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R E P R E S E N T A T I O N S OF L A T T I C E S AS 

C O N G R U E N C E L A T T I C E S 

Wi11i am A . Lampe 

§1. I N T R O D U C T I O N 

In [1] B i r k h o f f posed the p r o b l e m of c h a r a c t e r i z i n g 

the l a t t i c e of all c o n g r u e n c e r e l a t i o n s of an a l g e b r a . It 

is easy to see that this l a t t i c e is a c o m p l e t e l a t t i c e . In 

[9] G . G r a t z e r and E. T . S c h m i d t s h o w e d t h a t e v e r y a l g e b r a i c 

l a t t i c e is i s o m o r p h i c to the l a t t i c e of all c o n g r u e n c e 

r e l a t i o n s of some fi ni tary a l g e b r a . The c o n v e r s e had been 

known for some t i m e . R e c e n t l y , a n u m b e r of o t h e r r e p r e s e n t a -

tion t h e o r e m s i n v o l v i n g the l a t t i c e of c o n g r u e n c e r e l a t i o n s 

of an a l g e b r a have been p r o v e d . One such t h e o r e m is that 

e v e r y c o m p l e t e l a t t i c e is i s o m o r p h i c to the l a t t i c e of all 

c o n g r u e n c e r e l a t i o n s of some a l g e b r a . In this paper we will 

s u r v e y t h e s e r e s u l t s and d i s c u s s the b a s i c m e t h o d used in 

their p r o o f s . We will also m e n t i o n some of the open p r o b l e m s . 

(No o r i g i n a l i t y is c l a i m e d for the p r o b l e m s ) . 

§2. T E R M S AND N O T A T I O N S 

Let a be an o r d i n a l and A be a s e t . If 

ry 

f : A + A , then we say t h a t f is an a - a r y o p e r a t i o n on 

A . 2J = ( A ; F> is an a l g e b r a iff F is a f a m i l y of 
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o p e r a t i o n s on the set A . We say SI is of c h a r a c t e r i s t i c m 

iff m is the l e a s t r e g u l a r c a r d i n a l such t h a t for any 

o p e r a t i o n f of SI if f is a - a r y then a < m. Si is 

f i ni ta ry iff Si is of c h a r a c t e r i s t i c K g . si is i n f i n i t a r y 

if Si is not fini ta r y . If £ e A
a
, then the i*

11
 c o m p o n e n t 

of £
 l s

 d e n o t e d x . . If 0 is an e q u i v a l e n c e r e l a t i o n on 

A and if % e A
a
, we w r i t e £ = % (0) iff x^ = y . (0) 

for e v e r y i < a . 0 is a c o n g r u e n c e r e l a t i o n of îl iff 0 

is an e q u i v a l e n c e r e l a t i o n on A and for any a and any 

a - a r y o p e r a t i o n f and any % e A a f ( & ) = f(^) (0) w h e n -

ever £ = XJ (©)• Con ( Si) is the set of all c o n g r u e n c e r e l a t i o n s 

of ) = < Con (at) ; £ > is the c o n g r u e n c e 1 atti ce of 91. 

Si is s i m p l e if jCĵ jn(SJt) is the two e l e m e n t c h a i n . Let 

SI = <A; F) be an a l g e b r a , and let B c A . B is a subal gebra 

of iff for e v e r y a and for e v e r y a - a r y o p e r a t i o n f of 

Si and for e v e r y £ e B a it holds that f(^) e B. sub(si) 

is the set of all s u b a l g e b r a s of si. By c o n v e n t i o n 0 e Sub(Si) 

iff Si has no 0 - a r y o p e r a t i o n s . SjjJb ( si) = (Sub(Si); c> is 

the s u b a l g e b r a l a t t i c e of 21. Let £ e A a and a : A + A 

then is the s e q u e n c e % e A a with y^ = x^a for e v e r y 

i < a . a is an e n d o m o r p h i sm iff f ( & a ) = f (̂ c ) a for e v e r y 

o p e r a t i o n f and e v e r y End(SI) is the set of all 

e n d o m o r p h i sms of SI, and ^ d ( ^ ) = <End(Sl); o> is the 

e n d o m o r p h i s m s e m i g r o u p of SI. A 1-1 onto e n d o m o r p h i s m is 

an a u t o m o r p h i s m , and £^t(si) = <Aut(si); o ) d e n o t e s the 

a u t o m o r p h i s m g r o u p . 
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^ = < L ; _< > is a c o m p l e t e l a t t i c e iff ^ is a 

p a r t i a l l y o r d e r e d set such that any H c l has a join 

( s u p , \/H) and a m e e t ( i n f , /\H). L e t m be a r e g u l a r 

c a r d i n a l . The e l e m e n t c of the c o m p l e t e l a t t i c e jÇ is 

m - c o m p a c t iff w h e n e v e r c £ \/ H then c <_ \/Hq for some 

HQ with HQ C H and | H Q | < m . The c o m p l e t e l a t t i c e 

is m - a l g e b r a i c iff e v e r y e l e m e n t is the join of some set of 

m - c o m p a c t e l e m e n t s . ^ Q - a l g e b r a i c l a t t i c e s are s i m p l y c a l l e d 

a l g e b r a i c l a t t i c e s . C l e a r l y , any c o m p l e t e l a t t i c e is 

| L | + - a 1 g e b r a i c . 

^ is a p a r t i t i o n l a t t i c e iff d ^ is a s u b l a t t i c e 

of the l a t t i c e of all e q u i v a l e n c e r e l a t i o n s on some set such 

that e q u a l i t y and the total r e l a t i o n are m e m b e r s of 

§3. H I S T O R Y AND R E S U L T S 

In [3] G . B i r k h o f f and 0 . F r i n k s h o w e d that the 

c o n g r u e n c e l a t t i c e of a f i n i t a r y a l g e b r a is an a l g e b r a i c 

l a t t i c e . T h e c o n v e r s e a p p e a r e d in 1 9 6 3 . 

T h e o r e m 1. (G. G r a t z e r and E . T . S c h m i d t [9]): If £ is any 

a l g e b r a i c l a t t i c e , then t h e r e is a f i n i t a r y a l g e b r a SU such 

that .Con( 21) is i s o m o r p h i c to ^ . 

In [9] G r a t z e r and S c h m i d t gave the c o n s t r u c t i o n for 

an a l g e b r a all of w h o s e o p e r a t i o n s were u n a r y , such that 

CojQ^ai) is i s o m o r p h i c to the s p e c i f i e d l a t t i c e ^ . A s i m p l e r 

proof a p p e a r s in [ 1 6 ] . O t h e r p r o o f s a p p e a r in [ 4 ] , [ 1 3 ] , [14] 
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and [ 2 1 ] . The proofs in [14] and [21] are e s s e n t i a l l y the 

s a m e . The v a r i o u s proofs d i f f e r in detail but all use 

b a s i c a l l y the same c o n s t r u c t i o n . The proof in [13] is due 

to R. N. M c K e n z i e . 

Let C be the set of c o m p a c t e l e m e n t s o f . T h e 

a l g e b r a in each of the proofs has |C| • NQ e l e m e n t s and 

|C| • Nq u n a r y o p e r a t i o n s . A long s t a n d i n g p r o b l e m is to 

show t h a t the r e p r e s e n t a t i o n in T h e o r e m 1 can be e f f e c t e d 

w i t h an a l g e b r a h a v i n g one b i n a r y o p e r a t i o n (or at least 

fi ni te 1 y m a n y f i n i t a r y o p e r a t i o n s ) . The known results on 

this p r o b l e m are f r a g m e n t a r y . 

G . B i r k h o f f s h o w e d in [2] that any g r o u p could be 

i s o m o r p h i c to the a u t o m o r p h i s m g r o u p of some f i n i t a r y 

a l g e b r a (in f a c t a unary a l g e b r a ) . His p r o o f has been 

e x t e n d e d to show that any s e m i g r o u p with unit can be the 

e n d o m o r p h i s m s e m i g r o u p of some f i n i t a r y a l g e b r a . (That such 

a r e p r e s e n t a t i o n could be e f f e c t e d using only one b i n a r y 

o p e r a t i o n or two u n a r y o p e r a t i o n s was shown in a series of 

p a p e r s w h i c h e n d e d with [ 1 0 ] ) . 

The " k e r n e l " of any h o m o m o r p h i s m is a c o n g r u e n c e 

r e l a t i o n . T h i s p r o v i d e s a m e c h a n i s m thru w h i c h the 

e n d o m o r p h i s m s e m i g r o u p of an a l g e b r a can a f f e c t the 

c o n g r u e n c e l a t t i c e . (Very l i t t l e is known a b o u t the 

c o n n e c t i o n b e t w e e n JEnjd ( su) and CojnfaO . S e e , for e x a m p l e 

[5] and [ 1 5 ] ) . T h e r e is no such o b v i o u s m e c h a n i s m t h r o u g h 

w h i c h the a u t o m o r p h i s m g r o u p can a f f e c t the c o n g r u e n c e l a t t i c e . 
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So it was c o n j e c t u r e d some time ago that in g e n e r a l the 

c o n g r u e n c e l a t t i c e and the a u t o m o r p h i s m g r o u p are " i n d e p e n d e n t " . 

More p r e c i s e l y , it was c o n j e c t u r e d that if ^ is any a l g e b r a i c 

l a t t i c e and © is any g r o u p then t h e r e is a f i n i t a r y a l g e b r a 

31 such that €oji(aO is i s o m o r p h i c to c ^ and / ^ ( S J ) is 

i s o m o r p h i c to T h a t this c o n j e c t u r e is true f o l l o w s from 

T h e o r e m 2 . In [20] E . T . S c h m i d t p u b l i s h e d an i n c o r r e c t p r o o f 

that this c o n j e c t u r e is t r u e . H o w e v e r , the i n t u i t i v e p i c t u r e 

of the c o n s t r u c t i o n in T h e o r e m 2 is in some w a y s s i m i l a r to 

E. T . S c h m i d t ' s . 

G. B i r k h o f f and 0 . Frink p r o v e d in [3] that any 

a l g e b r a i c l a t t i c e was i s o m o r p h i c to Sub/si) for some f i n i t a r y 

E. T . S c h m i d t gave a very nice proof in [19] t h a t 

a n d Â J & t W a r e i n d e p e n d e n t . This r e s u l t is also a C o r o l l a r y 

to T h e o r e m 2. T h e r e is o b v i o u s l y a third c o r o l l a r y to 

T h e o r e m 2 w h i c h gives a r e p r e s e n t a t i o n for any pair of a l g e b r a i c 

l a t t i c e s . 

T h e o r e m 2 . (W. A . L a m p e [ 1 8 ] ) : If @ is any g r o u p and ï?^ 

and <£\-j are any two a l g e b r a i c l a t t i c e s each h a v i n g two or 

more e l e m e n t s , then t h e r e is a f i n i t a r y a l g e b r a Si such that: 

(i) is i s o m o r p h i c to ô^Q'» 

(ii) Ŝ jJb( U) is i s o m o r p h i c to ; 

( i i i ) is i s o m o r p h i c to 

The M in the p r o o f of T h e o r e m 2 a c t u a l l y has n - a r y 

o p e r a t i o n s for every n > 0 . B i n a r y o p e r a t i o n s w o u l d have 
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done as w e l l , but the p r o o f w o u l d have been a l i t t l e bit 

l o n g e r . If C^ r e p r e s e n t s the set of c o m p a c t e l e m e n t s of 

, then 21 has C | C Q | • 10 -j | • K g ] e l e m e n t s and o p e r a t i o n s . 

In w h a t ways can one " i m p r o v e " this r e p r e s e n t a t i o n ? 

If 21 i s a f i n i t a r y a l g e b r a h a v i n g at m o s t c o u n t a b l y m a n y 

o p e r a t i o n s , then each f i n i t e l y g e n e r a t e d s u b a l g e b r a is 

c o u n t a b l e , and so each f i n i t e l y g e n e r a t e d s u b a l g e b r a has at 

m o s t c o u n t a b l y m a n y f i n i t e l y g e n e r a t e d s u b a l g e b r a s . T h u s , 

in SjyJb(2l) each c o m p a c t e l e m e n t has at m o s t c o u n t a b l y many 

c o m p a c t e l e m e n t s b e l o w it. (The c o n v e r s e was f i r s t proved by 

W . H a n f . It a p p e a r e d in [13] and [ 2 2 ] ) . It is c l e a r then 

that in g e n e r a l one c a n n o t put a bound on the n u m b e r of 

o p e r a t i o n s that the ai in T h e o r e m 2 h a s . But if one omits 

c o n c l u s i o n ( i i ) , then it seems l i k e l y that one could p r o d u c e 

a r e p r e s e n t a t i o n using only f i n i t e l y many f i n i t a r y o p e r a t i o n s . 

One m u s t use at l e a s t one b i n a r y o p e r a t i o n in the 

21 of T h e o r e m 2 for two r e a s o n s . F i r s t , among o t h e r t h i n g s , 

G . G r a t z e r s h o w e d in [5] that the a u t o m o r p h i s m g r o u p of a 

s i m p l e a l g e b r a h a v i n g only unary or n u l l a r y o p e r a t i o n s was a 

g r o u p of o r d e r p w h e r e p = 1 or p is a p r i m e . (A 

c o r o l l a r y of the main r e s u l t of [5] is that any g r o u p is the 

a u t o m o r p h i s m g r o u p of some s i m p l e algebra h a v i n g one b i n a r y 

and m a n y u n a r y o p e r a t i o n s . The unary o p e r a t i o n s h a v e been 

e l i m i n a t e d by J . J e z e k in a r e c e n t paper a p p e a r i n g in 

C o m m . M a t h . U n i v . C a r o l i n a e ) . S e c o n d l y , if 21 is u n a r y 

then the join in S^b(2l) is j u s t set u n i o n , and so S^b(2J ) 
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is then a " c o m p l e t e l y " d i s t r i b u t i v e l a t t i c e . 

