partition of Y as follows.

Let Z0 =
⋃
a∈QB

Y
n (a, ε/2). Define iteratively for 0 ≤ k < l sets

Wk+1 = BY
n (ak+1, ε/2) ∪

(
BY
n (ak+1, ε) \ Zk

)
and Zk+1 =Wk+1 ∪ Zk. Note that {Wj}lj=1 is a collection of disjoint sets such that BY

n (aj , ε/2) ⊂

Wj ⊂ BY
n (aj , ε) and Y = ∪1

j=1B
Y
n (aj , ε) = ⊔lj=1Wj . Therefore,

eSnΦ(x) = lim
m→∞

l∑
j=1

∫
Wj

∑
ȳ∈g−n

x y

eSnφ(x,y) d

(
σx,m

⟨1, σx,m⟩

)
.

Lemma 3.7. Let x, n, and ε be as above. Define

Ωn(φ, ε) := sup
{∑
a∈S

eSnφ(x,a) : S ⊂ Y is (n, ε)-separated
}
.

Then eSnΦ(x) ≥ C Ωn(φ, ε).

Proof. Fix y ∈ Y . Let N be given by fiberwise topological exactness for ε/2. Let R ⊂ Y be a

maximal (n−N, ε)-separated set. We define a map θ : R→ g−nx y in the following way. Let r ∈ R.

By exactness, we can find a point z′ ∈ g−nx y such that d((xn−N , z
′), Fn−N (x, r)) ≤ ε/2. Then by

Lemma 2.4, there exists z ∈ g−nx y such that dn−N ((x, z), (x, r)) ≤ ε/2. The map θ is one-to-one

since if θ(g) = θ(g′), then

dn−N (g, g
′) ≤ dn−N (g, θ(g)) + dn−N (g

′, θ(g′)) ≤ ε,

a contradiction since R is (n−N, ε)-separated.

Since φ is Hölder, it has the Bowen property: i.e. for any ε > 0, there exists a L if dn(y, y
′) ≤ ε,
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then |Snφ(x, y)− Snφ(x, y
′)| ≤ L. Thus, for each g ∈ Q, eSnφ(x,g) ≤ eLeSnφ(x,θ(g)). Hence,

∑
g∈Q

eSn−Nφ(x,g) ≤
∑
g∈Q

eLeSn−Nφ(x,θ(g))

≤
∑
z∈gnxy

eLeSn−Nφ(x,z) ≤ eL+N∥φ∥
∑
z∈gnxy

eSnφ(x,z)

where the first inequality holds by the Bowen property, the second by injectivity of θ, and the third

because Snφ(x, y) ≥ Sn−Nφ(x, y)−N∥φ∥ for all (x, y) ∈ X × Y . If we let C1 = e−(L+N∥φ∥), then

∑
z∈gnxy

eSnφ(x,z) ≥ C1

∑
g∈Q

eSn−Nφ(x,g). (3)

Let S ⊂ Y be (n, 2ε)-separated. For each s ∈ S, there is r(s) ∈ R such that dn−N (s, r(s)) ≤ ε.

Fix r ∈ R and let Sr = {s ∈ S| r = r(s)}. If s ̸= s′ ∈ Sr, then

dn−N (s, s
′) ≤ dn−N (s, r) + dn−N (r, s

′) ≤ 2ε.

Thus, dN (g
n−N
x s, gn−Nx s′) > 2ε so gn−Nx Sr is (N, 2ε)-separated. Note that dn(s, s

′) > 2ε implies

that card(Sr) ≤ card(gn−Nx Sr) < ∞. Let M be the maximum cardinality of a (N, 2ε)-separated

set. Hence,

∑
s∈S

eSnφ(x,s) ≤
∑
s∈S

eLeSnφ(x,r(s))

≤
∑
r∈R

card(Sr) e
L+N∥φ∥ eSn−Nφ(x,r)

≤MeL+N∥φ∥
∑
r∈R

eSn−Nφ(x,r)

where the first inequality holds by the Bowen property and the second holds since Snφ(x, y) ≤

15



Sn−Nφ(x, y) +N∥φ∥. Let C2 =M−1C1. Then

∑
r∈R

eSn−Nφ(x,r) ≥ C2

∑
s∈S

eSnφ(x,s) (4)

Combining equations (3) and (4), we get

Lnx1 ≥ C1

∑
r∈R

eSn−Nφ(x,r) ≥ C1C2

∑
s∈S

eSnφ(x,s).

