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ABSTRACT. In this work, we study quadratic form inequalities of Schechter
type; i.e., we characterize f for which there exists a positive constant C' such
that, for every € € (0, 00),

‘/IU\Qfdx

Such quadratic form inequalities can be understood entirely in the framework

of BMO™!, using mean oscillations of VA™! f on balls. We show that this

inequality holds if and only if f € BMO~1 (Rd) if B =1 or respectively if
2

< [ Vull}a(gay + O ull}oray w € G5 (RY) L0 < B <1

’

-~ qy5,°
f lies in the homogeneous Besov space B, g ifo< g <1

1. INTRODUCTION

In this paper, we characterize the class of potentials f € D’ (Rd) such that
the quadratic form (f.,.) has zero relative bound with respect to Hy = —A on
L? (Rd) (see [8], X.17). In other words, for f(z) > 0in L}, (]Rd), this property
can be expressed in the form of the integral inequality :

(1.1) ’/|u|2fdac

for all arbitrarily small € > 0 and some C. > 0. This provides a complete
solution to the problem of the infinitesimal form boundedness of the potential
energy operator f with respect to the Laplacian —A, which is fundamental to
quantum mechanics. Its abstract version appears in the so-called KLMN Theorem
([8], Theorem X.17), which is discussed in detail, together with applications to
quantum-mechanical Hamiltonian operators and has become an indispensable tool
in PDE theory ([7], chap. 5).

<e ||VU||i2(Rd) + Ce ||U||2L2(]Rd) , Vu € Cg® (RY),
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Previously, the case of nonnegative f in (1.1) has been studied in a compre-
hensive way (see e.g. [4], [6], [9], [10]) where different analytic conditions for the
so-called trace inequalities of this type can be found.

It is worthwhile to observe that the usual approach is to decompose f into
its positive and negative parts : f = fy — f_, and to apply the just mentioned
results to both fy and f_ [6]. However, this procedure drastically diminishes
the class of admissible weights f by ignoring a possible cancellation between f
and f_. This cancellation phenomenon is evident for strongly oscillating weights
considered below. See for example [11].

One of the main results, we prove that inequality (1.1) is equivalent to the
existence of C' > 0 such that

(1.2) |< fu,u>| < C RS (V|72 Vu € CF (B (20, R))
for all ball B (z9, R). B (x0, R) is a Euclidean ball of radius R and centered at zg.

Here the ”indefinite weight” f may change sign, or even be a complex-valued
distribution on R?, d > 3. (In the latter case, the left-hand side (1.1) is under-
stood as |< fu,u >|, where < f.,. > is the quadratic form associated with the
corresponding multiplication operator f).

We set

mp (g) = o o o(y)dy

|B(z0, R)| JB(20.n)
for a ball B (zg, R) C R?, and denote by BMO (R?) the class of f € L}  (R%)
for which

1
sup sup

q
~MB(x dy < +oo,
R>0xckd | B(20, R)| |9(v) Bzo,r) (9)|" dy

B(xo,R)
for any 1 < ¢ < oo.

Now, we characterize the class of potentials f € D’ (Rd) which are there exists
C > 0 such that (1.2) holds for every ball B (zg, R) .

Theorem 1. Let f € D' (RY), d > 2 and 0 < 8 < 1. Then the following
statements are equivalent.

(1) There exists a positive constant C such that, for every e > 0,
(1.3)  |< fu,u>] < €| Vulfagay + Ce ullfagay, for allue C5° (RY).

(2) There exists a positive constant C' such that, for every R > 0,
(1.4)
2
|< fu,u>| < C RTF |Vl 7s g Jor all u € C5° (B (0, R))
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where C' does not depend on x¢ and R.

— d
Define the vector-field F' € D’ (R%)" by

(1.5) (F. ) =-(r.a"aw),

for every E = (¢1, ..., p4) be an arbitrary vector-field in D ® C?. In particular,
(16) (F.vo)=—(f.4), veD®?),

ie.,

(1.7) f=divF inD (RY).

We have to check that the right-hand side of (1.5) is well-defined, which a priori
—
is not obvious. For ¢ € D ® C?, let
N

w=A"ldive,

where —A~!g = I,g is the Newtonian potential of g € D. Clearly,
w(z) =0 <|x\17d> and |Vw(z)|=0 (|x|7d) as |z| — oo,

and hence

w=A"Yiv§ = —Ldiv g € H (RY)NC> (RY).

Remark 1. When f(z) > 0 is locally integrable nonnegative function, Theorem
1 makes it possible to reduce the problem of boundedness for general "indefinite”
f to the case of nonnegative weights ‘F’ , which is by now well understood. In

particular, combining Theorem 1 and the known criteria in the case f > 0 (see
[4], 6], [9]) we arrive at the following corollary.

Corollary 1. Under the assumptions of Theorem 1, the following statements are
equivalent.

(i): Inequality (1.8) holds.
(ii): Suppose that f is represented in the form

(1.8) f=divF,

where F = VA-lfe L, (Rd)d and the measure i € M™ (Rd) defined
by

(1.9) dp = ‘F(x)
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has the property that, there exists C > 0 such that

[ @) a

for every e > 0.
(iii): For p defined by (1.9),

(1.10)

< €| Vulf2gay + Ce P [ullfagay,  Vu € C5° (RY)

2
lim sup HMB(zo,R)HH”(Rd) —0
R—0+ 5, cRa 1 (B (wo, ) ’
where [15(zy,r) 15 the restriction of p to the ball B (xo, R) .

Before proceeding to our main result, it is instructive to demonstrate the can-
cellation phenomenon mentioned above by considering an example of a strongly
oscillating weight.

