Math 1431 Test 1 Review
 FALL 2018
 Recitation Review

Use the following information to answer questions 1,2 and 3.

$$
f(x)=\left\{\begin{array}{lc}
1-x & -1 \leqslant x<0 \\
2 x^{2}-2 & 0 \leqslant x \leqslant 1 \\
-x+2 & 1<x<2 \\
1 & x=2 \\
2 x-4 & 2<x \leqslant 3
\end{array}\right.
$$

1. Find $\lim _{x \rightarrow 2} f(x)$
2. Find $\lim _{x \rightarrow 1+} f(x)$
3. Find $\lim _{x \rightarrow 0-} f(x)$
4. Determine the limit: $\lim _{x \rightarrow 2} \frac{x-2}{x^{2}-4}$
5. Determine the limit: $\lim _{x \rightarrow 4} \frac{x-4}{\sqrt{x}-2}$
6. Find $\lim _{x \rightarrow 6+} f(x)$ if

$$
f(x)=\left\{\begin{array}{cl}
x^{2}+x+1 & x<-1 \\
x^{2}-x & -1 \leq x \leq 6 \\
x-7 & x>6
\end{array}\right.
$$

7. Given $\lim _{x \rightarrow 2} f(x)=5$ and $\lim _{x \rightarrow 2} g(x)=-1$ find $\lim _{x \rightarrow 2}[2 f(x)-g(x)]$
8. Determine if $f(x)$ is continuous at $x=-1$ and at $x=6$

$$
f(x)=\left\{\begin{array}{cl}
1-x & x<-1 \\
x^{2}-x & -1 \leq x \leq 6 \\
x-7 & x>6
\end{array}\right.
$$

9. Determine the limit: $\lim _{x \rightarrow 0} \frac{\sin (5 x)}{2 x}$
10. Determine the limit: $\lim _{x \rightarrow 0} \frac{\tan ^{2}(5 x)}{2 x^{2}}$
11. Determine the limit: $\lim _{x \rightarrow 0} \frac{x}{\tan (2 x)}$
12. Determine the value of A that makes $f(x)$ continuous at $x=-1$.

$$
f(x)=\left\{\begin{array}{cc}
x^{2} & x<-1 \\
A x+3 & -1 \leq x
\end{array}\right.
$$

13. Determine the value of B and C that makes $f(x)$ continuous everywhere.

$$
f(x)=\left\{\begin{array}{cl}
B x-C & x \leq 1 \\
4 x & 1<x<2 \\
C x^{2}-B & x \geq 2
\end{array}\right.
$$

14. Can the intermediate-value theorem be used to show there is a solution to the equation $2 x^{3}+x^{2}+3 x-1=0$ on the interval $[0,2]$? Give an explanation why or why not.
15. Can the intermediate-value theorem be used to show there is a solution to the equation $\frac{x^{2}+4}{x-2}=0$ on the interval $[0,4]$? Give an explanation why or why not.
16. Use the definition of derivative to find $f^{\prime}(2)$ for $f(x)=\frac{1}{x-1}$.
17. Use the definition of derivative to find $f^{\prime}(x)$ for $f(x)=\sqrt{x+3}$.
18. Find the equation for the normal line to the graph of $f(x)=5-x^{2}$ at the point where $x=2$.
19. Find $f^{\prime}(1)$ if it exists.

$$
f(x)=\left\{\begin{array}{cc}
3 x^{2} & x \leq 1 \\
2 x^{3}+1 & x>1
\end{array}\right.
$$

20. Determine the values of A and B that make $f^{\prime}(x)$ continuous everywhere.

$$
f(x)=\left\{\begin{array}{cc}
4 x & x \leq 1 \\
A x+B & x>1
\end{array}\right.
$$

21. Find the inverse of $f(x)=\left(x^{3}+4\right)^{1 / 3}$, if possible.
22. Use the $\epsilon-\delta$ definition of a limit to prove that $\lim _{x \rightarrow 3} 2 x+7=13$.
23. Know how to find domain, vertical asymptotes, horizontal asymptotes, and holes for a rational function.
24. Know your unit circle to find values of inverse trig functions and be able to solve trig equations over an interval.
