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Abstract

We give a self-contained account of sufficient conditions for a shift space
(Σ, σ) to be intrinsically ergodic. In particular, we adapt uniqueness results
by Bowen to the setting of symbolic dynamics. We intend for this docu-
ment to be an introduction to topics in the area of symbolic dynamics and
thermodynamic formalism.
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1. Introduction

For a compact metric space X, the variational principle for topological
entropy states that if f : X → X is continuous, then htop(f) = supµ hµ(f),
where htop denotes the topological entropy and the supremum is taken over
all f -invariant probability measures on X. A measure µ that achieves this
supremum is called a measure of maximal entropy (MME). A system
which has a unique MME is called intrinsically ergodic.

In the 1960s, Parry proved that transitive subshifts of finite type are
intrinsically ergodic. A presentation of this result is given by Sherman [1].
In 1974, Bowen showed that expansive systems satisfying the specification
property have unique MMEs (see [2]). In particular, Bowen’s arguement can
be applied to shift spaces. In this paper, we will show that specification is a
sufficient condition for a shift space to be intrinsically ergodic.

Theorem 1.1. If A is a finite alphabet and Σ ⊂ AN is a shift space with
specification, then Σ has a unique measure of maximal entropy.

In particular, we will adapt Bowen’s argument for expansive homeomor-
phisms with specification to prove theorem 1.1. Since for any distint x, y ∈ Σ,
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there is a minimal n ∈ N such that xn 6= yn. Then, as we’ll see in section 2.1,
d(σn−1(x), σn−1(y)) = 1

2
. Therefore, the symbolic structure of a shift space

is indeed analogous to the expansive property used by Bowen and there is
no potential function to consider. The proof of theorem 1.1 is presented in
five parts and follows the structure of Bowen’s proof.

1. Show that there is a Q1 > 0 such that enh ≤ #Ln ≤ Q1e
nh for every

n ∈ N.

2. Explicitly construct a MME µ using the variational principle.

3. Use specification to show that µ satisfies a Gibbs property.

4. Show that µ is ergodic.

5. Show that the existence of another ergodic MME ν contradicts the
Gibbs property for µ. Thereby, showing the uniqueness of µ.

For the proofs of the lemmas to be considered, we will follow Climenhaga
and Thompson’s paper [3] and a blog post by Climenhaga [4] since these
are written in the setting of symbolic dynamics albeit for a broader class of
systems.

2. Definitions and Results

2.1. Symbolic Dynamics

We provide the necessary background in symbolic dynamics that a reader
will need to understand the material discussed in this paper. For a more
complete presentation of this topic, we refer the reader to Kitchens [5] and
Lind [6].

Let AN denote the set of all infinite sequences over a finite alphabet
A = {1, ..., p}; i.e. AN = {x1x2x3 · · · | xi ∈ A, i ∈ N}. This is a compact
metric space with distance function d(x, y) = 2−min{n: xn 6=yn}. Let σ denote
the shift map on AN; i.e. for x ∈ AN, σi(x) = xi+1. A shift space is a
closed σ-invariant subset Σ ⊂ AN. Since Σ is closed, it is compact. Given
n ∈ N, consider the set Ln := {w ∈ An| [w] 6= ∅}, where [w] denotes the set
of all x ∈ Σ starting with w. That is, [w] = {x ∈ X| x1 · · ·xn = w}. We
call [w] the cylinder set for the word w ∈ Ln. The union L :=

⋃
n∈N Ln

is called the language of the shift space Σ. We will denote the collection of
n-cylinders by Un and the collection of all cylinder sets by U .

A topological dynamical system is a pair (X,T ) whereX is a compact
metric space and T is a continuous mapping of X to itself. Therefore, (Σ, σ)
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is a topological dynamical system since the shift map is continuous. Since
each position in an element of Σ is discretely chosen, it is obvious that Σ
inherits the discrete-product topology. It is also easy to verify that U is a
basis for the topology on Σ. Also since a cylinder set is the complement of a
union of cylinder sets, cylinder sets are both open and closed. This fact will
be useful later.

In particular, we will consider shift spaces with a certain transitivity prop-
erty. For symbolic dynamics, the topological transitivity property takes the
following form: Σ is transitive if and only if for every pair of words u, v ∈ L,
there exists a word w ∈ L such that uwv ∈ L. A shift space is said to
have specification if the gluing word w in the transitivity property can be
chosen to have a fixed length for all u and v. That is, a shift space satisfies
the specification property if there exists τ ∈ N such that for every u, v ∈ L,
there exists a word w ∈ Lτ such that uwv ∈ L.

2.2. Topological Entropy

In this section and the next, we introduce entropy. As we cannot include
every detail on the subject, we refer the reader to chapters 4 and 7 in [7] for
further background.