By Lemma 1 of [1], we know that Ωn(φ, ε) ≤ Cε,2ε Ω(φ, 2ε). Let C = C−1
ε,2εC1C2. Then

eSnΦ(x) = lim
m→∞

l∑
j=1

∫
Wj

∑
ȳ∈g−n

x y

eSnφ(x,y) d

(
σx,m

⟨1, σx,m⟩

)

≥ lim
m→∞

l∑
j=1

∫
Wj

C Ωn(φ, ε) d

(
σx,m

⟨1, σx,m⟩

)
= C Ωn(φ, ε)

since
σx,m

⟨1, σx,m⟩
is a probability measure and {Wj}lj=1 is a collection of disjoint sets such that

Y = ⊔lj=1Wj .

Lemma 3.8. For any 0 < ε < δ0, there exists D > 0 such that

D−1 ≤
µ̂
(
BX
n (x, ε)

)
eSnΦ(x)

≤ D

for any x ∈ X.

Proof. First, note that

µ̂(BX
n (x, ε)) = µ ◦ π−1(BX

n (x, ε)) = µ(BX
n (x, ε)× Y ).

Let S ⊂ Y be a maximal (n, ε)-separated set. Then S is (n, ε)-spanning in Yx. Let (x′, y′) ∈

BX
n (x, ε)× Y . Choose s ∈ S such that dYn (s, y

′) < ε. The triangle inequality shows that dn((x, s), (x
′, y′)) ≤
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2ε. Thus, the set {(x, s) : s ∈ S} is (n, 2ε)-spanning in BX
n (x, ε)× Y . So

µ̂(BX
n (x, ε)) ≤

∑
s∈S

µ(Bn((x, y), 2ε)) ≤ C2ε

∑
s∈S

eSnφ(x,s) ≤ DeSnΦ(x) (5)

where the second inequality is holds by the Gibbs property of µ at scale 2ε and the third holds by

lemma 3.7.

Choose a (n, ε)-separated set R ⊂ Y and consider the collection {Bn((x, r), ε/2) : r ∈ R}. Then

µ̂
(
BX
n (x, ε)

)
≥ µ

(
Bn
(
(x, s), ε/2

))
≥ C−1

ε/2

∑
s∈S

eSnφ(x,s).

Since this holds for an arbitrary (n, ε)-separated set, µ̂
(
BX
n (x, ε)

)
≥ C−1

ε/2Ωn(φ, ε). Note that g−nx y

is (n, ε)-separated for all y ∈ Y . Then

eSnΦ(x) = lim
m→∞

l∑
j=1

∫
Wj

∑
ȳ∈g−n

x y

eSnφ(x,y) d

(
σx,m

⟨1, σx,m⟩

)
(6)

≤ Ωn(x, ε) ≤ C−1
ε/2 µ̂

(
BX
n (x, ε)

)
.

Combining equations (5) and (6) shows that µ̂ is a Gibbs measure for Φ.

Lemma 3.8 shows that µ̂ is a Gibbs measure for Φ. Note that this implies that P (Φ) = 0.1

4 Fiber Measures are Conditionals

Theorem A allows us to use properties of µ̂ as an equilibrium state via a transfer operator on X.

To this end, let LΦ : C(X) → C(X) be defined by

LΦξ(x) =
∑

x̄∈f−1x

λx̄ ξ(x̄)

for any ξ ∈ C(X). Lemma ?? allows use to use the following theorem. See [7] for details.

1Should this be P (Φ) = P (φ)?
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Theorem 4.1. For any Hölder Φ: X → R, the following hold:

1. There exists a real number λ̂ > 0 and ν̂ ∈ M(X) such that L∗
Φν̂ = λ̂ν̂.

2. There exists a unique ĥ ∈ C(X) such that LΦĥ = λ̂ĥ.

To completely understand the equilibrium state µ on (X × Y, F ), we need to understand how

it gives weight to the fibers {Yx}x∈X . Mayer [2] uses the fiberwise transfer operators to construct

families of measures that satisfy the following theorem for almost everywhere x ∈ X. However, we

will need it to hold along every fiber.

Theorem 4.2. For any Hölder φ : X × Y → R and its associated family of random transfer

operators {Lx}x∈X , the following hold:

1. There exists a unique family of probability measures νx ∈ M(Yx) such that for all x ∈ X,

L∗
xνfx = λxνx where λx = νfx(Lx1).

2. There exists a unique α-Hölder continuous function h : X × Y → X × Y such that for all

x ∈ X,

Lxhx = λxhfx and νx(hx) = 1.

3. Let φ̄x = φx+log hx− log hfx ◦ gx− log λx and denote by L̄x the normalized transfer operator

on Yx. Let µx = hxνx. For every x ∈ X,

(a) L̄x∗µfx = µx, and

(b) for all ψ ∈ C(X × Y ), L̄nxψ →
∫
ψ dµx exponentially as n→ ∞.

In light of Lemma [H2’ implies Hafouta], the proof of this follows from [Hafouta].