Let 9 and $ be e q u i v a l e n c e r e l a t i o n s on some s e t , 

and let 0 • $ r e p r e s e n t the " c o m p o s i t i o n " of 0 and 

Let = 0 , = 0 • = 0 • $ • 0 , = 0 • <£> • 0 • 

e t c . In the l a t t i c e of all e q u i v a l e n c e r e l a t i o n s on the s e t , 

0 v $ = U ( ¥ . | i = 0 , 1 , . . . ) . We say the join in a p a r t i t i o n 

l a t t i c e is of t y p e - n if for any 0 , 0 v $ = ¥ . B . Jtfnsson 

i s o m o r p h i c to a p a r t i t i o n l a t t i c e in w h i c h the join is of type-

2. Cjon(Sl) is a p a r t i t i o n l a t t i c e but it is a s p e c i a l kind of 

p a r t i t i o n l a t t i c e . So a natural and n o n - t r i v i a l q u e s t i o n a r i s e s 

w h i c h is a n s w e r e d by T h e o r e m 3. 

T h e o r e m 3. (6. G r a t z e r and W . A . L a m p e [7]): If is a 

m o d u l a r a l g e b r a i c l a t t i c e , then there is a f i n i t a r y a l g e b r a 

SI such that Co^n(Sl) is i s o m o r p h i c to and the join in 

Con(SI) is of t y p e - 2 . 

I n c o r r e c t p r o o f s for the a b o v e t h e o r e m a p p e a r e d in 

[9] and [ 2 1 ] . 

The a l g e b r a ai in the p r o o f is u n a r y and has |C| • NQ 

e l e m e n t s and o p e r a t i o n s w h e r e C is the set of c o m p a c t 

e l e m e n t s of . One can ask the f a m i l i a r q u e s t i o n s a b o u t the 

n u m b e r and kind of o p e r a t i o n s r e q u i r e d for this r e p r e s e n t a t i o n . 

The new t e c h n i q u e s of [16] w e r e e s s e n t i a l to the 

p r o o f of T h e o r e m 3 . I n c i d e n t a l l y , the join in C£jn(Si) is 

" a u t o m a t i c a l l y " of t y p e - 3 for the p a r t i c u l a r a l g e b r a SI in 

s h o w e d in [12] that a l a t t i c e m o d u l a r iff 
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the p r o o f of T h e o r e m 1 given in [ 1 6 ] . The same is p r o b a b l y 

true for the other p r o o f s . 

By g e n e r a l i z i n g the t e c h n i q u e in the proof of 

T h e o r e m 3 we can m a k e the a l g e b r a 21 in T h e o r e m 2 be such 

t h a t the join in Coji($t) is of t y p e - n and not type n-1 for 

any n _> 3. We can also m a k e the join in C&nfai) be of 

"type a)" - i . e . not of type n for any n. If © is the 

o n e - e l e m e n t g r o u p and C^Q is m o d u l a r , we can c o n s t r u c t an 

SU for T h e o r e m 2 such that the join in Coji(su ) is of t y p e - 2 . 

A n o t h e r p r o b l e m is: w h a t are the a u t o m o r p h i s m g r o u p s of 

a l g e b r a s h a v i n g m o d u l a r c o n g r u e n c e lattices in w h i c h the join 

is of t y p e - 2 ? 

As m e n t i o n e d in the i n t r o d u c t i o n , we also know that 

T h e o r e m 4: If ^ is a c o m p l e t e l a t t i c e , then there is an 

a l g e b r a 21 such t h a t Cojn(su) is i s o m o r p h i c to . 

M o r e g e n e r a l l y , we know 

T h e o r e m 5 . (G. G r a t z e r and W . A . L a m p e [8]): If is an 

m - a l g e b r a i c l a t t i c e , then t h e r e is an a l g e b r a SU of c h a r a c -

t e r i s t i c m such that jCçyi(SU ) is i s o m o r p h i c to 

In g e n e r a l , the c o n g r u e n c e l a t t i c e of an i n f i n i t a r y 

a l g e b r a is not a p a r t i t i o n l a t t i c e . H o w e v e r , we can b u i l d 

the 21 for the p r o o f of T h e o r e m 5 in such a way that 

Con(ai) is a p a r t i t i o n l a t t i c e in which the join is of t y p e - 3 . 
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Such a r e s u l t is not a u t o m a t i c for T h e o r e m 5 as it was for 

T h e o r e m 1. In f a c t , one uses a g e n e r a l i z a t i o n of the 

t e c h n i q u e for T h e o r e m 3. 

Once again the a l g e b r a has v e r y m a n y o p é r â t i o n s , and 

it's not c l e a r one needs so m a n y . 

C o n s i d e r T h e o r e m s 2 and 3 and all t h e i r p r e v i o u s l y 

m e n t i o n e d e x t e n s i o n s . A natural q u e s t i o n i s , "Are all the 

s t r a i g h t f o r w a r d g e n e r a l i z a t i o n s of all these t h e o r e m s to 

m - a l g e b r a i c l a t t i c e s and a l g e b r a s of c h a r a c t e r i s t i c m t r u e ? " 

The a n s w e r is y e s . But the proofs are not e x a c t l y s t r a i g h t -

f o r w a r d g e n e r a l i z a t i o n s of the c o r r e s p o n d i n g f i n i t a r y case 

p r o o f s . T h e r e is also a c o r r e s p o n d i n g array of open p r o b l e m s . 

A "master" c o n s t r u c t i o n from which all t h e s e t h e o r e m s 

f o l l o w will a p p e a r in [ 8 ] . 

§4. THE BASIC M E T H O D 

All the above m e n t i o n e d t h e o r e m s are p r o v e d using 

c o n s t r u c t i o n s that have their roots in the o r i g i n a l 

c o n s t r u c t i o n by G r a t z e r and S c h m i d t for T h e o r e m 1. In this 

s e c t i o n we will m a k e some r e m a r k s a b o u t this m e t h o d . 

To some e x t e n t , the m e t h o d is d e r i v e d from the p r o o f 

of the B i rkhof f-Fri nk T h e o r e m on Sub (31 ). So we will s t a r t 

the d i s c u s s i o n t h e r e . But f i r s t we need to d e f i n e some m o r e 

t e r m s . 

Let C be some f a m i l y of s u b s e t s of the set A . 

C is a c l o s u r e s y s t e m iff g i v e n any f a m i l y (D. | i e I) 
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with D. e C for e v e r y i e I it also holds that 

fl(D. | i e I) e C . For B £ A we d e f i n e the C - c l o s u r e 

(or s i m p l y , c l o s u r e ) of B by [ B ] c = fl(D | D e C , B c D) . 

Since A e C , B £ [ B ] c e C . B is c l o s e d iff B = [ B ] c e C . 

The c l o s u r e system C is an a l g e b r a i c c l o s u r e system iff C 

is also c l o s e d under d i r e c t e d u n i o n s ; i . e . , if the f a m i l y 

(D. | i e I) is a d i r e c t e d p a r t i a l l y o r d e r e d set (under set 

i n c l u s i o n ) and each D^ e C , then U ( D . | i e I) e C . In an 

a l g e b r a i c c l o s u r e s y s t e m a set is c l o s e d iff it c o n t a i n s the 

c l o s u r e of each of its f i n i t e s u b s e t s . For a r e g u l a r 

c a r d i n a l m one can d e f i n e an m - a l g e b r a i c c l o s u r e s y s t e m to 

be a c l o s u r e s y s t e m in w h i c h a set is c l o s e d iff it c o n t a i n s 

the c l o s u r e of each of its s u b s e t s having less than m 

e l e m e n t s . 

If C is an a l g e b r a i c c l o s u r e s y s t e m , then <C; £ > 

is an a l g e b r a i c l a t t i c e . C o n v e r s e l y , any a l g e b r a i c l a t t i c e 

is i s o m o r p h i c to some <C; £> w h e r e C is an a l g e b r a i c 

c l o s u r e s y s t e m . S i m i l a r s t a t e m e n t s hold for m - a l g e b r a i c 

l a t t i c e s and m - a l g e b r a i c c l o s u r e s y s t e m s . 

Let C be an a l g e b r a i c c l o s u r e s y s t e m on the set A . 

It is easy to d e s c r i b e a f a m i l y F of f i n i t a r y o p e r a t i o n s on 

A such that C = S u b ( < A ; F > ) . In p a r t i c u l a r , for each f i n i t e 

s e q u e n c e a g , . . . , a n of e l e m e n t s of A such that 

a e [ a n , d e f i n e an n - a r y o p e r a t i o n f 
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"y f a 0 , . . . , a n
( a 0 ' V l > = a n a n d 

f_ a ( x n , ..., x„ -,) = x n o t h e r w i s e . One takes F 
a g , . . . , a u n- i u 

to be the f a m i l y of all such o p e r a t i o n s . 

S u p p o s e now you have some a l g e b r a i c l a t t i c e ^ that 

you w a n t to r e p r e s e n t as Sub(Si x 31) • A f i r s t step is to 

find some a l g e b r a i c c l o s u r e s y s t e m C on a set of the form 

B x B w h e r e ^ is i s o m o r p h i c to <C; £ > . O b v i o u s l y , one then 

should try the a p p r o a c h from the p r e c e d i n g p a r a g r a p h . So for 

each < a Q , b Q > , . . . , < a n , b n> with < a n , b n > e 

[ < a Q , b Q > , ..., <a j _ -J , o n e d e f i n e s an o p e r a t i o n f 

on B with f ( a Q , . . . , a n_-,) = a n and f ( b Q , . . . , b n_-,) = b R 

and •••» x n - l ^ = x 0 o t h e r w i s e . U n f o r t u n a t e l y , this 

d o e s n ' t w o r k . Such an f has some u n w a n t e d side e f f e c t s . 

In p a r t i c u l a r f ( < a Q , c Q > , . . . , <an_-j , c n _ 1 > ) = < a n , c Q > and 

it may happen of c o u r s e that < a n , c^} i 

[<a Q, c Q ) , . . . , <a n _ -J 9 c n - 1 > ] c . So one drops the s t a t e m e n t 

" f ( x 0 , ..., x n _ ^ ) = Xq o t h e r w i s e " and leaves f u n d e f i n e d 

o t h e r w i s e . One can take B t o g e t h e r with t h e s e p a r t l y 

d e f i n e d o p e r a t i o n s and form a "partial a l g e b r a " SB. One can 

extend SB to the "algebra f r e e l y g e n e r a t e d by SB" 

(£(®)) b y f i l l i n g in the " t a b l e s " for the o p e r a t i o n s as 

freely as p o s s i b l e . The s u b a l g e b r a s g e n e r a t e d by s u b s e t s of 

B x B in £(93) x F,( ©) are " r i g h t " . But there are m a n y new 

subsets that d o n ' t g e n e r a t e the "right" s u b a l g e b r a s . So add 

some new partial o p e r a t i o n s to take care of t h i s . F r e e l y 

g e n e r a t e . R e p e a t ad infini turn. T a k e the d i r e c t l i m i t , and 
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call it aï. Ŝ jJb ( ai x ai) is i s o m o r p h i c to . ( A c t u a l l y one 

m u s t c h o o s e the initial C so that the " d i a g o n a l " is the 

s m a l l e s t m e m b e r . ) (That this w o r k s is shown in [ 6 ] , 

e s s e n t i a l l y . See [11] a l s o . ) 

Now s u p p o s e you w a n t an 31 so that £oji(ai) is 

i s o m o r p h i c to the a l g e b r a i c l a t t i c e . It is easy to check 

t h a t Con(ai) is a l w a y s an a l g e b r a i c c l o s u r e system on A x A . 

So one m i g h t look for a set B and some a l g e b r a i c c l o s u r e 

s y s t e m C on B x B such that each m e m b e r of C is an 

e q u i v a l e n c e r e l a t i o n on B and such that <C; £ ) is 

i s o m o r p h i c to ^ . One could then hope to p r o c e e d as in the 

p r e c e d i n g p a r a g r a p h . U n f o r t u n a t e l y , t r a n s i t i v i t y rears its 

ugly h e a d , and that idea d o e s n ' t work e i t h e r . The f o l l o w i n g 

m o d i f i c a t i o n does w o r k . G i v e n < a n , b n ) , . . . , <a , b ) with \ g Q s n n 

< a n , b n > e [ < a Q , b Q > , . . . , <an_-j , bn_-j> ] c one d e f i n e s three 

partial o p e r a t i o n s , say f , g , h , with 

f ( a Q ,
 a

n _ -j ) = a n , f ( b Q , . . . , b n - ] ) = g ( b Q S b ^ ) , 

g ( a Q , a n _ 1 ) = h ( a Q , ...» a n - 1 ) and h ( b Q , . . . , b n - 1 ) = b 

Now w h e n 0 is a c o n g r u e n c e r e l a t i o n with a^ = b^ (0) for 

0 < i < n-1 then under 0 we have a = f ( a n , . . . , a„ -, ) 
— — n 0 n-1 ' 

= f ( b
0 >

 b n - l ) = 9 ( b 0 , b n - 1 ) = g ( a 0 , . . . , a ^ ) 

= h ( a Q , a n _ -J ) E h ( b Q 9 . . . , b ^ ) = b ^ . T r a n s i t i v i t y 

g i v e s us the d e s i r e d r e s u l t , a n = b n ( 0 ) . Now if one 

r e p l a c e s each partial o p e r a t i o n of the p r o c e e d i n g p a r a g r a p h 

by t h r e e partial o p e r a t i o n s (as in this p a r a g r a p h ) , and if one 

o t h e r w i s e p r o c e e d s as in the p r e c e e d i n g p a r a g r a p h , one then 

o b t a i n s an a l g e b r a Si with jCoji(ai) i s o m o r p h i c to . 
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Now let us go back to the © and the £ ( ® ) a b o v e . 

Each c o n g r u e n c e r e l a t i o n 0 of ® has an e x t e n s i o n £ ( 0 ) 

to a c o n g r u e n c e of It is f a i r l y o b v i o u s that if the 

ideas are going to work then one m u s t have £ ( 0 n $) 

= £( 0) n £ ( $ ) . U n f o r t u n a t e l y , this fails in g e n e r a l . T h i s 

is the t e c h n i c a l p r o b l e m that is cured by using a t r i p l e of 

o p e r a t i o n s in place of each " n a t u r a l " o p e r a t i o n . T h i s 

p r o b l e m is caused by t r a n s i t i v i t y . 