Let X be a compact topological space. The join of open covers α and
β of X is the set α ∨ β = {A ∩ B : A ∈ α,B ∈ β}. For a finite collection
of open covers {α1, ..., αn}, we denote their join by

∨n
k=1 αk. Note that the

preimage of an open cover under a continuous tranformation T : X → X
is also an open cover. In particular, we are interested in joins of the form∨n−1
k=0 T

−kα = α ∨ T−1α ∨ · · · ∨ T−(n−1)α. Observe that U1 is an open cover
of Σ and Un =

∨n−1
k=0 σ

−kU1. We will see in a moment that the collections of
n-cylinders are part of an important class of open covers.

Let α be an open cover of X. Since X is compact, there exists a finite
subcover of α. Let N(α) be the smallest cardinality of subcover of α. The
entropy of α is defined by H(α) = logN(α). The entropy of T relative
to α is defined by

h(T, α) = lim
n→∞

1

n
H(

n−1∨
k=0

T−kα),

where T−kα = {T−kA}A∈α. Finally, the topological entropy, htop(T ), of a
continuous transformation T is defined to be the supremum of h(T, α) over all
open covers α ofX. That is, htop(T ) = sup{h(T, α)| α is an open cover of X}.
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Throughout this paper, topological entropy will be denoted as h if the context
is clear.

An advantage to working in the setting of symbolic dynamics is the fact
that the covers Un are generators of σ. A generator of a continuous trans-
formation of X, T , is an open cover α of X in which for any sequence of sets
{An}∞n=0 in α,

⋂∞
n=0 T

−nAn contains exactly one point of X. Indeed, for any
n-cylinder [w],

⋂∞
n=0 σ

−n[w] is a single word of Σ. Proposition 2.3 below will
show that the topological entropy of the shift map σ is equal to h(σ,U1), but
we will first state two results that we’ll need for the proof.

Proposition 2.1. If (X, d) is a compact metric space and α is an open cover
of X, then there exists δ > 0 such that each subset of X of diameter less than
or equal to δ lies in some member of α. This proposition is called Lebesgue’s
covering lemma and the constant δ is called a Lebesgue number of α

Proof. Note that since X is compact, it suffices to consider a finite subcover
of α. Let α0 = {A1, ..., Ak} where Aj ∈ α for 1 ≤ j ≤ k. Assume the result
is false. For each n ≥ 1, there exists Bn ⊆ X such that diam(Bn) ≤ 1

n

and Bn is not contained in any Aj of α0. Choose xn ∈ Bn and then a
convergent subsequence {xni}. Suppose x ∈ Aj ∈ α where xni → x. Let
a = d(x,X\Aj) > 0. Choose ni such that ni > 2/a and d(xni , x) < a/2.
Then if y ∈ Bni ,

d(y, x) ≤ d(y, xni) + d(xni , x) ≤ 1

ni
+
a

2
< a.

Hence Bni ⊆ Aj, a contradiction.

We say that α refines β, denoted β < α, if for each A ∈ α, there exists
a B ∈ β such that A ⊂ B.

Proposition 2.2. If α > β, then h(T, α) ≥ h(T, β).

Proof. For any subcover α0 = {A1, ..., An} of α, each Ai is contained in some
Bi ∈ β. Note that β0 = {B1, ..., Bn} is also an open cover of X of cardinality
n. Thus, N(α) ≥ N(β) and H(α) ≥ H(β). Now suppose A =

⋂n−1
i=0 T

−iAi ∈∨n−1
i=0 T

−iα. Since α refines β, for each i Ai ⊂ Bi for some Bi ∈ β. So if
B =

⋂n−1
i=0 T

−iBi ∈
∨n−1
i=0 T

−iβ, then A ⊂ B. Thus,
∨n−1
i=0 T

−iα <
∨n−1
i=0 T

−iβ
implying H(

∨n−1
i=0 T

−iα) ≥ H(
∨n−1
i=0 T

−iβ) and h(T, α) ≥ h(T, β).

Proposition 2.3. Consider the generator U1 of our dynamical system (Σ, σ).
Then htop(σ) = h(σ,U1).
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Proof. Let β be an open cover with a Lebesgue number δ. We can choose
N ∈ N such that diam(

∨N−1
i=0 σ−iU1) < δ. Then β <

∨N−1
i=0 σ−iU1 and

h(σ, β) ≤ h(σ,
N−1∨
i=0

σ−iU1)

= lim
k→∞

1

k
H

( k−1∨
l=0

σ−l
(N−1∨

i=0

σ−iU1
))

= lim
k→∞

1

k
H

( k+N−1∨
i=0

σ−iU1
)

= lim
k→∞

k +N − 1

k
· 1

k +N − 1
H

( k+N−1∨
i=0

σ−iU1
)

= h(σ,U1).