Example 1. Let us set
f(@) = ol sin (j2]"),

where d > 3 is an integer, which may be arbitrary large. Obviously, both fi and
f- fail to satisfy (1.3) due to the growth of the amplitude at infinity. However,

(1.11)  f(x) = dw F(:v) +0 (|x|72) , where 1_7>(:13) = _clljz cos (|x\d> .

By Hardy’ s inequality in RY, d > 3,

R |z (d—-2)

and hence the term O (|x|_2) in (1.11) is harmless, whereas F clearly satisfies

2
(1.10) since ‘F‘)(l‘)‘ < |z|72. This shows that f is admissible for (1.2), while |f|

is obviously not (see [6]).

Theorem 2. Let f be a complez-valued distribution on R, d >3 and let 0 < 3 <
—

1. Then (1.4) holds if and only if f is the divergence of a vector-field F' : R — C?

such that

—

2

(1.12) / ‘1—?)(95) — MB(x0,R) (F)‘ dr < const Rd72+ﬁ, for all R > 0.
B(IU,R)

where the constant is independent of xg and R. The vector-field F € leoc (]Rd)d

can be chosen as F = VA~Lf (see [6]).
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Remark 2.
1.: In case, 8 =1, it follows that (1.12) holds if and only sz’) € BMO (Rd)d .

. —1,2 . T,p
In order, f € BMO™! (]Rd) =F_ (Rd), where I’ stands for the scale
of homogeneous Triebel-Lizorkin spaces (see [13]). Similarly, in the case
0< B <1, (1.12) holds if and only if F is Holder-continuous :

— — 1-8
F@)-Fo)|<clo—y™, lz-yl<R

2.: In the case B = 1, statement (i) of Theorem 2 ( sufficiency of the con-

dition F € BMO (Rd)d) is equivalent via the H' — BMO duality to the
inequality

[uVull 31 gay < Cllull 2 gay IVUll 2 gay, Vo€ Cg° (RY).

Here H' (RY) is the real Hardy space on R® [12]. The preceding estimate
yields the following vector-valued inequality which is used in studies of the
Navier-Stokes equation, and is related to the compensated compactness
phenomenon (see [1]) :

||(7V) 7” HL(RD) <C HWHH(W)d ||VE)||L2(R4)”’
divw =0, Ve (RY".

Before proving the theorem, let us established certain localized versions of the
necessary condition for (1.4). Set

WR,z, (2) =w <x ;%x0>

where w € C§° (B (0, 1)) is a smooth cut-off function with the following properties

lw(z)] <1and |Vw(z)] <1 for z € B(0,1).
With this definition, we obtain the following more useful statement.

Proposition 1. Suppose f € D’ (Rd) and 0 < B < 1. Suppose that (1.4) holds
for every R € (0,+00). Let F be defined by F = VA~Lf.
(a): Ford >3,

/\VA—l (Whaof )| de < CRT2*T5 | 0 < R < 400

Rd
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(b): Ford > 2,

VA (wreof ) de < CRI2T5 | 0 < R < +00

B(zo,R)
Now we can state the following

Lemma 1. Suppose f € D’ (Rd), d>2and0< B <1. Suppose that (1.4) holds
for every R € (0,+00). Then we have

/ VAT = mpym (VAT )| dz < C R 5w,
B(zo,R)

We are now in a position to give the proof of theorem 2. We need only to prove
the statement (i) since (ii) follow from Proposition 1 and Lemma 1.

PROOF. Suppose that f is represented in the form (1.7) so that (1.12) is satisfied
for all R > 0. Applying the multiplicative inequality nonnegative measures ([5],
2
th.1.4.7) to ’F)‘ dz, we get :
2
F@)| tuw) do < Va3 500 Nl P
B(zo,R)

Hence,

< fu,u>| = ]< Fu, Vu >‘ < H?u‘ IVull 2z

L2 (R4)
< 14557 7
Cl ”VUHL2 (R4) ||’LL||L2 (R4)
Combining the preceding estimates with the following inequality ([7], th 3.2.1) :
[ull » < CARVull g2, we G5 (B(xo, R)),
we get
< fu,u>| < CRT7 ||[Vul2,, ueCy (B(xo,R)).

The proof of theorem 2 is complete. O

We use know characterizations of the Morrey-Campanato spaces. In particular,

Proposition 2. For 0 < ﬂ < 1, condition (1.12) is equivalent to the condition
F e A, ( ) where v = 1+[3 In the case § =1, we have ¥ € BMO (Rd)
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It is easy to see that in the case 8 = 1, the sufficiently part of Theorem 2 is
equivalent to inequality :

— — 0o d
‘< FU7V’LL >‘ S C HFH ||uHL2(Rd) HVUHLQ(R‘!) s Yu € CO (R )

BMO(R?)4

By duality, the preceding inequality yields :
[uVul| HI(RD) = ¢ ||U||L2(Rd) ||vu||L2(Rd) ; Vu e Cge (Rd) .

where H! (Rd) is a real Hardy space [12]. Such inequalities are useful in hydrody-
namics [1]. As an immediate consequence, we obtain the vector-valued quadratic
form :

(@ V) Wl 1 may < C I M p2gaya [V | 2 raye
d
div @ =0 ,v7 € CF (RY)",
Both of the preceding inequalities are corollaries of the homogeneous version
of the ”div — curl” Lemma [1]. The following corollary which is an immediate
consequence of Theorem 2 and the characterizations of Morrey-Campanato spaces

[3], gives a necessary and sufficient condition for (1.12) in terms of homogeneous
Besov spaces of negative order.

Corollary 2. Under the assumptions of Theorem 2, in the case 3 = 1, condition
(1.12) is equivalent to f € BMO™' (R?). Similarly, in the case 0 < < 1,

23

T+5:%°

condition (1.12) is equivalent to f € BOO (RY).
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