So it b e c o m e s i m p o r t a n t to d i s c o v e r lemmas g i v i n g 

s u f f i c i e n t c o n d i t i o n s on a partial a l g e b r a SB so that 

£ ( n ( 0 i | i e I)) = n ( £ ( 0 . ) | i e I). Such a lemma was 

i m p l i c i t in [9]. It was m a d e e x p l i c i t in both [14] and [ 2 1 ] . 

But this lemma was true only if © was a unary partial 

a l g e b r a . A lemma of this sort for a r b i t r a r y f i n i t a r y partial 

a l g e b r a s a p p e a r s in [ 1 7 ] . This m a d e T h e o r e m s 2 and 3 p o s s i b l e . 

(There are some o t h e r i n n o v a t i o n s r e q u i r e d a l s o . ) 

One w o u l d hope that the c o n s t r u c t i o n o u t l i n e d a b o v e 

(when a p p r o p r i a t e l y g e n e r a l i z e d ) w o u l d w o r k for p r o v i n g 

T h e o r e m 5. It d o e s , but a new p r o o f is r e q u i r e d . One of the 

main new i n g r e d i e n t s is a n e w , m i l d l y c o m p l i c a t e d lemma 

g i v i n g s u f f i c i e n t c o n d i t i o n s on an i nfi ni tary p a r t i a l a l g e b r a 

as so that £(n 0.j | i e I) = fl(£(0 i | i e F) a l w a y s h o l d s . 

The proofs of all the t h e o r e m s use v a r i a t i o n s on the 

above c o n s t r u c t i o n . 

The r e a d e r has p r o b a b l y n o t i c e d that the c o n s t r u c t i o n 

o u t l i n e d above for T h e o r e m 1 gives an a l g e b r a 2J h a v i n g n - a r y 
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o p e r a t i o n s for e v e r y n > 0 . Yet it was stated in §3 that 

the a l g e b r a 21 used in the p r o o f had only unary o p e r a t i o n s . 

One can do this by s t a r t i n g with a C such that an 

e q u i v a l e n c e r e l a t i o n 0 is c l o s e d iff it c o n t a i n s the 

c l o s u r e of its one e l e m e n t s u b s e t s . If ^ is a l g e b r a i c , 

such a C e x i s t s . As p r e v i o u s l y n o t e d , G r a t z e r and S c h m i d t 

w e r e f o r c e d to do this b e c a u s e their t e c h n i q u e s w e r e valid 

only for u n a r y partial a l g e b r a s . 

U n i v e r s i t y of Hawaii 
H o n o l u l u , Hawaii 9 6 8 2 2 
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REPRESENTATIONS OF FINITE LATTICES AS PARTITION 

LATTICES ON FINITE SETS 

A . Ehrenfeucht, V . Faber, S . Fajtlowicz, J . Mycielski 

§ 0 . A lattice is a set with two associative c o m m u t a t i v e and idem-

potent binary operations v (meet) and A (join) satisfying 

x A (x v y) = x V (x A y) = x . 

We put x < y if x v y = y and x < y if x ^ y and x / y . We 

consider here only lattices L with a least element 0 and a greatest 

element 1 . A sublattice of a lattice L is a subset X of L 

such that a £ X and b Ç X imply that a a b ç X and a V b ç X . 

If 0 L and 1 L ç X , X is called a normal sublattice,, 

For any set S we denote by II(S) the lattice of partitions on 

S , that is, the lattice of all equivalence relations on S with ^ 

defined as set inclusion, relations being treated as sets of ordered 

pairs. Thus l n / c v = S X S , 0 . ={(x,x): x e S} and a A b = a n b 
li(S.) IKS) 

for all a,b Ç H(S). 

A representation of a lattice L as a lattice of partitions is an 

isomorphism 9: L I1(S) . Then we call cp a representation of L on 

S . The representation cp is called normal if <p(L) is a normal 

sublattice of I1(S) . For each lattice L , let p,(L) be the least 

cardinal (J, such that L has a representation on S , where |S| = JJ, . 

Whitman has shown [lo] that p,(L) <; + |L| . A well-known and still 
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unsolved problem of Birkhoff [2, p. 97] is whether ji(L) is finite 

whenever L is finite. 

§ 1 . For any x ç I1(S) and a,b £ S we write a(x)b for 

(a,b) ç x . Let A and B be sets such that A f| B = {v} . Let L 

and M be normal sublattices of 11(A) and 11(B) , respectively. 

For x ç L and y £ M , let x° y denote the partition of A U B 

defined by a ( x o y ) b if and only if a(x)b or a(y)b or both 

a(x)v and b(y)v . 

Theorem 1. The set N of all partitions of the form x o y with 

x ç L and y ç M is a normal sublattice of II(A U B) and this 

lattice is isomorphic to L X M . 

Proof. Clearly the map L x M N given by ^ ( x ^ ) = x o y is a 

bijection. We need only establish for all x,u ç L and y,v £ M the 

equations 

( 1 ) 1n(A) ° 1n(B) = 1n(A u b ) 

i 

Ui)
 V)

 O 0 D ( B ) = V u B ) ' 

(iii) (x o y) v (u o v ) = (x v u) o (y V v) , 

(iv) (x oy) A (u o v) = (x A u) o (y A v) . 

These equations can be proved by examining all possible special cases. 

In place of (iii) and (iv) it is sufficient to prove the cases 

(v) x < y = ( x o O M ) V (0. o y) = (xo l ) A (1t 0 y ) , 
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(vi) ( x o 0 ) v ( u o 0 ) 
M M 

( 0 L p y) v (0 L o v) 

(x o 1 ) a (u o 1 ) 
M M 

d L ° y) A d L « v) 

(X V U) o o M , 

0 L o (y V v) , 

< x A u) o I m , 

= 1 L o (y A v) 

which are obvious. We prove (iii) from (v) and (vi) as follows; 

(x o y ) v (u « v) ( X O 0 M ) V ( 0 L O y ) v ( u O 0 M ) V ( 0 L O v) 

= ( x o O M ) v ( u o O J v (0. o y) V (0T o v) 
M M L L 

= ((x V u) o o m ) V (0 L o (y V v)) 

= (x V u) O (y V v) . 

The remaining facts are established in a similar way. 

Corollary 2. If L is a sublattice of the product of the lattices 

L A (i = 1, . . . ,k) , then 

|i(L) £ Yj M-OL^) - k + 1 . 

i = 1 

Proof. The proof follows directly from Theorem 1 by induction. 

Theorem 3. If L is a subdirect product of M and P , if H<(M) and 

^,(P) are finite and if (°M»
1p) € L » e*g»> L = M X P , then 

|J,(L) = |0iCM) +M-(P) - 1 • 

Proof. For each x £ M there exists a y ç P such that (x,y ) ç L 
" X X 

Similarly, for each y £ P there exists an x^ ç M such that 

(x y,y) £ L . Thus for each x ç M and y 6 P we have 
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( 0 M > y ) = ( 0 M » ! p ) A ( x
y » y > € L and ( x , X p ) = < 0 M , l p ) V (*,y x> € L . 

By Corollary 2 , w e know that p,(L) p,(M) +H-(P) - 1 . S u p p o s e that 9 

is a r e p r e s e n t a t i o n of L on a set T w i t h p-(L) e l e m e n t s . S u p p o s e 

that 9(0.,,1„) has k e q u i v a l e n c e classes A , ,A„....,A t of car-
M P 1 2 k 

d i n a l i t i e s n ,n , ... n . Let P be the lattice o f partitions 
i ^ K A. 

1 

of A . formed by restricting the elements ^C » y > w i t h y £ P to 

A . , that i s , P A = { W M , y ) | A : y Ç p} . Let cp(y) = ( ^ . y ) ^ , 

i i 1 

<^(0.,,y)L » • • • »cP(01l,,y) . ) . T h e n cp is an i s o m o r p h i s m of P into T M 1 A ' M A, 
2 k 

P X ... x P a n d thus Corollary 2 y i e l d s 
A 1 \ 

k 

M> (P) * E n i " k + 1 = M-(L) ~ k + 1 . 

i = 1 

O n the o t h e r h a n d , M is isomorphic to {(x,l)| x £ M } C L . T h u s M 

can be represented o n T/(cp(0^, l p ) ) ( T factored by the e q u i v a l e n c e 

relation ) » so k i M<(m) • Hence 

|i(L) ;> |j,CP) + k - 1 s |i(P) + fjb(M) - 1 . 

C o r o l l a r y 4 . If p,(L) is finite and L is a s u b l a t t i c e o f I1(S) , 

w h e r e |s| = (i(L) , then L is a normal s u b l a t t i c e . T h u s a m i n i m u m 

finite r e p r e s e n t a t i o n is a normal r e p r e s e n t a t i o n . 

P r o o f . S i n c e L can b e represented on S/0 T , the fact that |i(L) is ————• Li 

m i n i m u m i m p l i e s that 0 L = Ojj^gy • h a S e ( ï u i v a l e n c e c l a s s e s 

A . , A ,...,A , then L is isomorphic to a sublattice o f the product 
X Z K . k 

of the L . C o r o l l a r y 2 g i v e s £ V |A. I - k + 1 = p,(L) - k + 1 , 
A . <m/ I 1 ' 

i = i 

a c o n t r a d i c t i o n u n l e s s k = 1 . T h u s 1 T = l n . ^ . . 
Ju li(S) 
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R e m a r k 1 . B y T h e o r e m 3 , t h e p r o b l e m o f f i n d i n g p,(L) for a l l f i n i t e 

l a t t i c e s L r e d u c e s to the d e t e r m i n a t i o n o f (j,(L) for all f i n i t e 

d i r e c t l y i n d e c o m p o s a b l e L ' s . T h i s r e d u c e s t h i s p r o b l e m for v a r i o u s 

s p e c i a l c l a s s e s of l a t t i c e s : D i l w o r t h [ 3 ] h a s s h o w n that e v e r y f i n i t e 

r e l a t i v e l y c o m p l e m e n t e d l a t t i c e is a p r o d u c t of s i m p l e l a t t i c e s . T h i s 

a p p l i e s also to finite g e o m e t r i c l a t t i c e s s i n c e they can b e c h a r a c t e r -

ized a s finite r e l a t i v e l y c o m p l e m e n t e d s e m i - m o d u l a r l a t t i c e s [2; p . 8 9 ] , 

B i r k h o f f h a s shown that e v e r y m o d u l a r g e o m e t r i c l a t t i c e is a p r o d u c t of 

a B o o l e a n a l g e b r a a n d p r o j e c t i v e g e o m e t r i e s [2; § 7 ] . D i l w o r t h (see 

[2; p . 9 7 ] ) h a s shown that every f i n i t e l a t t i c e is i s o m o r p h i c to some 

s u b l a t t i c e o f a finite s e m i - m o d u l a r l a t t i c e . H a r t m a n i s [5] h a s shown 

b o t h that every finite l a t t i c e is i s o m o r p h i c to s o m e s u b l a t t i c e of the 

l a t t i c e of s u b s p a c e s o f a g e o m e t r y o n a f i n i t e set a n d that e v e r y f i n i t e 

l a t t i c e is i s o m o r p h i c to the l a t t i c e o f g e o m e t r i e s o f a f i n i t e s e t . 

J o n s s o n |7] h a s shown that e v e r y f i n i t e l a t t i c e is i s o m o r p h i c to a 

s u b l a t t i c e o f a finite s u b d i r e c t l y i r r e d u c i b l e l a t t i c e . 

R e m a r k 2 . T h e a s s u m p t i o n (0...1-) Ç L in T h e o r e m 3 is e s s e n t i a l . In 
M F 

f a c t , if C is the n - e l e m e n t c h a i n a n d if L = C x , t h e n 
n 3 2 

T h e o r e m 3 g i v e s |i,(L) = 4 ; h o w e v e r , b y F i g u r e 1 , L is a l s o i s o m o r p h i c 

to a s u b d i r e c t p r o d u c t o f 11(2) X 11(2) a n d 11(2) x 11(2) , w h i c h w o u l d 

l e a d to |j,(L) = 5 if T h e o r e m 3 a p p l i e d . 
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( 1 , 1 ) 

(x,y) 

(y,x) 

Remark 3 . Let L o Il(n) mean that L h a s a normal r e p r e s e n t a t i o n 

o n n . T h e o r e m 1 shows that l i a ) x II(J6) O 11(24-1) . Since 

n u ) <3 n(X) X IKjG) > this suggests the question: For what jI a n d m 

is lia) o n(m) ? If n(j?>) <1 I K ^ ) a n d n(£) <J n a 2 ) , then 

Il(jfc) <3 I K ^ + i2 - 1) • S i n c e n(3) <3 n(4) , we have n(3) <3 IîCm) for 

all m ^ 3 . R a l p h M c K e n z i e h a s proved (private c o m m u n i c a t i o n ) that 

n(j£) <J n a + D d o e s not h o l d for I ^ 4 . 

§ 2 . W e now examine p, for some special l a t t i c e s . W e recall that 

by a c o m p l e m e n t o f x in a l a t t i c e L is meant an element y £ L 

such that x A y = 0 and x v y = 1 . 