Thus, h(σ, β) ≤ h(σ,U1) for all open covers β and so htop(σ) = h(σ,U1).

Thus, for a shift space, we need only consider the open cover U1 to cal-
culate the topological entropy of σ. That is, the topological entropy of σ is
given by

htop(σ) = h(σ,U1) = lim
n→∞

1

n
log #Ln.

2.3. Measure-Theoretic Entropy

The build up of measure-theoretic entropy is very similar to that of topo-
logical entropy. Consider a probability space (X,B,m) where B denotes the
Borel σ-algebra. The definition of the join of a collection of partitions of X
is analogous to that of a collection of open covers. Let ζ = {A1, ..., Ak} be a
finite partition of X. We define the entropy of ζ to be

Hm(ζ) = −
k∑
i=1

m(Ai) logm(Ai).

Now suppose T : X → X is a measure-preserving transformation of (X,m).
We call

hm(T, ζ) = lim
n→∞

1

n
Hm

( n−1∨
k=0

T−kζ

)
the entropy of T with respect to ζ. Finally, the entropy of T is defined
to be hm(T ) = sup{hm(T, ζ)| ζ is a finite partition of X}.
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2.4. Useful Results

The following results will be used numerous times throughout this paper.
The first we state without proof since its details require more structured
results than which are relevant to the purpose of this paper. For details, see
theorem 4.3 in Walters.

Proposition 2.4. For finite partitions ζ and η, Hm(ζ∨η) ≤ Hm(ζ)+Hm(η).

Proposition 2.5. If {an}n≥1 is a sequence of real numbers such that

an+p ≤ an + ap for all n ∈ N,

then limn→∞
an
n

exists and is equal to infn
an
n

.

Proof. Fix a natural number p. We can write each n ∈ N as n = kp+ i where
0 ≤ i < p. Then

an
n

=
ai+kp
i+ kp

≤ ai
kp

+
akp
kp
≤ ai
kp

+
kap
kp

=
ai
kp

+
ai
p
.

As n → ∞, k must also approach infinity which implis that liman
n
≤ ap

p
.

Since p was arbitrary, liman
n
≤ inf ap

p
. But inf ap

p
≤ liman

n
so that lim an

n

exists and equals inf an
n

.

We use these two propositions to prove a useful result about the entropy
of T .

Proposition 2.6. Let ζ = {A1, ..., Ak} be a finite partition of Σ. The
measure-theoretic entropy

Hm(T, ζ) = inf
n≥1

1

n
Hm

( n−1∨
k=0

T−kζ

)
.

Proof. Let an = Hm

(∨n−1
k=0 T

−kζ
)
. Note that Hm(ζ) = Hm(T−1ζ) since T is

measure-preserving. Then by proposition 2.4, we see that

an+p = Hm

( n+p−1∨
k=0

T−kζ

)
≤ Hm

( n−1∨
k=0

T−kζ

)
+Hm

( n+p−1∨
k=n

T−kζ

)

= an +Hm

( p−1∨
k=0

T−kζ

)
= an + ap.

.

Applying proposition 2.5 finishes the proof.
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We will need to estimate the entropy of ζ. Thus we will need to prove
some properties for functions of the form φ(t) = −t log t. Note that φ is a
concave function.

Proposition 2.7. Consider a probability vector {p1, ..., pk}, i.e. pi ≥ 0 for
1 ≤ i ≤ k and

∑k
i=1 pi = 1. Then

∑k
i=1−pi log pi ≤ log k.

Proof.

1

k

k∑
i=1

−pi log pi =
1

k

k∑
i=1

φ(pi) ≤ φ

(
1

k

k∑
i=1

pi

)
=

1

k
log k,

where the inequality is a consequence of the concavity of φ(pi). Note that
equality holds only if pi = 1

k
for each 1 ≤ i ≤ k.

Proposition 2.8. Let {p1, ..., pk} be an arbitrary collection of nonnegative
real numbers. Then there exists a probability vector {p′i, ..., p′k} such that

k∑
i=1

−pi log pi = p
k∑
i=1

−p′i log p′i − p log p.

Proof. Let p =
∑k

i=1 pi and p′i = pi
p

for 1 ≤ i ≤ k. Then
∑k

i=1 p
′
i = 1 and

pi = p′ip so that

k∑
i=1

−pi log pi =
k∑
i=1

−p′ip(log p′i + log p) = p
k∑
i=1

−p′i log p′i − p log p.

