PRINTABLE VERSION

Practice Test 1

Question 1

The graph of the function $f(x)=\frac{x^{2}-3 x+2}{2 x^{3}+5 x^{2}-3}$ has a horizontal asymptote. If the graph crosses this asymptote, give the x-coordinate(s) of the intersection. Otherwise, state that the graph does not cross the asymptote.
a) The graph does not cross the asymptote.
b) $x=2$ and $x=4$
c) $x=1$ and $x=2$
d) $x=0$
e) $x=-1$ and $x=-2$

Question 2

Given $f(x)=\sqrt{3 x-5}$ and $g(x)=x^{2}-4 x-12$, find the domain of $\frac{g}{f}$.
a) $\left[\frac{5}{3}, 6\right) \cup(6, \infty)$
b) $\left[\frac{5}{3}, \infty\right)$
c) $\left(-\infty, \frac{5}{3}\right) \cup\left(\frac{5}{3}, \infty\right)$
d) $(-\infty,-2) \cup(6, \infty)$
e) $\left(\frac{5}{3}, \infty\right)$

Question 3

Given $f(x)=\frac{x-2}{x+1}$, simplify $\frac{f(x+h)-f(x)}{h}, h \neq 0$ when $x=3$.
a) $\frac{3}{4 h-16}$
b) $\frac{3}{4 h+16}$
c) 0
d) $\frac{h-2}{h+1}$
e) $\frac{4 h+1}{4}$

Question 4

Solve $\sin (9 x)=1$ on the interval $\left[0, \frac{2 \pi}{9}\right]$.
a) $x=0$
b) $x=\frac{\pi}{18}$
c) $x=\frac{\pi}{4}$
d) $x=\frac{3 \pi}{4}$
e) $x=\frac{\pi}{6}$

Question 5

Given $f(x)=\frac{5 x^{2}-10 x}{6 x^{2}-24}$, identify any vertical asymptotes.
a) $x=0$
b) $x=-2$
c) $x=\frac{5}{6}$
d) $x=2$
e) There are none.

Question 6

Find the exact value of the following expression. If undefined, state, undefined.

$$
\cos \left(\sin ^{-1}\left(\frac{3}{5}\right)\right)
$$

a) undefined
b) $\frac{4}{5}$
c) $\frac{5}{4}$
d) $\frac{4}{3}$
e) $\frac{3}{4}$

Question 7

Evaluate: $\lim _{x \rightarrow-5} \frac{x+5}{x^{2}+11 x+30}$
a) $\frac{1}{10}$
b) 10
c) does not exist
d) $-\frac{1}{10}$
e) $-\frac{1}{5}$

Question 8

Evaluate the limit: $\lim _{x \rightarrow 100} \frac{\sqrt{x}-10}{x-100}$
a) 1
b) $\frac{1}{20}$
c) 10
d) 20
e) $\frac{1}{10}$
f) Does not exist.

Question 9

Evaluate the limit: $\lim _{x \rightarrow 0} \frac{4-\frac{3}{x}}{2+\frac{4}{x^{2}}}$
a) -1
b) 0
c) $-\frac{3}{4}$
d) 2
e) -2
f) Does not exist.

Question 10

Evaluate: $\lim _{x \rightarrow 0} \frac{\tan ^{2}(6 x)}{5 x^{2}}$
a) $\frac{5}{36}$
b) $\frac{36}{25}$
c) does not exist
d) $\frac{36}{5}$
e) 0

Give the values of A and B for the function $f(x)$ to be continuous at both $x=1$ and $x=6$.

$$
f(x)= \begin{cases}A x-B & x \leq 1 \\ -30 x & 1<x<6 \\ B x^{2}-A & x \geq 6\end{cases}
$$

a) $A=-35$ and $B=-6$
b) $A=-36$ and $B=-5$
c) $A=-37$ and $B=-6$
d) $A=-36$ and $B=-7$
e) $A=-36$ and $B=-6$