L e m m a 5 . If
 P

i »
P
2 » '

, é P
k

 a n d
 ^

 a r e
 P e t i t i o n s °f

 a
 set S w i t h n 

k 

e l e m e n t s a n d P]L v ... v P f c = Q , then ^ | S/P | <; n ( k - l ) + J S/Q | 

1 = 1 

in a d d i t i o n , P ± v Pj = Q for all i ^ j , then ^ | s / P i | 

i = 1 

(n + | S/Q | ) . 
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P r o o f . For e v e r y A ç S / P i (i = 1 , 2 , ... ,k) form a p a t h t h r o u g h a l l 

p o i n t s o f A . T h u s S o b t a i n s a g r a p h s t r u c t u r e a n d b y 

P x V ... V P R - Q , t h i s g r a p h h a s Jt = |S/Q| c o n n e c t e d c o m p o n e n t s 

c o n t a i n i n g , in s o m e o r d e r , n ^ , n 2 , . . . p o i n t s . S i n c e a c o n n e c t e d 

g r a p h w i t h m p o i n t s h a s at l e a s t m - 1 e d g e s , 

k I 

E E (M -1} 26 E (nj•1} ; 
i = 1 A ç S / P . j = l 

i 

E f E H- ls/pii) * ; 
i = M A Ç S / P . I 

k 

YJ (|s| - |S/P.|) î> n - J S/Q | ; 

i = 1 
k 

kn - £ ! S / P . | * n - j S/Q j ; 

i = 1 

k 

Y | S / P . | ^ n ( k - 1) + | S/Q | . 

i = 1 

N o w s u p p o s e P . V P^. = Q for all i / j . T h e n by t h e l a s t e q u a t i o n 

w i t h k = 2 , for all i / j , \ s ^ ± \ + i s / p j I ^ |S/Q| . H e n c e w e h a v e 

k 

IS/P. | = V (lS/P. 1 + Is/F ( k - 1 ) I I S / P . | = I ( I s / p j + I S / P . I ) 

i =1 i * j 

( 2 ) < n + l s ^ l > • 

T h e lemma f o l l o w s . 
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Theorem 6, Consider the lattice L(j£,m) consisting of 0 and 1 and 

of two chains P. > ... > P . of length I and the other Q„ > ... > Q 
1 X 1 m 

of length m. , such that P.̂  and Q^ are complementary for all i 

and j (see Figure 2). If I > 1 , then 

p,(L(i,m) ) = X + m - 1 + {2 j I + m - 2 } . 

Figure 2. 

P r o o f . H e r e , the s y m b o l { x } d e n o t e s the l e a s t i n t e g e r not l e s s t h a n 

x . W e s u p p o s e that k = I P i I ^ l Q i l ' T h e n ^ l P i l + 4 - 1 a n d 

| Q m | à |Q 1| + m - l . B y L e m m a 5 , if p,(L) = n , then 

Letting x = l + m , we have 

k ^ IQJ^I £ n + 3 - k - x . 

Since P^ A Q^ = 0 , no class of Q^ can have more than k elements. 

Thus 

n <; k|Q | <; k(n + 3 - k - x) . 
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S i n c e the m a x i m u m of t h e r i g h t h a n d s i d e o f t h i s e q u a t i o n o c c u r s w h e n 

k = -|(n + 3 - x) , 

( n + 3 - x \ 2 

n n 2 j • 

Solving this equation, we find that 

n ^ x - 1 + 2 J x - 2 . 

W e first d e m o n s t r a t e a r e p r e s e n t a t i o n o f L(j£,l). L e t k b e the 

first i n t e g e r such that k 2 £ I + 2 j I - 1 (k = 1 + { - 1 }) . L e t n 

b e the i n i t i a l s e g m e n t of l e n g t h i + { 2 J I - 1 } in t h e l e x i c o g r a p h i c 

o r d e r i n g o n x Z^ . T h e p a r t i t i o n P o n n i s d e f i n e d by 

( ( x , y ) , ( u , v ) ) Ç- p^ if a n d o n l y if x = u . T h e p a r t i t i o n Q ^ o n n 

is d e f i n e d by ( ( x , y ) , ( u , v ) ) £ Q x if a n d o n l y if y = v . (Note t h a t 

I ;> 2 i m p l i e s that k 2: 4 a n d thus P^ £ Q.^ .) T h e p a r t i t i o n P ^ 

is d e f i n e d by ( C s , y ) , ( u , v ) ) ç P if a n d o n l y if e i t h e r x = 0 = u 
XJ 

o r (x,y) = (u,v) . T h e p a r t i t i o n s w i t h 1 < i < £ a r e formed 

by i n t e r p o l a t i o n b e t w e e n P a n d P ( s e p a r a t i n g o f f e a c h of t h e 
Jo 

s i n g l e t o n s in P o n e at a t i m e from P ) . W e m u s t v e r i f y that a 
Jo 

s u f f i c i e n t n u m b e r of p a r t i t i o n s can b e formed in t h i s w a y . S i n c e 

= n - k + 1 a n d = { ̂ } , if a l l p o s s i b l e i n t e r p o l a t i o n s w e r e 

m a d e , the l e n g t h of the c h a i n from P. to P w o u l d b e 1 I 

p = n - k + l - { ~ } + l . 

If { ~ } £ k - 1 , w e h a v e 

If { } = k , w e h a v e 

P = I + {2 7 T T } - 2{ J i - 1 } . 
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S u p p o s e s < J l - 1 £ s + ~ for s o m e i n t e g e r s . T h e n n = £ + 2 s + l , 

2 5 2 
k = s + 2 a n d l <. s + s +— . S i n c e 4 is an i n t e g e r , X ^ s + s + l 

a n d t h u s 

2 
n < s + 3 s + 2 = k(k - 1) . 

T h i s g i v e s { } = k - 1 , a c o n t r a d i c t i o n . T h u s [2 J £ - 1 } = 2 { J l - 1 } 

a n d h e n c e p = . 

To c o m p l e t e t h e p r o o f , w e show t h a t L ( j £ - l , m + l) c a n b e 

r e p r e s e n t e d o n t h e same set a s L ( £ , m ) . S u p p o s e £ ^ 2 a n d 

P ^ € L ( X , m ) h a s c l a s s e s C ^ , 1 ^ i ^ n . S i n c e P ^ ^ s P ^ , w e may 

a s s u m e that P . , h a s a c l a s s c o n t a i n i n g C , II C„ . S i n c e 
£-1 1 2 

P £ - 1 A Q m = 0 ' f° r e v e r y x € c i a n d y € c
2 ' £ Q m • • C o n s i d e r 

a s h o r t e s t P - Q p a t h x, xn . . . x (n s 3) from C , to c . T h e n 
X m 1 2 n 1 2 

x, c- C , a n d x f C 0 b u t x. t C . y C_ , 2 «£ i < n . T h u s 
1 1 n v 2 i r l w 2 

(x. ,x r t) £ Q . L e t Q i ^ Q b e the p a r t i t i o n d e f i n e d b y : for all 
1 2 m m + l m 

x,y / x^ , (x,y) ç Q m + 1
 i f a n d °nly if (x,y) £ Q m ; for a l l x , 

(x,x_ ) f Q t if a n d o n l y if x = x_ . To show P , . v Q , = 1 , 
1 ^ m + l * 1 £ - 1 ra+1 

we need only show (x_ ,x 0) £ P • v Q .. for then P , . v Q , ^ 
L z £-L m + i £-1 m + 1 

P a . V Q = 1 . S i n c e the P - Q p a t h x„ ... x d o e s n o t c o n t a i n 
£ - 1 m £ m ^ 2 n 

x. , i t i s a P . - Q , p a t h . S i n c e (x ,x.) f P , , . x_ ... x XL, is 
1 I m + l n ' 1 c £-1 ' 2 n 1 

a P„ , - Q , p a t h from x_ to x. . 
£-1 m + l 2 1 

W e n o w c o n s i d e r t h e l a t t i c e L ^ o f s u b s p a c e s o f t h e g e o m e t r y G n 

w i t h n p o i n t s a n d 1 l i n e . L ^ c o n s i s t s o f n m u t u a l l y c o m p l e m e n t a r y 

e l e m e n t s a n d 0 a n d 1 (see F i g u r e 3 ) . H a r t m a n i s [6] h a s shown 

that P-( L
n)

 2 P w h e r e p i s the first p r i m e l a r g e r t h a n n . W e 
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s h a l l p r o v e M-( L
n) £ P » w h e r e p is t h e first p r i m e n o t l e s s than n 

(see T h e o r e m s 7 , 8 a n d 9 b e l o w ) . 

P, r: P P 
1 \ 3 

0 

F i g u r e 3 

T h e o r e m 7 . n + 1 ; n e v e n 

n n o d d . 

P r o o 1 . S u p p o s e L ^ c a n b e r e p r e s e n t e d a s a s u b l a t t i c e L o f the 

l a t t i c e o f p a r t i t i o n s o f m . E a c h n o n - t r i v i a l P ç L d e f i n e s a set 

o f e d g e s L p = { { a , b } : (a,b) £ P , a / b } . S i n c e P A Q = 0 a n d 

P v Q = 1 w h e n P / Q , w e h a v e that L (J L is a c o n n e c t e d g r a p h . 
F VJ 

T h u s 

(i) L
p l

 +
I L Q I = l

L
P U L Q | * M - 1 , 

(ii) 

F r o m (i) w e g e t 

E l Lpl * I ni(m-l) 
P € L 

( n - 1 ) E l Lpl 

P 6 L 

= E < l L
P M

L o l > 

P ^ Q 

. n(n- 1) 
PI • l - Q I ' * 2 ( m " X ) 

H e n c e from ( i i ) , 

27 



i m ( m - 1) ;> V | L p | ;> | n ( m - 1) 

P ç L 

w h i c h y i e l d s m i il . E q u a l i t y can o c c u r o n l y if | L p | + = m - 1 

for all n o n - t r i v i a l P £ Q £ L , w h i c h i m p l i e s that m - 1 is e v e n 

w h e n e v e r m - n - 3 . S m a l l c a s e s a r e h a n d l e d by i n s p e c t i o n . 

T h e o r e m 8 . T h e f o l l o w i n g four s t a t e m e n t s a r e e q u i v a l e n t : 

(i) M - ( L
2 n . 1

) = 2n - 1 ; 

(ii) T h e c o m p l e t e g r a p h o n 2n - 1 p o i n t s , K , can b e edge-
zn- J. 

c o l o r e d w i t h 2 n - 1 c o l o r s so that the u n i o n o f any two c o l o r c l a s s e s 

i s a s p a n n i n g p a t h ; 

(iii) K can b e e d g e - c o l o r e d w i t h 2n - 1 c o l o r s so that the u n i o n 
2n 

o f any two c o l o r c l a s s e s is a s p a n n i n g c y c l e ; 

(iv) T h e s y m m e t r i c g r o u p o n 2n e l e m e n t s , S„ , c o n t a i n s a set 
2n 

{ l ^ : i - L , 2 , . . . ,2n - 1} o f i n v o l u t i o n s such that t h e g r o u p g e n e r a t e d 

b y I. a n d I . is t r a n s i t i v e w h e n e v e r i ^ j . J i J ° 

P r o o f . (i) «M. (ii) . If w e a s s u m e (ii), e a c h c o l o r c l a s s i s a p a r t i t i o n , 

so (i) f o l l o w s e a s i l y . S u p p o s e (i) h o l d s . A s w e h a v e seen a b o v e 

| L p U L q | = 2 n - 2 for a l l P ^ Q . S i n c e L p U L Q i s c o n n e c t e d , it 

m u s t b e a t r e e . T h u s j L p | = n - 1 a n d L p c o n t a i n s n o c y c l e s , that 

i s , P is a m a x i m u m m a t c h i n g o f the p o i n t s o f , . (ii) now 
2 n ~ l 

f o l l o w s . 

(ii) « (iii) . S u p p o s e K 2 n h a s b e e n ( 2 n - l ) e d g e - c o l o r e d 

so that the u n i o n o f any two c o l o r c l a s s e s is a s p a n n i n g c y l e . C l e a r l y 

\ { v } s a t i s f i e s ( i i ) . O n the o t h e r h a n d , if K„ , h a s b e e n 
2n N J ' 2 n - l 

( 2 n - l ) e d g e - c o l o r e d so t h a t the u n i o n o f two c o l o r c l a s s e s i s a 
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s p a n n i n g p a t h , e a c h point m i s s e s o n e c o l o r a n d , by c o u n t i n g , e a c h 

c o l o r m i s s e s o n e p o i n t . K = K _ y { { v , a } : a £ K„ ' ,} is 2n - 1 
2 n 2 n - l c 2 n - l J 

e d g e - c o l o r e d by c o l o r i n g { v , a } , a £ K , w i t h the c o l o r m i s s i n g 
ZRI' JL 

at a . It is easy to show that t h i s c o l o r i n g s a t i s f i e s (iii) . 

(iii) « (iv) . E a c h 1 - f a c t o r o f K„ d e f i n e s a n i n v o l u t i o n 
2 n 

o n 2n a n d v i c e v e r s a . S i n c e the e l e m e n t s o f the g r o u p g e n e r a t e d by 

the i n v o l u t i o n s I a n d J h a v e the form . . . IJIJ . . . , the u n i o n 

of two 1 - f a c t o r s s p a n s K 2 n if a n d o n l y if t h e g r o u p g e n e r a t e d b y 

the c o r r e s p o n d i n g i n v o l u t i o n s is t r a n s i t i y e . 

T h e o r e m 9 . T h e s t a t e m e n t 8 (i) h o l d s if n (see [ l ] a n d [8]) o r 

2n - 1 (see [l] a n d [9]) is a p r i m e . 

R e m a r k 4 . B . A . A n d e r s o n ( p r i v a t e c o m m u n i c a t i o n ) h a s a l s o s h o w n that 

8 (i) h o l d s for n = 8 a n d n = 1 4 . T h u s the first u n k n o w n c a s e i s 

n ~ 18 . W e w o u l d l i k e to k n o w a s i m i l a r result to T h e o r e m 6 a b o u t a 

l a t t i c e L ( £ t & , ) c o n s i s t i n g o f 0 a n d 1 a n d o f w c h a i n s 
X z w 

P . - > . . . > P . . , 1 £ i . ^ w . s u c h that P . . a n d P . , . , a r e cora-
il ij i 3 

p l e m e n t a r y w h e n i / i ' . H o w e v e r , t h e m e t h o d o f p r o o f u s e d in 
w 

T h e o r e m 6 g i v e s o n l y ^ ( L ^ , . ..,jfc ) ;> f ( i , w ) w h e r e 1 = w ^ jfc 

and i - 1 

f<ï,w) = 2 4 - 3 + 8 + 4 1 y 4 + w 2 ( 2 * - 3 ) . 
w w 

A l t h o u g h t h i s r e d u c e s to T h e o r e m 6 w h e n w = 2 , for l a r g e v a l u e s of 

it is a very b a d e s t i m a t e s i n c e lim f(X,w) = 2X - 3 , a n a b s u r d i t y . 