Let X be a compact metric space and T : X → X be continuous. De-
note by M(X) the collection of all probability measures on (X,B(X)) and
M(X,T ) the collection of probability measures that make T a measure-
preserving transformation. For background on this topic, see chapter 6 in
Walters’ book on ergodicity [7]. In particular, we will need a result about
convergence in the weak∗-topology on M(X) for a space X. A sequence
converges in the weak∗-topology if

∫
f dµn =

∫
f dµ for all f ∈ C(X).

Proposition 2.9. Let X be a compact metric space and T : X → X be con-
tinuous. Define a sequence {µn}∞n=1 by µn = 1

n

∑n−1
i=0 σnT

−i, where {σn} is a
sequence in M(X). Then any limit point µ of {µn} is a member of M(X,T ).
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Proof. Let µnj → µ in M(X) and f ∈ C(X). Then∣∣∣∣ ∫ f ◦ T−1 dµ−
∫
f dµ

∣∣∣∣ = lim
j→∞

∣∣∣∣ ∫ f ◦ T−1 dµnj −
∫
f dµnj

∣∣∣∣
= lim

j→∞

∣∣∣∣ 1

nj

∫ nj−1∑
i=0

(f ◦ T−(i+1) − f ◦ T−i) dσnj
∣∣∣∣

= lim
j→∞

∣∣∣∣ 1

nj

∫
(f ◦ T nj − f ) dσnj

∣∣∣∣
≤ lim

j→∞

1

nj

∫ ∣∣(f ◦ T nj − f )
∣∣ dσnj

≤ lim
j→∞

2‖f‖
nj

= 0.

Therefore, µ(X,T ).

Let 4 denote the symmetric difference of two sets; i.e. for sets A and B,
A4B = (A\B) ∪ (B\A).

Proposition 2.10. Let (X,B,m) be a measure space. If A,B ∈ B have
finite measure, then |m(A)−m(B)| ≤ m(A4B).

Proof. Note that for any two sets X and Y , X = (X\Y ) ∪ (X ∩ Y ) and
vice-versa. Let A,B ∈ B. Therefore,

|m(A)−m(B)| = |m(A\B) +m(A ∩B)−m(B\A)−m(A ∩B)|
= |m(A\B)−m(B\A)|
≤ m(A\B) +m(B\A)

= m((A\B) ∪ (B\A)) = m(A4B).

3. Counting Estimates

In this section, we use the topological entropy and specification property
of (Σ, σ) to provide bounds on #Ln, the cardinality of Ln. Then we use the
bound to also bound the the number of words of a given length in a subset
D ⊂ L. These results will be used later to show that a MME of Σ has a
Gibbs property and is unique.
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Lemma 3.1. There exists a constant Q1 > 0 such that for every n ∈ N

enh ≤ #Ln ≤ Q1e
nh.

Proof. Denote by LmLn the concatenation of Lm and Ln; that is, LmLn
is the set of all words of the form vw where v ∈ Lm and w ∈ Ln. If
u ∈ Lm+n, then [u] = {x ∈ X| u = x1 · · ·xm+n}. Let v = x1 · · ·xm ∈ Lm and
w = xm+1 · · ·xm+n ∈ Ln. Thus, u = vw ∈ LmLn so Lm+n ⊂ LmLn. This
implies that #Lm+n ≤ (#Lm)(#Ln) and log #Lm+n ≤ log #Lm + log #Ln.
By proposition 2.5,

h(σ) = lim
n→∞

1

n
log #Ln = infn

1

n
log #Ln =⇒ h ≤ 1

n
log #Ln,

for all n ∈ N. Therefore, enh ≤ #Ln for every natural n.
To establish the upper bound, define a map (Ln)k → Lk(n+τ) by

(w1, ..., wk) 7→ w1u1 · · ·wkuk

where ui ∈ Lτ , 1 ≤ i ≤ k is provided by specification. If (x1, ..., xk) is
another element of (Ln)k such that w1u1 · · ·wkuk = x1v1 · · ·xkvk, then wi =
xi since |ui| = |vi| = τ for 1 ≤ i ≤ k. Thus, γ is injective implying that
#Lk(n+τ) ≥ (#Ln)k. So for any n,

1

k(n+ τ)
log #Lk(n+τ) ≥

1

n+ τ
log #Ln.

Sending k → ∞ gives h ≥ 1
n+τ

log #Ln =⇒ eh(n+τ) ≥ #Ln providing the

upper bound. Setting Q1 = eτh gives the desired result.

Later we will need to bound the number of elements of a given length in
a subset of the language of Σ. For a subset D ⊂ L, denote Dn = D ∩ Ln for
each n ∈ N. Given a measure ν, we write ν(Dn) for ν(

⋃
w∈Dn [w]) and ν(w)

for ν([w]).

