PRINTABLE VERSION

Practice Test 1

Question 1 The graph of the function $f(x) = \frac{x^2 - 3x + 2}{2x^3 + 5x^2 - 3}$ has a horizontal asymptote. If the graph crosses this asymptote, give the x-coordinate(s) of the intersection. Otherwise, state that the graph does not cross the asymptote. a) \bigcirc The graph does not cross the asymptote. **b**) $\bigcirc x = 2$ and x = 4c) $\bigcirc x = 1$ and x = 2**d**) $\bigcirc x = 0$ e) x = -1 and x = -2**Question 2** Given $f(x) = \sqrt{3x-5}$ and $g(x) = x^2 - 4x - 12$, find the domain of $\frac{g}{f}$. **a**) $\bigcirc \left[\frac{5}{3}, 6\right) \cup (6, \infty)$ **b**) $\bigcirc \left[\frac{5}{3},\infty\right)$ c) $\bigcirc \left(-\infty, \frac{5}{3}\right) \cup \left(\frac{5}{3}, \infty\right)$ d) \cap $(-\infty, -2) \cup (6, \infty)$ e) $\bigcirc \left(\frac{5}{3},\infty\right)$ **Question 3** Given $f(x) = \frac{x-2}{x+1}$, simplify $\frac{f(x+h) - f(x)}{h}$, $h \neq 0$ when x = 3.

a)
$$\frac{3}{4h-16}$$

b)
$$\frac{3}{4h+16}$$

c)
$$0$$

d)
$$\frac{h-2}{h+1}$$

e)
$$\frac{4h+1}{4}$$

Question 4

Solve
$$\sin(9x) = 1$$
 on the interval $\left[0, \frac{2\pi}{9}\right]$.

a)
$$x = 0$$

b) $x = \frac{\pi}{18}$
c) $x = \frac{\pi}{4}$
d) $x = \frac{3\pi}{4}$
e) $x = \frac{\pi}{6}$

Question 5

Given
$$f(x) = \frac{5x^2 - 10x}{6x^2 - 24}$$
, identify any vertical asymptotes.
a) $x = 0$
b) $x = -2$
c) $x = \frac{5}{6}$
d) $x = 2$

e) \bigcirc There are none.

Question 6 Find the exact value of the following expression. If undefined, state, *undefined*. $\cos\left(\sin^{-1}\left(\frac{3}{5}\right)\right)$ a) *undefined* **b**) $\bigcirc \frac{4}{5}$ c) $\bigcirc \frac{5}{4}$ **d**) $\bigcirc \frac{4}{3}$ e) $\bigcirc \frac{3}{4}$ **Question 7** Evaluate: $\lim_{x \to -5} \frac{x+5}{x^2+11x+30}$ a) $\bigcirc \frac{1}{10}$ **b**) 10 c) O does not exist **d**) $\bigcirc -\frac{1}{10}$ e) $\bigcirc -\frac{1}{5}$ **Question 8** Evaluate the limit: $\lim_{x \to 100} \frac{\sqrt{x} - 10}{x - 100}$ **a**) 🗌 1

b)
$$\bigcirc \frac{1}{20}$$

c) 10
d) 20
e)
$$\frac{1}{10}$$

f) \bigcirc Does not exist.

Question 9

Evaluate the limit: $\lim_{x \to 0} \frac{4 - \frac{3}{x}}{2 + \frac{4}{x^2}}$

a) ○ −1

b) 🔿 0

- c) $\bigcirc -\frac{3}{4}$
- **d**) 🔾 2

e) ○ −2

f) \bigcirc Does not exist.

Question 10

Evaluate: $\lim_{x \to 0} \frac{\tan^2(6x)}{5x^2}$

a)
$$\bigcirc \frac{5}{36}$$

b) $\bigcirc \frac{36}{25}$
c) \bigcirc does not exist

$$\mathbf{d}) \bigcirc \frac{36}{5}$$

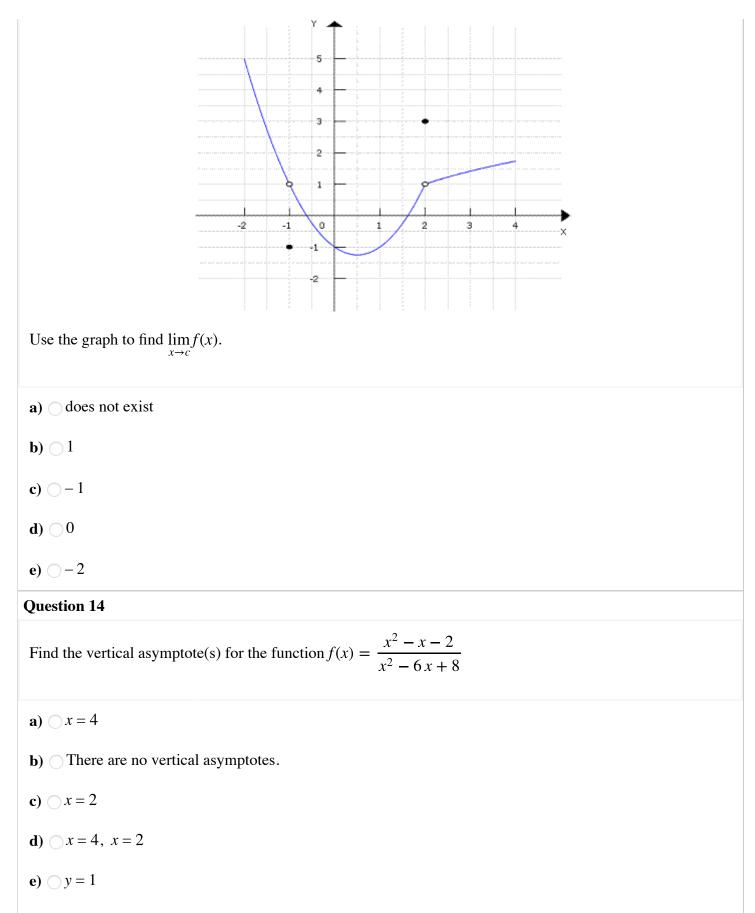
e) 🔿 0

Give the values of A and B for the function f(x) to be continuous at both x = 1 and x = 6.