A c t u a l l y , p r o o f s o f this t y p e seem to i n d i c a t e that t h e b e s t r e s u l t s 

for t h e s e l a t t i c e s a r e o b t a i n e d by p a r t i t i o n s w i t h n e a r l y e q u a l c l a s s e s 

For this r e a s o n , w e m e n t i o n the f o l l o w i n g t h e o r e m . 
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T h e o r e m 1 0 . L, h a s a n o r m a l r e p r e s e n t a t i o n cp: L „ -» n (S) , 
k+2 T k+2 ' 
2 

w h e r e |s| - n such that j S / ^ C a ) | = n a n d |A| = n for e a c h 

A Ç S / 9 ( a ) w h e n e v e r a Ç L , a / 0 , 1 , i f and only if 

k+2 k+2 

t h e r e a r e k m u t u a l l y o r t h o g o n a l L a t i n s q u a r e s of o r d e r n . 

P r o o f . S u p p o s e L e x i s t s . L e t the p a r t i t i o n s b e C . = f C . , . . . . , C } , 
i 11 in J 

1 i £ k , A = { A ^ . . . ^ } , a n d B = { B l f . . . , B } . We form the 

L a t i n s q u a r e a s f o l l o w s : let L* = j if C. . f| A „ f| B £ <B » 
I>m £m I J L m 

T h e d e f i n i t i o n is p o s s i b l e since A . f| B = {x„ } for a l l I a n d m , 
& m i mJ 

a n d g i v e n i , s o m e C . . m u s t c o n t a i n x . . S u p p o s e L* = L * . = i . 
ij J£m £m I ' m 

T h e n C . , 0 A . p| B / 0 a n d C . . f| A w n B ^ 0 , c o n t r a d i c t i n g 
i .1 ji m ij l m 6 

A/i H A . , 0 u n l e s s t - I ' . S i m i l a r l y L* = L* , if a n d o n l y if Jo Si j&m j&m 

m m ' . T h u s L* is a L a t i n s q u a r e . S u p p o s e L* = L 1 = p a n d 
im rs 

h ] = L J = q w i t h i £ j . T h e n 
4 m rs 

( C . f| A n B = -fx } 
i p X m 1 4m

J 

C . n A n B = { x } 
ip r s 1 rs J 

c . n A n B = {x, } 
jq Je m 1 Xm J 

v c . n A n B = { x } . 
\ jq r m L rs J 

T h u s C . fl C . . = {x } = {x } , so I = r a n d m = s . H e n c e the 
jq ip L jfcnr ^ rs J 

L* a r e m u t u a l l y o r t h o g o n a l L a t i n s q u a r e s . 

r i 
C o n v e r s e l y , s u p p o s e i s a s e t o f m u t u a l l y o r t h o g o n a l 

2 
L a t i n s q u a r e s . W e c o n s i d e r the n e l e m e n t s in Tl x Tl . We let 

n n 

A± = { i } X 2 n a n d Bj = » n X { j } . W e put U , m ) ç. c if a n d o n l y if 
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L* = j . It is e a s i l y v e r i f i e d that the p a r t i t i o n s C . = ( C . , , . . . , C I , 
£m i i l ' in J 

1 ^ i ^ k , A = { A ^ , . . . , A n ) , a n d B = { B ^ . . . ^ } g e n e r a t e the d e s i r e d 

l a t t i c e . 

C o r o l l a r y 1 1 . (See |4; p . 1 7 7 ] ) . T h e f o l l o w i n g s t a t e m e n t s a r e e q u i v a l e n t 

2 
(i) T h e e d g e s o f the c o m p l e t e g r a p h K o n n p o i n t s c a n b e d e c o m -

n 

p o s e d into n + 1 sets so that e a c h set c o n s i s t s of n c o m p o n e n t s iso-

m o r p h i c to K ^ a n d so that the u n i o n o f any two sets is a c o n n e c t e d 

g r a p h . 

(ii) T h e r e e x i s t s a p r o j e c t i v e p l a n e P o f o r d e r n . 

n 

(iii) T h e r e a r e n - 1 m u t u a l l y o r t h o g o n a l L a t i n s q u a r e s of o r d e r n . 

2 

(iv) T h e r e is a p a r t i t i o n l a t t i c e L o n n e l e m e n t s c o n s i s t i n g o f 

n 4 1 m u t u a l l y c o m p l e m e n t a r y e l e m e n t s p l u s 0 a n d 1 such that e a c h 

n o n - t r i v i a l p a r t i t i o n h a s n c l a s s e s o f n e l e m e n t s . 

P r o o f . W e shall s k e t c h t h e p r o o f . T h e e q u i v a l e n c e of (i) a n d (iv) 

follows from the m e t h o d u s e d in the p r o o f of T h e o r e m 7 . T h a t i s , to 

each p a r t i t i o n P ^ 0 , 1 in L t h e r e c o r r e s p o n d s a set o f e d g e s 

L p - { { a , b } : (a,b) £ P } . (Note that e a c h o f t h e s e p a r t i t i o n s t u r n s 

o u t to b e n o t h i n g m o r e than a p a r a l l e l c l a s s o f l i n e s in an a f f i n e 

g e o m e t r y . ) T h e e q u i v a l e n c e o f (iii) a n d (iv) f o l l o w s from the t h e o r e m . 

T h e p r o o f o f the e q u i v a l e n c e o f (i) a n d (ii) f o l l o w s s t a n d a r d l i n e s : 

S u p p o s e (i) h o l d s . T o form P ^ a d d to the p o i n t s o f K the p o i n t s n c , , . . . , c c o r r e s p o n d i n g to the n + 1 sets C , ......C , . W e 
1 n + 1 1 n + 1 

s u p p o s e the c o m p o n e n t s of C . a r e C . C . . T h e l i n e s of P 
i il in n 

are then the sets C U ( c
i ) > i = l,...,n+l , and the set 

{ c ^ , . . . » c
n + 1 ) • C o n v e r s e l y , if (ii) h o l d s , let { c ^ , . . . , c

n + 1 )
 b e a 
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l i n e in P ^ . T h e p o i n t s of K a r e then t h e p o i n t s o f 

n 

P \ { c , ...,c } . T h e e d g e { x , y } o f K „ is in the set c. if 

x , y a n d c. a r e c o l i n e a r in P 
' i n 

§ 3 . B y W h i t m a n ' s T h e o r e m (see § 0 ) , e v e r y lattice is a s u b l a t t i c e of 

the l a t t i c e o f a l l p a r t i t i o n s of some s e t . If is a r e p r e s e n t a t i o n o f 

a l a t t i c e L a s a l a t t i c e o f p a r t i t i o n s of A , a n d B is a s u b s e t o f 

A , then for e v e r y x ç L let ^ ( x ) b e the r e s t r i c t i o n o f the p a r t i t i o n 

cp(x) to B . O f c o u r s e , ^ ( L ) d o e s not n e c e s s a r i l y h a v e to b e a 
B 

s u b l a t t i c e of L . E v e n if ^ ( L ) i s a s u b l a t t i c e , cp does n o t h a v e 
D B 

to b e a n i s o m o r p h i s m . If 9 D ( L ) i s a s u b l a t t i c e a n d cp is a n iso-
D B 

m o r p h i s m , then the s u b s e t B is c a l l e d f a i t h f u l . 

H o m a v k 5 . E v e r y r e p r e s e n t a t i o n o f the l a t t i c e L ^ h a s a finite f a i t h f u l 

s u b s e t . T h e s i m p l e s t e x a m p l e of a finite l a t t i c e w h i c h h a s a r e p r e s e n t a -

t i o n w i t h o u t f i n i t e faithful s u b s e t s is L . T h e r e p r e s e n t a t i o n i s 
o 

c o n s t r u c t e d a s f o l l o w s : the p o i n t s o f the set a r e the v e r t i c e s o f t h e 

r e g u l a r t r i a n g u l a r l a t t i c e on the p l a n e . T h r e e p o i n t s form an e q u i v a l e n c e 

c l a s s w i t h r e s p e c t to a g i v e n c o l o r if they a r e the v e r t i c e s of a t r i a n g l e 

w h i c h h a s t h i s c o l o r (see F i g u r e 4 ) . It is c l e a r that if w e t a k e a n y 

i 
n 

\ 

F i g u r e 4 . 
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finite subset S of this t r i a n g u l a t i o n , t h e r e w i l l b e at least o n e 

v e r t e x w h i c h a p p e a r s in o n l y o n e c o l o r e d t r i a n g l e , say c o l o r 1 . T h u s 

this v e r t e x is not 2 V 3 e q u i v a l e n t to any o t h e r , so S c a n n o t b e a 

faithful s u b s e t . W e can a l s o show that the l a t t i c e o f F i g u r e 5 h a s a 

r e p r e s e n t a t i o n w i t h o u t f i n i t e f a i t h f u l s u b s e t s . 

F i g u r e 5 . 

T h e r e e x i s t s a finite d i s t r i b u t i v e l a t t i c e w i t h a r e p r e s e n t a t i o n 

w i t h o u t finite faithful s u b s e t s . T h e l a t t i c e g e n e r a t e d by the p a r t i t i o n s 

i n d u c e d by the c o l o r s 1 , 2 a n d 3 in F i g u r e 6 i s i s o m o r p h i c to 

{0,1} 3 . 

F i g u r e 6 . 

T h e l a t t i c e L in F i g u r e 7 is a f i n i t e l a t t i c e w i t h an i n f i n i t e 

r e p r e s e n t a t i o n w i t h o u t p r o p e r f a i t h f u l s u b s e t s . P a r t i t i o n s A , B , 

Aj^ a n d B ^ o f K a r e f o r m e d a s f o l l o w s : A h a s c l a s s e s { 2 n , 2n + 1} 

for a l l n £ 2 , B h a s c l a s s e s { 2 n - 1 , 2 n } for a l l n , A ^ h a s 

c l a s s e s { 2 n - 1 , 2n + 4 } for a l l n , a n d B ^ h a s c l a s s e s { 2 n + 2 , 2n - 1} 
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for a l l n . It is c l e a r that t h e s e p a r t i t i o n s g e n e r a t e a l a t t i c e 

i s o m o r p h i c to L . For any p r o p e r s u b s e t o f Z , o n e o f t h e r e l a t i o n s 

A v B = 1 , A^ v B ^ = 1 w o u l d f a i l , so t h i s r e p r e s e n t a t i o n o f L h a s 

no p r o p e r faithful s u b s e t s . 

1 

F i g u r e 7 . 

P r o b l e m s . 

1 . S u p p o s e P c Q a r e l a t t i c e s a n d P h a s a r e p r e s e n t a t i o n 

w i t h o u t f i n i t e f a i t h f u l s u b s e t s . D o e s Q h a v e such a r e p r e s e n t a t i o n ? 

C a n a g i v e n r e p r e s e n t a t i o n 9 of P w i t h o u t finite f a i t h f u l s u b s e t s 

b e e x t e n d e d to a r e p r e s e n t a t i o n 9 o f Q such that 9 a l s o d o e s n o t 

h a v e f i n i t e f a i t h f u l s u b s e t s ? 

2 . C h a r a c t e r i z e the c l a s s of l a t t i c e s w h i c h can b e g e n e r a t e d by 

c o l o r i n g s o f t e s s e l a t i o n s o f the p l a n e . 

3 . (See R e m a r k 3 . ) F o r w h a t I a n d m is 11(4) < n (m) ? 

4 . (See T h e o r e m s 7 , 8 a n d 9 a n d [ l ] , [8] a n d [9].) F i n d ) 

for a l l n . 

5 . (See R e m a r k 4 . ) F i n d |i(L(jfc^, Jfcg > • • • » jG^)) f o r a 1 1 w - t u p l e s 

o f p o s i t i v e i n t e g e r s ( j ^ , , . . . . 
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Proc. Univ. of Houston 
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SOME COMBINATORIAL ASPECTS OF 

LATTICE THEORY* , 

George Markowsky 
Harvard University 

Cambridge, Mass. 02138 

This paper will discuss some new lattice-theoretic 

constructions of combinatorial interest. Throughout, 

all lattices will be assumed to be finite unless the 

contrary is stated, and most proofs will be omitted. 

Proofs and generalizations (e.g. to infinite lattices) 

are in the author's Doctoral Thesis [13]. 

After a few technical preliminaries we will dis-

cuss a basic representation theorem for lattices and 

give some applications of it, including a new character-

ization of distributive lattices and some combinatorial 

results having to do with the representation of lattices 

and posets by subsets of the power set of some given set. 

In Part II, we introduce the poset of join-irreducible 

and meet-irreducible elements of a lattice, a construc-

tion which bears the same relationship to the given 

lattice, as the poset of join-irreducible elements bears 

to the corresponding finite distributive lattice. After 

describing the properties of the poset of join-irreducible 

* This research has been partially supported by ONR 
Contract N00014-67-A-0298-0015 . 
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and meet-irreducible elements, we will give some appli-

cations of this construction, including the extension of 

the work of Crapo and Rota 17] on the factorization of 

relatively complemented lattices of finite length to all 

lattices of finite length. We will then discuss the 

enumeration of the elements of the free distributive 

lattice on n generators, a problem first proposed by 

Dedekind 18] in 1897. 

Much of the work in Parts I and II has been stimu-

lated by the following question. How much of the struc-

ture of a lattice is 'recoverable * from its join-irreduc-

ible and meet-irreducible elements? As we shall see, 

the answer to this question is that by concentrating 

only on certain relations between join-irreducible and 

meet-irreducible elements we are able to reconstruct the 

whole lattice, and can obtain information about the lat-

tice which would be difficult to obtain from the whole 

lattice directly, such as its factorization. 
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I. THE BASIC REPRESENTATION THEOREM AND APPLICATIONS 

We first introduce some notation. If n is an 

integer, by n we shall mean {1,..., n}. Of course 

if n <_ 0, n = If X is a set, we shall denote the 

cardinality of x by |X|, and the power set of X by 

X X 
2 . Note that we shall always consider 2 to be a 

lattice in the obvious way. We will use <_ and < for 

set inclusion and proper set inclusion respectively. If 

L is a lattice, we denote by J(L) the set of all join-

irreducible elements of L (recall L is finite) and 

by M(L) the set of all the meet-irreducible elements 

of L. A and V denote meet and join respectively. 