Lemma 3.2. For γ ∈ (0, 1), there exists K1 > 0 such that if ν is a MME,
n ∈ N, and Dn ⊂ Ln has ν(D) ≥ γ, then

#Dn ≥ K1e
nh.
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Proof. Recall that hν(σ) = inf
n≥1

1

n
Hν

( n−1∨
k=0

T−kζ

)
. Since hν(σ) = htop(σ),

nhtop(σ) ≤
∑
w∈Ln

−ν(w) log ν(w)

=
∑
w∈Dn

−ν(w) log ν(w) +
∑
w∈Dcn

−ν(w) log ν(w),

where Dcn denotes the complement of Dn in Ln. Applying proposition 2.8 to
both sums yields

nhtop(σ) ≤ ν(Dn)

( ∑
w∈Dn

− ν(w)

ν(Dn)
log

ν(w)

ν(Dn)

)
− ν(Dn) log ν(Dn)

+ ν(Dcn)

( ∑
w∈Dcn

− ν(w)

ν(Dcn)
log

ν(w)

ν(Dcn)

)
− ν(Dcn) log ν(Dcn)

≤ ν(Dn) log #Dn + ν(Dcn) log #Dcn + log 2.

By lemma 3.1, we see that #Dcn ≤ #Ln ≤ Q1e
nh which in turn implies that

log #Dcn ≤ logQ1 + nh and

nhtop(σ) ≤ ν(Dn) log #Dn + (1− ν(Dn))(logQ1 + nh) + log 2.

Therefore by using the assumption that ν(Dn) ≥ γ, we see that

ν(Dn) log #Dn ≥ ν(Dn)(logQ1 + nh)− log(2Q1)

log #Dn ≥ logQ1 + nh− log(2Q1)

ν(Dn)

≥ logQ1 + nh− γ−1 log(2Q1).

Exponentiating both sides of the last inequality and setting K1 = 21−γQ1−γ−1

1

finishes the proof.

4. Construction of MME

As stated above, the variational principle applies to shift spaces since
they are compact metrics spaces and σ is continuous. The construction of
the MME is a byproduct of the proof of the variational principle.
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Lemma 4.1. Let Σ be a shift space. The topological entropy of σ is equal to
the supremum over measures µ ∈M(Σ, σ). That is,

htop(σ) = sup{hµ(σ)| µ ∈M(Σ, σ)}.

Proof. Let µ ∈ M(Σ, σ) and ζ = {[1], ...[p]}. Recall that for each n ≥
1,
∨n−1
k=0 σ

−kζ is just the collection of n-cylinders Un. By noting that the
collection {µ([w]) : [w] ∈ Un} is a probability vector of #Ln elements, we
can apply proposition 2.7 and see that Hµ(

∨n−1
k=0 σ

−kζ) ≤ log(#Ln) for each
n ∈ N. Dividing by n and sending n to infinity gives hµ(σ) ≤ htop(σ) for any
µ ∈M(Σ, σ). Therefore, sup{hµ(σ)| µ ∈M(Σ, σ)} ≤ htop(σ).

For each n ∈ N, construct a set En ⊂ X by arbitrarily choosing an
element from each n-cylinder in Un Note that each En has the cardinality
of Ln and that for every [w] contains exactly one element of En. Define
measures

νn =
1

#En

∑
x∈En

δx and µn =
1

n

n−1∑
k=0

νn ◦ σ−k.

By the compactness of M(Σ), there exists a subsequence {nj} such that
limj→∞ log #Lnj = htop(σ) and µnj converges to a measure µ. By proposition
2.9, µ ∈M(X, σ).

We will show that hµ(σ) ≥ htop(σ) which will finish the proof and imply
that µ is a MME. Recall that the measure-theoretic entropy of µ is given
by hµ(σ) = limM→∞

1
M
Hµ

(∨M−1
k=0 σ−kζ

)
. Thus, establishing the inequality

amounts to estimating Hµ(
∨M−1
k=0 σ−kζ) from below. First, note that

Hµ

(M−1∨
k=0

σ−kζ

)
= lim

j→∞
Hµnj

(M−1∨
k=0

σ−kζ

)
,

where {nj} is the subsequence on which µnj converges to µ. Fix M ∈ N. De-
fine a new sequence n′j := bnj

M
c and note that n′jM ≤ nj < (n′j+1)M . There-

fore by the convergence of {nj}, we see that convergence also happens along

the subsequence {n′jM}. Hence, we need to estimate Hµn′
j
M

(∨M−1
k=0 σ−kζ

)
.