Question 12

For which of the following functions can we use the Intermediate Value Theorem to prove the existence of roots in the indicated interval?
I. $f(x)=\frac{x-3}{x},[-2,2]$
II. $f(x)=x^{2}+9,[-2,2]$
III. $f(x)=3 x^{3}-9 x,[-2,2]$
a) I and III only
b) II and III only
c) I and II only
d) II only
e) III only
f) I, II and III

Question 13

Given $c=-1$ and the graph of the function f below,

Use the graph to find $\lim _{x \rightarrow c} f(x)$.
a) does not exist
b) 1
c) -1
d) 0
e) -2

Question 14

Find the vertical asymptote(s) for the function $f(x)=\frac{x^{2}-x-2}{x^{2}-6 x+8}$
a) $x=4$
b) There are no vertical asymptotes.
c) $x=2$
d) $x=4, x=2$
e) $y=1$
f) None of the above.

Question 15

Find $\lim _{x \rightarrow \infty} \frac{(x+4)(x-1)(x-6)}{-3 x^{3}-1 x^{2}+5 x-4}$.
a) -3
b) $-\frac{1}{3}$
c) $\frac{1}{3}$
d) -4
e) 1
f) 0
g) None of the above.

Question 16

Find the inverse if it exists given $f(x)=2 x^{5}+6$.
a) $f^{-1}(x)=\left(\frac{x+6}{2}\right)^{5}$
b) $f^{-1}(x)=\sqrt{\frac{x-6}{2}}$
c) No inverse exists.
d) $f^{-1}(x)=\sqrt{\frac{x+6}{2}}$
e) $f^{-1}(x)=\left(\frac{x-6}{2}\right)^{1 / 5}$
f) $f^{-1}(x)=\left(\frac{x-6}{2}\right)^{5}$
g) $f^{-1}(x)=\left(\frac{x+6}{2}\right)^{1 / 5}$

The function $f(x)=\frac{x^{2}-25}{x-5}$ is defined everywhere except at $x=5$. If possible, define f at $x=5$ so that it becomes continuous at $x=5$.
a) Not possible because there is a jump disconinuity at the given point.
b) Not possible because there is an infinite disconinuity at the given point.
c) $f(5)=10$
d) $f(5)=0$
e) $f(5)=\frac{1}{10}$

Question 18

Given $f(x)=\frac{x}{3 x+2}$ which of the following expressions will represent $f^{\prime}(x) ?$
a) $\lim _{h \rightarrow 0} \frac{\frac{x+h}{3 x+3 h+2}}{h}$
b) $\lim _{h \rightarrow x} \frac{\left(\frac{x+h}{3 x+3 h+2}\right)-\left(\frac{x}{3 x+2}\right)}{h}$
c) $\frac{\left(\frac{x+h}{3 x+3 h+2}\right)-\left(\frac{x}{3 x+2}\right)}{h}$
d) $\lim _{h \rightarrow 0} \frac{\left(\frac{x+h}{3 x+3 h+2}\right)-\left(\frac{x}{3 x+2}\right)}{h}$
e) $\lim _{h \rightarrow 0} \frac{\left(\frac{x}{3 x+2}+h\right)-\left(\frac{x}{3 x+2}\right)}{h}$

Question 19

For the following limit, find the largest δ that works for $\varepsilon=0.5$.

$$
\lim _{x \rightarrow 2}(3 x-1)=5
$$

a) $\frac{3}{2}$
b) $\frac{1}{6}$
c) $\frac{1}{2}$
d) 1
e) 2

Question 20
$\lim _{x \rightarrow 0} \frac{\sin (5 x)}{\sin (7 x)}=$
a) 1
b) $\frac{7}{5}$
c) $\frac{5}{7}$
d) 0
e) The limit does not exist.

Question 21

Evaluate the limit: $\lim _{x \rightarrow 4^{+}} f(x)$. Given that

$$
f(x)= \begin{cases}2 x-2 & x \leq 4 \\ x^{2}-x & x>4\end{cases}
$$

a) 1
b) 12
c) 0
d) does not exist
e) 6

I understand that I am expected to know all definitions and theorems from sections 1.2-2.1.
a) Yes
b) No

Question 23

I understand that I am expected to know all prerequisite material from Quiz 0 .
a) Yes
b) No