The following representation theorem will be our 

starting point. It has been used by Zaretskii I18J and 

is closely related to the dual of the representation by 

principal dual ideals due to Birkhoff and Frink [2]. It 

can be generalized quite a bit, and was discovered by the 

author while he was investigating the structure of the 

semigroup of binary relations Q 1 4 J ) . 

THEOREM 1. Let L be a lattice. The map 

f : L + 2 M ( ^ given by f(a) = { y e M ( L ) | y £ a } is injective 

and join-preserving (and hence order-preserving). 

Theorem 1 has a number of consequences. The fol-

lowing corollary is obvious even without Theorem 1. 
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COROLLARY Let L be a lattice |T(L)|= j and 

|M(L) | = k, then the length of L < min {k,j}. 

The following theorem gives a new combinatorial 

characterization of finite distributive lattices. It is 

well known that (c) below implies (a) and (b). But the 

converse seems to be new. 

THEOREM 2. Let L be a finite lattice. The fol-

lowing are equivalent. 

(a) L has length n , satisfies the Jordan-

Dedekind chain condition, has n join-irreducible ele-

ments and n meet-irreducible elements. 

(b) L has n join-irreducible elements, n meet-

irreducible elements, and every connected (maximal) chain 

between I and 0 has length n. 

(c) L is distributive and has n join-irreduc-

ible elements. 

Proof: It is easy to see that (a) and (b) are 

equivalent and it is well known that (c) implies (a) 

(see Birkhoff 11]). Thus we need only show that (a) 

implies (c) . Let L' be the dual lattice and observe 

that L * also satisfies (a). From Theorem 1 it follows 

that we can consider L and L' to be j o in- sub1at t i c e s 

of 2^-, where by a join -sub'lat't'ice we mean a subset of 

2— closed under arbitrary join (union), Any such subset 

is of course a lattice with join being union but the 
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meet of two elements is not in general the intersection. 

We claim that L and L' are sublattices of 2— 

and hence distributive. Let f.-L+L* be an anti-isomor-

phism . 

Note that from (a) it follows that the height of 

any element of L or L f is equal to its cardinality. 

We now make a series of observations. 

(i) |f (x)| = n - | x| for all xeL, since a 

connected chain from x to n is mapped into a con-

nected chain from (|) to f(x). 

(ii) |f(y).| - |f(x) A L , f ( y ) | = M - | x D y | 

for all x,yeL, since |f(y)| - | f (x) A L , f (y) | 

= (n - | y | ) - (n - | x U y | ) 

- \ x U Y \ - lyl - M - |xfly|. 

(iii) | f (y) | - I f 0 0 n f (y) | « |x| - | x A L y | 

for all x,yeL, since | f (y) | - | £ (̂ c) O f (y) | 

- | f (x) U f (y) | - |f (x) | = (n - | x A L y | ) - (n-[x|) 

= |x| - | x A L y | . 

We know that x A ^ y <_ x O y and f(x) A L , f ( y ) 

f (x)f) f (y) for all x,yeL. Thus |x| - | x A L y | ^ [x| 

- \xf) y | and |f(y)| - | f (x) f ) f (y) |<_| f (y) | - | f ( x > \ , f (y) | . 

But from the last inequality, (ii) and (iii) it 

follows that |x| - [ x A L y | <_ |x| - |xfly|. Hence, 

| x A T y | = |xf)y| and x / \ T y = xfly, implying that L is 
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a sublattice of 2—. Similarly, L* is a sublattice. 

Remark. Theorem 2 assists in identifying distri-

butive lattices from their Hasse diagrams, since it is 

usually easy to identify the join-irreducible and meet-

irreducible elements, as well as to determine whether a 

given lattice satisfies the Jordan-Dedekind chain condi-

tion . Certainly , a computer can easily be programmed to 

identify finite distributive lattices. 

Theorem 2 can be stated as follows: a finite lat-

tice L with n join-irreducible elements is distribu-

tive if and only if (i) it satisfies the Jordan-Dedekind 

chain condition, (ii) the number of meet - irreducible 

elements equals the number of join-irreducible elements, 

and (iii) the length of L is equal to the number of 

join-irreducible elements. The following three examples 

show the independence of conditions (i), (ii) , and (iii). 

Here n=3. (a) satisfies (i) and (ii) only, (b) (i) 

and (iii) only, and (c) (ii) and (iii) only. 
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COROLLARY 4. A finite modular lattice L is dis-

tributive if and only if its length is equal to |j(L)|. 

Proof. It is well known that modular lattices 

satisfy the Jordan-Dedekind chain condition II]. Also 

Dilworth has shown \1; 103] that |J(L)| and |M(L)| 

of any finite modular lattice are equal. Thus the cor-

ollary follows directly from Theorem 2 and these addi-

tional facts. 

Définition. Let L be a lattice. By an embedding 

of L in 2— we mean an injective join-preserving map 

f:L+2-. We shall say that two embeddings f and g 

are distinct if f(L) 4 g(L). 

Theorem 1 shows that L can be embedded in 2— 

if n >_ | M CL) I • Actually, it is true that L can be 

embedded in 2- iff n > |M(L)I. This was first shown 

to be true by Zaretskii 118] and later discovered inde-

pendently by the author 114]. We will not prove this 

result here. 

An obvious question about embeddings is the follow-

ing, Given a lattice L and an integer n how many 

distinct embeddings of L in 2— are there? The re-

sults above only tell us when an embedding is possible. 

The answer to this question follows from work done in 

exploring the structure of the semigroup of binary 
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relations done by Brandon Butler, D . W. Hardy and the 

author 13, 4]. It can also be derived from 

Zaretskii's work X18J . For details about the relation-

ship between lattices and the semigroup of binary rela-

tions see [15] . 

To avoid introducing too much additional theory we 

simply state the following theorem ( w h i c h c a n be gener-

alized to the case of arbitrary join-preserving maps 

between arbitrary complete lattices 113]). 

THEOREM 3. Let L be a finite lattice such that 

IL| = p , |M(L)| = k. The number of distinct embeddings 

of L in 22. is ( 1 /1 Au t L[) J (-1) 1 C*) (p-i) n, where 
i-0 1 

Aut L is the automorphism group of L. Note that the 

above quantity is 0 if n < k. A purely lattice-

theoretic proof can be found in 113J . 

We will now consider the relationship between some 

of the material above, and the problem of computing the 

number of realizations of a given poset by a subset of 

2— for some integer n. By this we mean that if we are 

given a finite poset P, we wish to know how many subsets 

of 2—9 considered as posets with inclusion being the 

order, there are which are isomorphic to P. This pro-

blem is treated in some detail by Hillman in 111], We 

will briefly show how the theorems above apply to this 
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problem. Our method does not always simplify the cal-

culations involved, but it does give "geometrical" in-

sight into the difficulties involved in representing 

posets by sets. 

Definition. Let L be a lattice and P a poset. 

Then R(L,n) denotes the number of ways of representing 

L as a join-sublattice of 2—, R*(P,n) denotes the 

number of realizations of P by subsets of 2~, and 

D(P) denotes the distributive lattice of all closed 

from below subsets of P, while i:P-»-D(P) denotes the 

canonical map i(a) = {beP|b <_ a}. A subset 1c of L 

is called a meet-sublattice of L if it is closed under 

arbitrary meets (recall that the empty meet is always I). 

We note here that a meet-sublattice of a lattice is 

itself a lattice with respect to the induced order. 

The key result for applying Theorem 3 to the repre-

sentation of posets is the following. 

THEOREM 4. Let P be a poset, and L the set of 

all meet-sublattices of D(P) which contain i(P). 

Pick one representative from each isomorphism class of 

L, say L 1 , . . . , L^. For each iek let m L = |{Q £ 

J(L,) < Q and P~Q as posets}|. Then R*(P,n) = 
k 1 ~~ 
I m L R C L ^ n ) . 

i = l i 
All of Hillman's results can be derived starting 
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from Theorem 4, but we will not dwell on this here. 

Rather we will just give an example in which Theorem 4 

supplies the answer more directly than any of Hillman's 

approaches. 

EXAMPLE 1. Let P have the Hasse diagram 

i=u 

meet-sublattice of D(P) containing i(P) is D(P) 

itself, and |D(P)| = 3k+l. Thus in certain cases the 

lattice method allows one to quickly group the essentials 

of the situation and arrive at the solution directly. 

This example illustrates the fact that Theorem 4 often 

allows one to see quickly how to calculate R*(P,n) and 

gives some idea of how complicated the calculation will 

be, as well as allowing one to calculate R*(P,n) for 

a whole class of related posets, as opposed to isolated 

cases, It is interesting to note that Theorem 4 shows 

why the poset representation problem is hard in general. 

/ 

k < 

since the only 
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Namely, the poset representation problem involves the 

representation of a number of lattices which are not 

"obviously" related to one another. Thus we also see 

why the coefficients seem to vary so much in the cases 

that are known. However, Theorem 4 gives us enough in-

formation to describe the asymptotic behavior of R*0P> n)> 

for a fixed P as n-*-°°. In particular we have the 

following corollaries. 

ically as n-»-». 

The following corollary is an interesting special 

case of Corollary 1. It tells us the number of anti-

chains of size k in 2— and shows that as n->°° almost 

every subset of 2— of cardinality k is an anti-chain. 

In the ne;xt corollary, A ^ is the poset corresponding to 

the Hasse diagram 

COROLLARY 2. R* ( A ^ n ) " l k ) asymptoti-

cally (for fixed k) as n-*00. 

COROLLARY 1. R*CP,n) 
l A u A ) l | D ( P ) ' n a s W t o t " 

k 
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II. THE POSET OF JOIN IRREDUCIBLE AND MEET IRREDUCIBLE 

ELEMENTS. 

It is standard "II; p. 59] that any finite distribu-

tive lattice is isomorphic with the ring of all order 

ideals of the partially ordered set consisting of its 

join-irreducible elements. Furthermore certain proper-

ties of the distributive lattice can be calculated dir-

ectly from this poset of join-irreducible elements. In 

particular we have the following results which do not 

seem to have been generally considered. A proof of 

Theorem 5(a) can be found in 115]. 

THEOREM 5. Let L be a finite distributive lattice 

and P its poset of join-irreducible elements. Let 

P - { v 1 , ..., v t ) . Then: 

(a) The map F : Aut (P) -*Aut (L) given by 

< F ( £ ) ( ' EV . ) = if (v.) for A<_t is a group isomorphism, 
A 1 A, 1 " 

i.e., every element of AutCP) extends naturally to an 

element of Aut(L). 

(b) L is decomposable iff P is not connected 

and the irreducible factors of L may be gotten simply 

by considering the distributive lattices (i.e., the rings 

of closed from below subsets) associated with the con-

nected components of P. 

REMARK. Theorem 5 does not hold for arbitrary 
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lattices. Consider the lattice L depicted by the 

following Hasse diagram. 

IAnt(L)| = 2 and L is indecomposable while 

|Aut(J(L))| = 6 and J(L) has 3 components. 

We will now describe a poset which can be associ-

ated with all finite lattices and which has the same 

properties with respect to the original lattice that the 

poset of join-irreducibles has with respect to the cor-

responding distributive lattice. 

Definition. Let L be a lattice. By P(L) we 

mean the poset J(L)\^/M(L) (disjoint union) with the 

following order. Let ^ : J (L)-*P (L) and i 2 :M (L)-*P (L) 

be the canonical injections. For x,yeP(L), y>x iff 

(a) yei 2(M(L)), (b) x e i 1 (J (L) ) , and (c) i 2
_ 1 ( y ) £ 

i^ (x) in L. When talking about P(L), we let 

X
1

 = a n d =
 i 2CM(L)). We call P(L) the 

poset of join irreducibles and meet irreducibles of L 

or simply the poset of irreducibles of L. 

POL,} furnishes us with quite a bit of information 
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about L. Since the proofs of the following theorems 

are somewhat involved we omit them and present the most 

important properties of PCL). 

THEOREM 6. Let L be a lattice and P(L) = 

X 1 • X ? its poset of irreducibles. 

(a) Let 2 be given by f(a) - {bcX 2|b>a}. 

Then L - rT def { U 
w A < f (X., ) } . (Thus we can recon-L we A
 1 — v 1 J K 

struct L from P(L).) 

Cb] Aut (P (L) ) - Aut(L) . 

(c) L is decomposable iff P(L) is not connected, 

Futhermore, the irreducible factors of L may be gotten 

by applying the procedure of (a) above to each connected 

component of P(L). 

(d) For each x e X 0 , let T = g.l.b. r S v where l' x ^ L 

S^ = {Uef(X^)|xeU}, where r^ and f are as in (a). 

Then L is distributive iff for all V e f ( X 1 ) , V ^ y T ^ 

iff for all 

x eX̂  2 » x e T . To illustrate Theorem 6 we 

consider the following examples. 

EXAMPLE 2. Thus if we construct P(L), where L 

is the lattice in the remark after Theorem 5, we get 

a b c d. i 1 C T ) - h,i 1(3) - g,i 1(«)=e, i 2 ( Y) b a,i 2(3] = b,i 2Ca)-c, 

e g h and i 2 (6) = d. 

Thus [Aut(P(L])| - 2 = |AutCL][, L is indecomposable. 
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If we consider f (I) <_ 2
{ a , b , c , d }

 we see that f(e]
 : 

{a,b}, fCg) - ( a,c}, f (JO. = (b,c,d). Thus T a = 

T
b

 = T
c " ^

 T
d

 =
 {b,c,d} , Consequently, L is not 

distributive, which of course is no surprise in this 

case. 