So,

Hµn′
j
M

(M−1∨
p=0

σ−pζ

)
=
∑
w∈LM

−µn′jM(w) log µn′jM(w)
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≥ 1

n′jM

n′jM−1∑
k=0

∑
w∈LM

−νn′jM(σ−k(w)) log νn′jM(σ−k(w))

=
1

n′jM

n′jM−1∑
k=0

Hνn′
j
M

(
σ−k

M−1∨
p=0

σ−pζ

)

=
1

n′jM

M−1∑
i=0

n−1∑
l=0

Hνn′
j
M

(
σ−(lM+i)

M−1∨
p=0

σ−pζ

)
,

since finite sums are interchangeable and −x log x is a concave function. For
i = 0, note that

n−1∑
l=0

Hνn′
j
M

(σ−lM
M−1∨
p=0

σpζ) =
n−1∑
l=0

Hνn′
j
M

( (l+1)M−1∨
p=lM

σ−pζ

)
≥ Hνn′

j
M

( n′jM−1∨
p=0

σ−pζ

)
.

It follows that for all 0 ≤ i ≤M − 1,

n−1∑
l=0

Hνn′
j
M

(
σ−(lM+i)

M−1∨
p=0

σ−pζ
)
≥ Hνn′

j
M

(σ−i
n′jM−1∨
p=0

σ−pζ)

which in turn implies that

Hµn′
j
M

(
M−1∨
k=0

σ−kζ) ≥ 1

n′jM

M−1∑
i=0

n−1∑
j=0

Hνn′
j
M

(σ−(jM+i)

M−1∨
k=0

σ−kζ)

≥ 1

n′jM

M−1∑
i=0

Hνn′
j
M

(σ−i
n′jM−1∨
k=0

σ−kζ)

=
1

n′jM

M−1∑
i=0

Hνn′
j
M

( i+n′jM−1∨
k=i

σ−kζ

)
.

Note that Hνn′
j
M

(∨i+n′jM−1
k=i σ−kζ

)
≥ Hνn′

j
M

(∨n′jM−1
k=i σ−kζ

)
. Using proposi-

12



tions 2.4 and 2.7, we see that

Hνn′
j
M

( n′jM−1∨
k=0

σ−kζ
)
≤ Hνn′

j
M

( i−1∨
k=0

σ−kζ
)

+Hνn′
j
M

( n′jM−1∨
k=i

σ−kζ
)

≤ log #Li +Hνn′
j
M

( n′jM−1∨
k=i

σ−kζ

)

≤M log #ζ +Hνn′
j
M

( n′jM−1∨
k=i

σ−kζ

)
.1

Thus, Hµn′
j
M

(
∨M−1
k=0 σ−kζ) ≥ 1

n′j
Hνn′

j
M

(∨n′jM−1
k=0 σ−kζ

)
− M

n′j
log #ζ.

Since Un′jM =
∨n′jM−1
k=0 σ−kζ and νn′jM(w) = (#Ln′jM)−1 for all w ∈ Ln′jM ,

apply proposition 2.7 again gives Hνn′
j
M

(
∨n′jM−1
k=0 σ−kζ) = log #Ln′jM . Hence,

Hµ

(M−1∨
k=0

σ−kζ

)
= lim

j→∞
Hµn′

j
M

(M−1∨
k=0

σ−kζ

)
≥ lim

j→∞

[
1

n′j
log #Ln′jM −

M

n′j
log #ζ

]
yielding Hµ

(∨M−1
k=0 σ−kζ

)
≥ Mhtop(σ). Dividing by M and then letting

M tend towards ∞ gives hµ(σ) = limM→∞
1
M
Hµ(

∨M−1
k=0 σ−kζ) ≥ htop(σ) as

desired. Hence finishing the proof of the variational principle for shift spaces.

5. Gibbs property for MME

Here we prove a Gibbs property for the MME constructed in the previous
section. It will be used later to show help show the uniqueness of µ.

Lemma 5.1. There exists a constant Q2 > 0 such that for every n ∈ N and
w ∈ Ln,

Q−12 ≤
µ([w])

e−nh
≤ Q2.

1The last inequality is a consequence of the fact that log#Li ≤ log(#ζ)i ≤M log#ζ.

13



Proof. Fix n ∈ N. Choose m� n and let k < m− n. Consider w ∈ Ln. We
begin by estimating νm◦σ−k[w]. If v ∈ Lm and x ∈ [v], then x ∈ σ−k[w] ⇐⇒
σkx ∈ [w] ⇐⇒ xkxk+1 · · ·xk+n−1 = w. This last statement is equivalent to
vk · · · vk+n−1 = w so if we let Hm(w) = {v ∈ Lm| vk · · · vk+n−1 = w},

νm(σ−k[w]) =
1

#Lm

∑
x∈Em

δx(σ
−k[w]) =

#Hm(w)

#Lm

since the cylinder corresponding to a word in Lm contains only one element
of Em.