We wish to use µ̂ and its corresponding family of measures {µx}x∈X to build a measure on

X × Y . To do this, we first prove the following lemmas.

Lemma 4.3. For any ψ ∈ C(X × Y ), the map x 7→ Lxφψx is continuous with respect to the Usual

topology.
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Proof. Suppose ψ ∈ C(X × Y ). Let 0 < dX(x, x
′) < δ0 and y ∈ Y be fixed. Then

∣∣L̄xψx(y)− L̄x′ψx′(y)
∣∣ ≤ ∑

z∈g−1
x y

(
eφ(x,z)

∣∣ψ(x, z)− ψ(x′, z′)
∣∣+ ∥ψ∥∞

∣∣eφ(x,z) − eφ(x
′,z′)
∣∣)

≤M1

∑
z∈g−1

x y

eφ(x,z) + ∥ψ∥∞
∑

z∈g−1
x y

∣∣eφ(x,z) − eφ(x
′,z′)
∣∣

where M1 = sup{
∣∣ψ(x, z)−ψ(x′, z′)∣∣ : d((x, z), (x′, z′)) < δ0}. Part (2) of Theorem 4.2 implies that

L̄x1 = 1. This along with the argument in the paragraph above shows that

∣∣L̄xψx(y)− L̄x′ψx′(y)
∣∣ ≤M1 + ∥ψ∥∞

(
eCφdX(x,x′)α − 1

)
→ 0 as dX(x, x

′) → 0.

This finishes the proof.

Lemma 4.4. For every continuous ψ : X × Y → R, the map x 7→ νx(ψx) is measurable.

Proof. Fix x ∈ X and let y ∈ Y . Define

νx,n =
(Lnx)∗δ(fnx,y)
Lnx1(fnx, y)

where δ is the Dirac measure at a point in the product. Then by item 3(b) of Theorem 4.2, for any

ψ ∈ C(X × Y ), we have

lim
n→∞

νx,n(ψx) = lim
n→∞

Lnxψ(fnx, y)
Lnx1(fnx, y)

= lim
n→∞

Lnx(ψx/hx)(fnx, y)
Lnx(1/hx)(fnx, y)

=
νx(ψx)

νx(1)
= νx(ψx).

Thus, νx,n
n→∞−−−→ νx in the weak∗ topology. The measurability of x 7→ νx(ψx) then follows from

Lemma 4.3.

Thus, we can define a measure on X × Y by dν(x, y) = dνx(y)dν̂(x). Theorems 4.1 and 4.2

allow us the following results about this measure ν.

Lemma 4.5. Let η̂ ∈ M(X, f) and {ηx}x∈X be given by Theorem 4.2. If L∗
Φη̂ = λη̂ for some

λ > 0, then dη = dηxdη̂ satisfies L∗
φη = λη.
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Proof.

∫
X×Y

Lφψ(x, y) dη(x, y) =
∫
X

∫
Yx

∑
x̄∈f−1x

∑
ȳ∈g−1

x̄ y

eφ(x̄,ȳ)ψ(x̄, ȳ) dηx(y)dη̂(x)

=

∫
X

( ∑
x̄∈f−1x

∫
Yx̄

Lx̄ψ(x̄, y) dηx(y)

)
dη̂(x)

=

∫
X

( ∑
x̄∈f−1x

λx̄

∫
Yx̄

ψ(x̄, y) dηx̄(y)

)
dη̂(x)

=

∫
X
LΦ

(∫
Yx

ψ(x, y) dηx(y)

)
dη̂(x)

= λ

∫
X

∫
Yx

ψ(x, y) dηx(y)dη̂(x)

Note that this implies that P (φ) = P (Φ).

Lemma 4.6. Let ĥ and ν̂ be as in 4.1 and consider the measure dµ̂ = ĥdν̂ on X. Let {hx} be

given by item 2 of Theorem 4.2. Then the function h(x, y) = ĥ(x)h̄X(y) satisfies Lφh = λh.

Proof.

∑
(x̄,ȳ)∈F−1(x,y)

eφ(x̄,ȳ) h(x, y) =
∑

x̄∈f−1(x)

ĥ(x̄) Lx̄h̄x̄(y)

=
∑

x̄∈f−1(x)

λx̄ĥ(x̄) h̄x(y) = h̄x(y) LΦĥ(x) = λh(x, y)

Lemmas 4.5 and 4.6 give eigendata for Lφ. It is well known that this data is uniquely determined

by the RPF Theorem and that the unique equilibrium state is the measure

dµ(x, y) = ĥ(x)h̄x(y) dνx(y)dν̂(x) = dµx(y)dµ̂(x).

This finishes the proof of Theorem B.
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