EXAMPLE 3. Let L have the following Hasse dia 

gram. 

<5 > y 

a 

Then P(L) has the following diagram, 

d e f 

ô 

Here i^(oO = a, i2(°0 - f, 

i 1 C H = b , i 1 C r )
 = c > = d > 

i2C<5) = e. a b c 

P(L) has two components, so that P(L) has two inde 

composable factors corresponding to the diagrams 

Q (d> Ç {e ,f} 

a n d { f } 

0 

Note |Aut(P(L)]| = 1 = |Aut(L)|. Applying Theorem 6 

we see that T d = {d}, T g = {e,f}, and T f = {f}, and 
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that consequently L is distributive. 

Theorem 6 has some interesting consequences con-

cerning the factorization of lattices. In particular, 

it leads to a simple characterization of the center of 

a lattice (see [1; p. 67]). The following fairly immed-

iate corollary of Theorem 6 generalizes and extends the 

results described by H. Crapo and G.-C. Rota (and which 

follow from some work of Dilworth) for factorization of 

relatively complemented lattices with no infinite chains 

[7 ; Chapter 12] to the factorization of all lattices 

with no infinite chains. 

COROLLARY. Let L be a lattice and C(L) be the 

center of L. 

(a) xeC(L) iff x is a separator of L, i.e., 

if PeJ (L) and qeM(L) are such that p^_q, then either 

p<_x or x<_q. 

(b) C(L) — 2—, where k is the number of irreduc-

ible (non-trivial) factors of L. (Note L has a unique 

irreducible factorization.) 

(c) L —[ 0 , c^] x [0 , c 2] x ... x [0,c k] where 

C 1 ' '** » cic a r e points of C (L) . 

The author is indebted to Professor Curtis Greene 

for suggesting that the results of [7 ; Chapter 12] be 

considered from the point of view of Theorem 6. 

Before we discuss additional aspects of the poset 
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of irreducibles we make the following definition. 

Definition. By a bipartite digraph D , we mean a 

triple CX,Y,A), where It and Y are sets, X Y -

and A<XxY, A is called the set of arcs. If SçX, by 

Ou(S) we mean (yeY| there exists xcS such that 

(x ,y) eA) . Similarly, if T^Y, by TnCT) we mean {x eX| 

there exists yeT such that (x,y)eA} . If xcXjyeYJ 

we write Ou(x)IIn(y)] instead of 0u({ x}) Iln({ y))J . 

Sometimes we will use the term bidigraph to stand for 

bipartite digraph. 

We will usually think of bidigraphs as being posets 

with the following ordering, If w,zeD, then w^z iff 

weY, zeX, and weOu(z). 

From Theorem 6 we see that we can associate a 

"unique" bidigraph P(L) to each lattice L and then 

recover L from P(L) in a well-defined way. The 

following theorem shows that to any bidigraph we can 

associate a lattice. This theorem sets the stage for 

some interesting questions. 

THEOREM 7. Let D = (X,Y,A) be a finite bipartite 

digraph. Let frX+2 be given by f(x) = Ou(x), and 

let L d « { J ^ w I A 1 f Q O K Th.en L^ is a lattice. Let 

Y 

g:Y+2 be given by g (y) = l.u.b. T f OOInCyO ) ' * 
L D 

Ou(X-In(y) ) . Then f Q Q > ^CLr,] and gCY) >_ MCL^) . 
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We conclude this section by considering the follow-

ing two questions. First, which finite bidigraphs are 

isomorphic to P(L) for some lattice L? 'Second, sup-

pose we are given the Hasse diagram of a. finite poset, 

how can we determine whether or not the poset is a lattice 

The first question is answered by the following 

theorem. 

THEOREM 8. Let D - (X,Y,A) be a finite bidigraph. 

Then the following are equivalent. 

(a) D — P(L) for some finite lattice L. 

(b) for all xeX, if A <_ X is such that Ou(x) 

= Ou(_A), then xeA. Similarly, for all yeY, if r <_ Y 

is such that In(Y) - In(T), then yeT. 

We will not answer the second question formally, 

but simply show how the techniques described above allow 

one to systematically attack the second question. The 

basic idea is that, given a finite P (say in the form 

of a Hasse diagram) one assumes that it is a lattice and 

constructs P(P) of Theorem 6 using any element which 

is only covered by one element as a meet-irreducible 

element and any element covering only one element as a 

join-irreducible element. If P(P) does not satisfy 

(b) of Theorem 8, it follows that P was not a lattice 

originally. If P(P) does satisfy (b) of Theorem 8 
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one proceeds to construct a s Theorem" 7. From 

the work abo\'e, it is clear that P is a lattice iff 

'PCP) 
— P. Often, it is not necessary to construct all 

of Lp^p-j to discover that P ^p^p) a s be seen 

below. 

Needless to say, if P has more than one maximal 

or more than one minimal element, there is no need to 

test it for being a lattice. Again, it is often easier 

to test that (b) of Theorem 8 holds for On and then 

construct L p Q ^ , then to see that (b) of Theorem 8 

holds for both Ou and In. 

EXAMPLE 4. Let P be represented by 

The shaded elements are the 

"join-irreducible" elements of P 

determined as above, assuming that 

P is a lattice. The starred 

elements are the meet-irreducible 

elements of P. We will not use i^ and when 

working with P(P), in order to keep notational distrac-

tions to a minimum. Here, we have that Ou (a) = (]), 

Ou (b) = {d}, Ou (c) - {£}, and Ou(d) = {e,f}. Since 

Ou(a) = (|), (b) of Theorem 8 is not satisfied, since 

OuC<|>) = $ and â Cj). Hence P is not a lattice. PCP) 

can be represented by 
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o cr o o 
b d c a and L, (using Theorem 7) 

is the lattice of Example 3. 

EXAMPLE 5. Let P be represented by 

P(P) can be represented 

as 

ô o 
a b d . Clearly L p ( ^ - 2- ± P, so 

that P is again not a lattice. 

EXAMPLE 6. Let P be represented by 
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We will not draw P(P), but note that the follow-

ing are easily obtained from the diagram: On(a) = (d,e,h}, 

Ou (b ) = {d}, Ou (c) = {a}, OuCd) = {a,e,f}, Ou Ce] = 

{a,d,g,h}, OuCh) = {a,d,e,f,g}. To simplify checking 

whether Cb) of Theorem 13 holds one should arrange the 

Ou's according to cardinality: Ou(b), Ou(c), Ou (a), 

Ou(d), Ou(e), Ou(h). In this way, each Ou could only 

be a union of preceding Ou's. Ou(b) and Ou(c) are 

singletons and thus satisfy (b). OuCa) is the first 

one on the list to contain an "e" or n h " , while Ou(d) 

is the first to contain an n f n . ,rg" first appears in 

Ou(e). "g" appears only in Ou(e) and OuCh), but 

Ou(e) £ Ou(h), and hence (b) holds for all the Ou fs. 

Note that InCy], for ye{ a ,d,e ,f ,g ,h} is easily 

constructed since InCy) - ( xe{ a ,b ,c ,d , e ,h} | ye Ou Ĉ :) } . 

It is also easily verified that Cb) holds for InCy). 

It is easy to construct L p ^ , and one quickly sees 

that P - L p ( p ) . 

It is easy to see that PCP) is connected and that 

therefore P is indecomposable. Furthermore, let 

feAut(PCP))> it is easy to show that f = Identity, since 

f(a) = a (a considered as belonging to X^), f(d) = d 

Cd considered as belonging to X ? ) , etc. 
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EXAMPLE 7. Let P be represented by 

Thus Ou Ce ) = {a,el 

Ou(d) = { a,e,f} , 

OuCb) = {e,£,j}, 

Ou (e) = { a, £, g ,h} , Ou(a) = {e,f,g,j,k} , Ou(f) ={a,e,g,h,m} 

Ou(i) = (a,e,f,g,j). It is easy to see that Ou satis-

fies (b) of Theorem 8. However, when constructing Lp(p)? 

one notices almost immediately that Ou(c) <_ Ou(d) , but 

that c£d in P. Thus LpQ>) "f" p> a n (^ p n o t a 

lattice. 

The above examples actually contain the skeleton 

of an algorithm for checking posets for being lattices. 

We will not develop this algorithm further here, but 

note that it can be refined quite a bit and that some 

fair-sized examples, e.g., Example 7, can be handled 

easily using this algorithm. 

Remark. Much of the preceding can be generalized 

to arbitrary lattices. The forms of the theorems vary 

depending on whether one wants to allow arbitrary joins 

or just finite joins. In the case of arbitrary joins, 

the generalization of Theorem 1 allows one to embed every 
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lattice in a complete lattice, while the generalization 

of Theorem 6(d) leads directly to some of Raney Ts results 

dealing with completely distributive lattices. Both 

theories are complicated by the fact that arbitrary 

lattices need not have any join-irreducible or meet-

irreducible elements, and by other considerations. Actu-

ally all the above theorems hold for lattices of finite 

length. We have presented everything above in the con-

text of finite lattices so that the underlying ideas 

would stand out more clearly. We would also like to 

mention that other classes of lattices (e.g., geometric 

lattices) can be characterized in terms of properties of 

their posets of irreducibles as was done in Theorem 6(d) 

for distributive lattices. For details see [13]. 
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III. THE FREE DISTRIBUTIVE LATTICE ON n GENERATORS 

The free distributive lattice on n generators, 

FD (n ), is D(2—). For ba sic information about FD(n) 

the reader should consult II; pp 34, 59] or 112]. Actu-

ally, for an arbitrary set X , D(2 ) is the free completely 

distributive (complete) lattice on [X| generators. 

This contrasts with the result of H. Gaifman and 

A. W. Hales that there does not exist a free complete 

Boolean algebra with even countably many generators (see 

[1; p. 259]). We note that in addition to FD(|X|) for 

infinite X , it is possible to talk about a free distri-

butive lattice with infinitely many generators (see 

A. Nerode [16]). 

The problem of enumerating FD(n) was first proposed 

by Dedekind [8] in 1897. Exact answers are known with 

certainty only for n <_ 6. We now show that as is often 

the case, the problem of enumerating FD(|X|) if X is 

infinite is much easier than if X is finite. 

THEOREM 9. Let X be an infinite set. Then 
X 

|FD(|X|)| = I22 |. 
X 

Proof: Clearly, FD(|x|) <_ |2 2 |. Since X is in-

finite, there exists a bisection f :2_ x X+X. If y e 2 , 

then we define y* = {f(2,a)|aey} { f (1 ,a) | aeX-y} . 

Note that |y*| = |X|, and that if y 1 ,y« e 2 , y- f y?f 
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then y* y* and y*. 

Define F : 2 2 ^ F D ( |X | ) , by F(S) = { Ae2 X | A<_y* for 

some yeS}. It is obvious from the definition that for 

2 X 

S e 2 , F(S) is closed from below, and hence F is 

well-defined. We claim that F is injective. Suppose 

2 X 

that we have F(S) = F(T), for S,T e 2 . Let A e S, 

then A* e F(S) => there exists y e T such that 

X* y*. But as we saw above this is only possible if 

A - y. Thus < A e T and consequently S <_ T. By sym-

metry, we get that S > T, and finally that S = T. 

2 1 
Thus |2 | <_ |FD(|X|) and we are done. 

From Theorem 5 we have the following results, 

THEOREM 10. FD(n) is irreducible and Aut(FD(n)) 

— S n (the symmetric group on n letters). 

We note that Theorem 10 is also true for FD(n)-{0,I}, 

which is often considered to be the free distributive 

lattice. This is true since FD (n) - {0,1} - D(2- - {((),n}). 

It would be of interest to know the factors of 

|FD(n)|, but the irreducibility of FD(n) suggests that 

there is no "natural" way to factor |FD(n)|. The only 

result along these lines which is known is Yamamoto's, 

that if n is even so is |FD(n)| [17]. The converse 

of this statement is false, e.g., |FD(3)| = 20. 
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We conclude this paper by considering several as-

pects of the enumeration of FD(n). We wish to briefly 

sketch the nature of the functions L^(n), where ^ ( n ) 

is the number of elements of FD(n) of cardinality k. 
k-1 

THEOREM 11. L v(n) = J C(p,k)( n), where A v is 

V1 

an integer such that 2 _> k > 2 and C(p,k) is 

the number of order ideals of cardinality k of 2̂ -

which contain all the singletons of 

Remark. Thus we see that, for k _> 1, L^Cn) is a 

polynomial in n of degree k-1, and since C(k-l,k) = 1, 

the leading coefficient is l/(k-l)!. L^C11) resembles 

the chromatic polynomial somewhat. Note that 0,1,..., 

A^-l are among the roots of L^Cn). These are the only 

possible non-negative integral roots of L^(n), since if 

n _> there exists at least one closed from below sub-

set of 2_ having cardinality k. It is possible for 

L^Cn) to have negative integers as roots, e.g., -1 is 

a root of L^(n) and -9 is a root of L^(n). All the 

L^Cn) up to k = 7 have only real roots each with mul-

tiplicity one. Whether this is true in general is not 

known to the author. 

We also observe that ^ ( n ) = L (n) for fixed 2 -k 

k and n. Thus if we know L
k ( n ) for k = 1,..., m , 

for a given n we can calculate the elements on 2m 
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levels of FD(n). 

Note also that from Theorem 11, it follows that for 

1 k - 1 

fixed k, -^(n) ~ (k-1) ' n a s Unfortunately, 

this gives some information about the tail ends of FD(n), 

but does not help to understand the behavior of the 

middle terms. 

It turns out that the values of the C(p,k) ts can 

also be calculated from a polynomial. We will now pre-

sent the machinery necessary for calculating at least 

some of the L-^(n) fairly easily. 

We should note that a somewhat similar approach to 

the problem of calculating FD(n) was used by Randolph 

Church 16], although he fixed n and let k vary. Thus 

in 16] he obtained the values for L^(n), n <_ 5 and for 

all k. 