For the lower bound, we consider a map that uses the specification prop-
erty to glue admissible words of lengths Lk−τ and Lm−k−n−τ to their re-
spective ends of w creating the collection Hm(w) of words in Lm where w
appears in the k-th position. Define a map Lk−τ × Lm−k−n−τ → Hm(w) by
(u, v) 7→ usuwsvv, where su, sv ∈ Lτ are given by specification. Note that
map is not surjective since the gluing words given by specification do not
need to be unique. If two points (u1, v1), (u2, v2) ∈ Lk−τ × Lm−k−n−τ get
mapped to equivalent points u1s1uws

1
vv

1 and u2s2uws
2
vv

2, then u1 = u2 and
v1 = v2. That is, the map is injective so #Lk−τ#Lm−k−n−τ ≤ #Hm(w). By

Lemma 3.1, we see that if K2 = e−2τh

Q1

νm(σ−k[w]) ≥ #Lk−τ#Lm−k−n−τ
#Lm

≥ (e(k−τ)h)(e(m−k−n−τ)h)

Q1emh
= K2e

−nh.

Therefore, by summing over k we find that
∑m−1

k=0 νm(σ−k[w]) ≥ mK21e
−nh =⇒

µm([w]) ≥ K2e
−nh. So sending m→∞ establishes a lower bound.

For the upper bound, we consider the mapHm(w)→ Lk×Lm−k−n defined
as v 7→ (v1 · · · vk, vk+n+1 · · · vm). This map is clearly injective so Hm(w) ≤
#Lk#Lm−k−n. Using Lemma 3.1 again gives

νm(σ−k[w]) ≤ #Lk#Lm−k−n
#Lm

≤ (Q1e
kh)(Q1e

(m−k−n)h)

emh
= Q2

1e
−nh.

Thus, µm([w]) ≤ Q2
1e
−nh. Sending m → ∞ gives a upper bound. Let

Q2 = max{Q2
1, K

−1
2 }. Then Q−12 ≤

µ([w])
e−nh

≤ Q2 as desired.
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6. Ergodicity of MME

Consider a probability space (X,B,m). A measure-preserving transfor-
mation T of (X,B,m) is called ergodic if B ∈ B and T−1B = B implies
that m(B) = 0 or m(B) = 1. A measure ν ∈ M(X,T ) is say to be ergodic
if T is ergodic on (X, ν). We will use the following proposition to show that
the MME µ constructed in section 4 is ergodic. For more background in
ergodicity, we refer the reader to chapter 1 of [7].

Proposition 6.1. Let T be a measure-preserving transformation of the prob-
ability space (X,B,m). If for every A,B ∈ B with m(A) > 0, m(B) > 0,
there exists n > 0 such that m(T−nA ∩B) > 0, then T is ergodic.

Proof. Suppose B ∈ B with T−1B = B. If 0 < m(B) < 1, then m(X\B) 6= 0
and 0 = m(B ∩ (X\B)) = m(T−nB ∩ (X\B)) for all n ≥ 1, a contradiction
to the hypothesis.

Therefore, the ergodicity of µ is a consequence of the following lemma.
We will need to build up a few results to prove it.

Lemma 6.2. If two measurable sets P,Q ⊂ Σ both have positive µ-measure,
then

lim
n→∞

µ(P ∩ σ−n(Q)) > 0.

Proof. First, we show that there exists a subsequence mj 1 ∞ and con-
stant K3 > 0 such that for cylinder sets of u, v ∈ L, µ([u] ∩ σ−mj [v]) ≥
K3µ([u])µ([v]) for sufficiently large j.

Consider u, v ∈ L and denote their lengths as nu and nv. Let {nj} be
an increasing sequence of natural numbers. Let m ∈ N be large and fix
k ≤ m−nu−nv−nj. Define another sequence by letting mj = nj +nu + 2τ .
Similar to how we estimated the µ-measure of a cylinder set for the Gibbs
property, we consider νm(σ−k[u] ∩ σ−(k+mj)[v]). Note that

σ−k[u] = {x ∈ Lm : xk · · ·xk+nu−1 = u}

and
σ−(k+mj)[v] = {x ∈ Lm : xk+mj · · ·xk+mj+nv−1 = v}.

Thus, the intersection of the two sets are all the words x ∈ Σ such that u
appears in the k-th position of x and v appears mj positions later. That is,

σ−k[u]∩σ−(k+mj)[v] = {x ∈ Lm : xk · · ·xk+nu−1 = u, xk+mj · · ·xk+mj+nv−1 = v}.