$$f(x) = \begin{cases} Ax - B & x \le 1 \\ -30x & 1 < x < 6 \\ Bx^2 - A & x \ge 6 \end{cases}$$

a) $\bigcirc A = -35$ and B = -6

- **b**) $\bigcirc A = -36$ and B = -5
- **c**) $\bigcirc A = -37$ and B = -6
- **d**) $\bigcirc A = -36$ and B = -7
- **e)** $\bigcirc A = -36$ and B = -6


Question 12

For which of the following functions can we use the Intermediate Value Theorem to prove the existence of roots in the indicated interval?

- I. $f(x) = \frac{x-3}{x}$, [-2, 2] II. $f(x) = x^2 + 9$, [-2, 2] III. $f(x) = 3x^3 - 9x$, [-2, 2]
- **a**) \bigcirc I and III only
- **b**) \bigcirc II and III only
- c) \bigcirc I and II only
- **d**) \bigcirc II only
- e) 🗌 III only
- **f**) \bigcirc I, II and III

Question 13

Given c = -1 and the graph of the function f below,

f) \bigcirc None of the above.

Find
$$\lim_{x \to \infty} \frac{(x+4)(x-1)(x-6)}{-3x^3 - 1x^2 + 5x - 4}$$
.
a) -3
b) $-\frac{1}{3}$
c) $\frac{1}{3}$
d) -4
e) 1
f) 0
g) None of the above.

Question 16

Find the inverse if it exists given $f(x) = 2x^5 + 6$.

a)
$$\int f^{-1}(x) = \left(\frac{x+6}{2}\right)^5$$

b) $\int f^{-1}(x) = \sqrt{\frac{x-6}{2}}$
c) \bigcirc No inverse exists.

d) $f^{-1}(x) = \sqrt{\frac{x+6}{2}}$ **e**) $f^{-1}(x) = \left(\frac{x-6}{2}\right)^{1/5}$ **f**) $f^{-1}(x) = \left(\frac{x-6}{2}\right)^{5}$ **g**) $f^{-1}(x) = \left(\frac{x+6}{2}\right)^{1/5}$

The function $f(x) = \frac{x^2 - 25}{x - 5}$ is defined everywhere except at x = 5. If possible, define f at x = 5 so that it becomes continuous at x = 5.

a) \bigcirc Not possible because there is a jump disconinuity at the given point.

b) \bigcirc Not possible because there is an infinite disconinuity at the given point.

c)
$$\bigcirc f(5) = 10$$

 $\mathbf{d}) \bigcirc f(5) = 0$

$$\mathbf{e}) \bigcirc f(5) = \frac{1}{10}$$

Question 18

Given
$$f(x) = \frac{x}{3x+2}$$
 which of the following expressions will represent $f'(x)$?

a)
$$\lim_{h \to 0} \frac{\frac{x+h}{3x+3h+2}}{h}$$
b)
$$\lim_{h \to x} \frac{\left(\frac{x+h}{3x+3h+2}\right) - \left(\frac{x}{3x+2}\right)}{h}$$
c)
$$\frac{\left(\frac{x+h}{3x+3h+2}\right) - \left(\frac{x}{3x+2}\right)}{h}$$
d)
$$\lim_{h \to 0} \frac{\left(\frac{x+h}{3x+3h+2}\right) - \left(\frac{x}{3x+2}\right)}{h}$$
e)
$$\lim_{h \to 0} \frac{\left(\frac{x}{3x+2}+h\right) - \left(\frac{x}{3x+2}\right)}{h}$$

Question 19

For the following limit, find the largest δ that works for $\varepsilon = 0.5$. $\lim_{x \to 2} (3x - 1) = 5$

a) $\bigcirc \frac{3}{2}$
b) $\bigcirc \frac{1}{6}$
c) $\bigcirc \frac{1}{2}$
d) 1
e) 🔿 2
Question 20
$\lim_{x\to 0}\frac{\sin(5x)}{\sin(7x)} =$
$\lim_{x \to 0} \frac{\sin(5x)}{\sin(7x)} =$ a) $\bigcirc 1$
a) (1
a) $\bigcirc 1$ b) $\bigcirc \frac{7}{5}$

e) \bigcirc The limit does not exist.

Question 21

Evaluate the limit: $\lim_{x \to 4^+} f(x)$. Given that

$$f(x) = \begin{cases} 2x - 2 & x \le 4\\ x^2 - x & x > 4 \end{cases}$$

a) 🗌 1

b) \bigcirc 12

c) 🔘 0

d) \bigcirc does not exist

e) \(\) 6

I understand that I am expected to know all definitions and theorems from sections 1.2 - 2.1.
a) 🔿 Yes
b) 🔿 No
Question 23
I understand that I am expected to know all prerequisite material from Quiz 0.
a) 🔿 Yes
b) 🔿 No