15



Therefore, νm(σ−k[u] ∩ σ−(k+mj)[v]) = #(σ−k[u]∩σ−(k+mj)[v])
#Lm and the desired

bound can be obtained by estimating #(σ−k[u] ∩ σ−(k+mj)[v]).
Define a map Lk−τ × Lnj × Lm−k−mj−nv−τ → σ−k[u] ∩ σ−(k+mj)[v] by

sending points (w1, w2, w3) 7−→ w1s1us2w2s3vs4w3 where each si has length
τ provided by specification. This map is clearly injective so

(#Lk−τ )(#Lnj)(#Lm−k−mj−nv−τ ) ≤ #(σ−k[u] ∩ σ−(k+mj)[v]).

Thus by using lemmas 3.1 and 5.1, we see that

νm(σ−k[u] ∩ σ−(k+mj)[v]) ≥
#Lk−τ#Lnj#Lm−k−mj−nv−τ

Lm

≥ em−nu−nv−4τ

Q1emh
= K2e

−2τhe−(nu+nv)h

≥ k2Q
−2
2 e−2τhµ([u])µ([v]).

Writing K3 = CQ−22 e−2τh yields µm([u] ∩ σ−mj [v]) ≥ K3µ([u])µ([v]). There-
fore passing to the convergent subsequence gives

µ([u] ∩ σ−mj [v]) ≥ K3µ([u])µ([v]).

We can immediately extend this result to the case when P and Q are the

unions of cylinders of the same length by noting that if [P ] =
⋃
w∈P

[w],

µ([P ] ∩ σ−mj [Q]) ≥
∑

x∈P, y∈Q

µ([x] ∩ σ−mj [y])

≥
∑

x∈P, y∈Q

Kµ([x])µ([y]) = Kµ([P ])µ([Q]),

where we again used the notation µ(x) ∼ µ([w]) and µ(P ) ∼ µ([P ]).
Finally, let P andQ be measurable subsets of Σ. Fix ε > 0 and choose sets

U, V that are unions of cylinders of the same length satisfying µ(U4P ) < ε
and µ(V4Q) < ε. Observe that for every natural number n,

|µ(U ∩ σ−n(V )− µ(P ∩ σ−n(Q))| ≤ µ((U ∩ σ−n(V )4(P ∩ σ−n(Q)))

≤ µ((U4P ) ∩ (V4Q)) < ε,

where the first inequality is given by proposition 2.10 and the second by
monotinicity. This along with result above yields

limn→∞µ(P ∩ σ−n(Q) ≥ K3µ(P )µ(Q)− ε.
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Therefore, limn→∞µ(P ∩σ−n(Q) ≥ K3µ(P )µ(Q) since ε was arbitrary. Hence
if P and Q both have positive measure, then K3µ(P )µ(Q) > 0 finishing the
proof of the lemma.

7. Uniqueness of MME

Finally, we finish the proof of theorem 1.1 by showing that the existence
of another ergodic MME on Σ violates the Gibbs property of section 5.

The proof of uniqueness requires a result about mutual singularity. Con-
sider two probability measures m and ν. We say that these measures are
mutually singular if there exists disjoint measurable sets E and F such
that E ∪ F = X and m(E) = ν(F ) = 0. We omit the proof of the following
proposition because it is beyond the scoop of this paper. Instead we refer
the reader to theorem 6.10 in Walters’ book [7].

Proposition 7.1. Let T be a continuous transformation of the compact met-
ric space X. If µ, ν ∈ M(X,T ) are both ergodic and ν 6= µ, then they are
mutually singular.

Lemma 7.2. The measure of maximal entropy µ constructed in section 4 is
unique.

Proof. Let µ be the ergodic MME as constructed in section 4. Suppose
there exists another ergodic ν ∈ M(Σ, σ) such that hν(σ) = htop(σ). By
proposition 7.1, ν and µ are mutually singular. Consider a collection of
words D ⊂ L such that µ(Dn) → 0 and ν(Dn) → 1. Then if we fix ε > 0,
there exits N ∈ N such that ν(Dn) > 1 − ε for all n ≥ N . Applying lemma
3.2 gives a constant K1 > 0 such that #Dn ≥ K1e

nh for all n. Choose n ≥ N .
Using the Gibbs property proven in section 5, we see that for every n ∈ N,

µ(Dn) = µ

( ⋃
w∈Dn

[w]

)
=
∑
w∈Dn

µ([w]) ≥ #DnQ−12 e−nh ≥ K1Q
−1
2 > 0.

This is a contradiction the fact that µ(Dn) → 0. Thus establishing unique-
ness.
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