Definition. By P(j,k) we shall mean C(k-j-l,k), 

and by C^(a,b) we shall mean the number of elements of 

(a,b) such that no singleton is a maximal element, 

where (a,b) is the set of all closed from below subsets 

of cardinality b of 2— which contain all the single-

tons of 2—. 

Remark. Thus we have that L k(n) = J kP(j ,k) • j =0 Note also that P(0,k) = C(k-l,k) = 1 for all k > 0. 

The following theorem shows that for a fixed j, 
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P(j,k) is a polynomial in k of degree 2j . 

THEOREM 12. For j > 0, P(j,k) = £ C 1Ci,i+j+l) 
i=m. 

k-i -1 J 
£ , where m^ is the smallest integer such that 

m • m • -1 
2 3 > m.+j+l > 2 3 . - J 

The strategies for calculating C 1(a,b), P(j,k), 

and L k ( n ) a r e involved and rather technical. The 

author has calculated C^ (2j-a ,3j-a+1) explicitly for 

0 <_ a <_ 9 and P(j,k) explicitly for 0 <_ j <_ 10. 

Theorem 13 gives the explicit values of L^Cn) for 

0 i k 1 1 6 ' 

THEOREM 13. For n > 0, 

(I) L 0Cn) 

(2) L x(n) 

(3) L 2(n) 

(4) L 3Cn) 

(5) L 4(n) 

(6) L 5(n) 

(7) L 6(n) 

(8) L 7(n) 

(9) L g(n) 

CIO) L 9(n) 

( I D L l 0 ( n ) 

3 •n-, . n -n 

.1) = n ; 
2 n. n -n 

•2J 2 ' 
2 j • 5-» 

4 3 2 
, _ n +6n -25n +18n. 

l3J
 +
 l 4J , 

n
5
 + 2 0n

4
-8 5n

3
+100n

2
-36n 

( 3 ) + 6 ( 4 ) + ( 5 ) = ^ 

L 7(n) = (?) + 15 (?) + IOC?) + (2); 
3 J M ^ 

(3) + 2 O C 4 ) + + 1 5 0 + 

1 9 C 4 ) + 1 2 0 C 5 ) + 105 c^) + 2 1 C 7 ) + (£: 
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(12) L n ( n ) = 1 3 ( ^ ) + 3 2 2 ( ^ ) + l , 3 8 5 ( ^ ) + l , 3 3 0 (y)+378 (g) 

+ 36 (*) + (*,); 

(13) L 1 2 ( n ) = 1 0 ( * ) + 4 2 0 ( * ) + 3 , 2 4 3 ( £ ) + 6 , 0 2 0 ( * ) + 3 ,276 (£) 

+ 630 (g)+45 (^g) + ; 

(14) L 1 3 ( n ) = 6 ( 4 ) + 5 0 0 + 6 , 3 2 5 ( ^ ) + 2 1 , 0 1 4 ( y ) + 2 0 , 5 3 1 (g) 

+ 7 , 1 4 0 C g ) + 9 9 0 ( ^ 0 ) + 5 5 ( ^ 1 ) + ( ^ 2 ) ; 

(15) L 1 4 ( n ) = 4 ( ^ ) + 5 6 0 ( g ) + 1 0 , 9 2 5 ( g ) + 5 9 , 6 1 9 ( y ) + 9 9 > 6 8 0 ( g ) 

+ 5 8 , 9 8 9 ( ^ ) + 1 4 , 1 9 0 ( ^ 0 ) + l , 4 8 5 ( ^ 1 ) + 6 6 ( ^ 2 ) + ( ^ 3 ) ; 

(16) L 1 5 ( n ) = ( 4 ) + 6 0 0 ( ^ ) + 1 7 , 3 4 5 ( ^ ) + 1 4 5 , 0 5 0 ( ^ ) + 3 9 3 , 5 4 0 ( ^ ) 

+ 3 7 9 , 8 4 8 (g) + 1 4 9 , 1 1 5 ( ^ Q ) + 2 6 , 2 3 5 . f ^ ) + 2 , 1 4 5 ( J 2 ) 

+ 7 8 ( - 3 ) + ( - 4 ) ; 

(17) L 1 6 ( n ) = ( 4 ) + 6 1 6 ( ^ ) + 2 5 , 9 4 5 ( ^ ) + 3 1 4 , 9 6 5 ( y ) + l , 3 1 3 , 2 6 0 ( g ) 

+ 1 , 9 9 2 , 1 4 4 Cg) +1 , 2 2 6 , 9 1 9 ( * Q ) + 3 4 1 , 2 20 

+ 4 5 , 7 6 0 ( ^ 2 ) + 3 , 0 0 3 ( ^ 3 ) + 9 1 ( ^ 4 ) + ( ^ 5 ) . 

Remark. Note that we have enough information to 

calculate L-^y(n) entirely, since we know from Theorem 11 

that C(5,17) = L^y(5) and from the Remark following 

Theorem 11 that L 1 7 ( 5 ) = L 1 5 ( 5 ) . All the remaining 
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coefficients can be calculated using the values of 

P c j ,k) for o <_ j <.10. 

The ideas in this chapter have been applied by 

Butler and the author [5] to the enumeration of partially 

ordered sets, to show that when partially ordered sets 

are broken down into certain classes, each class is enum-

erated by a polynomial. 

We conclude by briefly discussing the problem of 

finding an accurate upper bound for |FD(n)|. The best 

published result is that of D. J. Kleitman [12] which 
-1 

states that |FD(n)I < 2 ( 1 + k n J l n n ) E for some 

I n \ n 

constant k, where E n = j " j . Recently, Kleitman and 

the author working jointly have been able to improve this 

upper bound. In particular, we have shown that 

|FD (n)| <_ 2^ 1 + k n l n E n . The improvement of the 

upper bound follows from a detailed analysis of Hansel's 

approach to the problem [10] , using a characterization, 

due to Greene and Kleitman [9], of the partition of 2— 

into chains used by Hansel. Greene and Kleitman char-

acterize this partition in terms of the way an expression 

can be parenthesized allowing a certain number of "free" 

parentheses to remain. 
-I ] 

It can be shown that [13] | FD (n) | > 2 ^ + c 2 7 ) E n , 

for c a constant on the order of 1 and appropriate n. 
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The lower bound given in [12] is too large to be supported 

by the argument given there. 

We wish to finish by stating two conjectures. The 

first is that the order of FD(n) is closer to the lower 

bound given above than it is to the upper bound given 

above. The second conjecture concerns the number of 

anti-chains of 2— (recall that anti-chains of 2— 

correspond in a 1-1 fashion to the sets of maximal 

elements of elements of D (2—) ). This conjecture is due 

to Garrett Birkhoff and asserts that asymptotically all 

anti-chains of 2— consist entirely of subsets of n 

with cardinality between IjJ-k and [^-]+k, where k is 

a small fixed integer, perhaps 3, 4 or 5. 

The author would like to gratefully acknowledge 

many stimulating discussions with Garrett Birkhoff, 

Daniel J. Kleitman, and Curtis Greene, and the many very 

helpful suggestions which they made. 
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ABSTRACT 

For a ring R with 1, let <$C(R) denote the class of lattices 

representable in submodule lattices of R-modules. It is shown that 

the binary ring predicate I£(R) C «J£(S) is related to the existence 

of exact embedding functors R-Mod >-S-Mod. The predicate 

O £ ( R ) C <J£(S) can be evaluated in general if it can be evaluated 

for rings with the same characteristic. Furthermore, only rings with 

zero or prime power characteristic need be considered. Necessary and 

sufficient conditions on R are given such that 3t(R) = JLiS) for 

S a unitary subring of the field of rationals or for S the ring 

of integers modulo n, n a prime or a product of distinct primes. 
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Given a ring R with unit, a lattice L is "representable by 

R-modules" if there exists a unitary left R-module M such that 

L is embeddable in the lattice of submodules of M. Of course, 

embeddability in the lattice of submodules of M is equivalent to 

embeddability in the lattice of congruences of M [1: VII, Thm. 1, 

p. 159]. In the following, we consider the general problem: 

For which rings with unit R and S is every lattice represent-

able by R-modules also representable by S-modules? 

Our attack on this problem uses abelian category methods in 

addition to the methods of modular lattice theory. Let us first 

introduce some notation. Hereafter, R and S will denote rings 

with unit. The lattice of submodules of a left unitary R-module 

M will be denoted r(M;R). The class of all lattices representable 

by R-modules will be denoted 3L(R). Hence, our general problem 

is the study of the binary ring predicate ï£(R) C X(S) for 

various choices of R and S. 

Let R-Mod denote the abelian category of all R-modules and 

R-linear maps between them. If g is a cardinal number, we will 

also consider R-Mod(3), the category of all R-modules with 

cardinality less than $ and all R-linear maps between such modules. 

Note that R-Mod(3) is an exact subcategory of R-Mbd if 3 is 

infinite. Let card(X) denote the cardinality of a set X. 
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To digress momentarily, we remark that £(R) is a "quasivariety" 

of lattices, that is, 5C(R) is the class of all lattices satisfying 

some set of universal Horn formulas. (A universal lattice Horn 

formula is of form: 

( x r x 2 > ... , x m) C( e i = e 2 § ... § e 2 n _ 3 = e ^ ) => e ^ = e 2 n 

where e^, e 2 , ... , e 2 _ a r e lattice polynomials in the variables 

X p x 2 , ... »
 x
m - ) This was proved by a model theoretic argument in 

general [4: Thm. 6], and was proved by discovery of a constructive 

procedure for generating infinite Horn formula axiomatizations of 

3t(R) in the commutative case [6, 7: Main Thm.]. In [4: Thm. 3], a 

result is obtained implying that «£(R) is not finitely first-order 

axiomatizable if R is the ring of integers, or if R is the field 

of rationals, or if R is any ring between the integers and the 

rationals (that is, any unitary subring of the rationals). In [10], 

another model theory approach yields the following results: (1) If 

R is a ring defined on a recursive set of natural numbers with 

recursive ring operations of addition and multiplication, then there 

is a primitive recursive set of universal Horn formulas characterizing 

3t(R). (2) Suppose that a "term" is 0, 1 or a variable y^, y 2 , ... 

and an "equation" is t^ + t 2 = t^ or tjt2 = t^ for terms t^, t 2 

and t^. For any rings R and S with unit, either 5C(R) C X(S) 

or there exists a system of equations that is true in S for some 
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assignment of elements of S to y^, y 2 , ... , y n but which is false 

in R for every assignment of elements of R to y^, y 2 , ... , y . 

Let us now return to consideration of the predicate 3C(R) C X( s) • 

We begin by stating a conjecture: 

For any rings R and S with unit, 5t(R) C 3C(S) if and only 

if there exists an exact embedding functor R-Mod •S-Mbd. 

We will not prove this conjecture as stated, but will prove a 

slightly weaker version for our first theorem. Specifically, we will 

prove X(R) C 3t(S) equivalent to the following: 

For every infinite cardinal 3, there exists an exact embedding 

functor R-Mod (6) ^S-Mod. 

The following propositions lead up to the proof of this result. 

Prop. 1. If there exists an exact embedding functor R-Mod >-S-Mod, 

then £ ( R ) C Ï ( S ) . 

Prop. 2. If there exists a ring homomorphism S >*R preserving 1, 

then £(R) C £(S) . 

Prop. 3. If there exists a bimodule M (left S-module, right R-module) 

which is faithfully flat as an R-module, then <C(R) C *C(S). ( M is 

"faithful" if M ® p M„ = 0 iiiplies M n = 0 for all M n in R-Mod.) 
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To prove 3f(R) C X(S), it suffices to show that r(M;R) is in 

cC(S) for each M in R-Mod. Suppose F : R-Mod »-S-Mod is an 

exact embedding functor. Then F induces a lattice embedding 

FQ:r(M;R) •r(F(M);S) defined by FQ[£] = [Ff] for [f] a sub-

object of M. (See [5: p. 183] for relevant information. Note also 

that we have identified the lattice of submodules of M with the 

lattice of subobjects of M in R-Mod, and similarly for F(M) in 

S-Mod.) This proves Prop. 1. 

If there exists a ring homomorphism h:S >-R preserving 1, 

it is well-known (and easily verified) that the "change of rings" 

operation [2: p. 28ff] M ^(h) induces an exact embedding 

R-Mod •S-Mod. So, Prop. 2 follows from Prop. 1. 

The hypotheses of Prop. 3, interpreted, assert that M<8L — is 

an exact functor that reflects zero objects (that is, every inverse 

image of a zero object is zero). But then M ® R - is an exact 

embedding functor [11: II, 7.2, p. 57]. Therefore, Prop. 3 also 

follows from Prop. 1. 

To prove that 3C(R) C £(S) implies existence of an exact 

embedding functor R-Mod(3) >-S-Mod, we make use of the "abelian" 

lattice concept of [5]. By [5: Main Thm.], a functor A can be 

constructed, taking an abelian lattice L into a small abelian 

category A T , and taking a lattice homomorphism b:L >M of 
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abelian lattices into an exact functor A, : AT •A,,. If b is a 
b L M 

lattice embedding, then A b reflects zero objects by [5: 3.16, p. 172], 

and so A ^ is an embedding functor by [11: II, 7.2, p. 57]. 

Definition. Let 6 be an infinite cardinal number, regarded as the 

set of smaller ordinals. Let R. be the free R-module with 3 
P 

generators, with free generating set { x^: <S e 3 }. A submodule M 

of Rg has "bounded support" if there exists a subset A of 3 

such that card (A) < 3 and M is contained in the submodule of R 0 p 

generated by {x^: <5 e A}. Let r^(R^;R) denote the set of submodules 

of Rg with bounded support. 

Prop. 4. If 3 is an infinite cardinal, then is an ideal 

of r(R_;R), and is an abelian lattice. 
P 

Proof: Modify the proof of [5: 4.2]. We will only outline the 

proof that any M in r^(R^;R) can be "tripled". Choose A C 3 

such that card (A) < 3 and M is contained in the submodule generated 

by { { e A }. Since card(3 - A) = 3, we can choose B C 3 — A 

and a bijection 9:A »-B. Now each m in M can be expressed 

uniquely as a sum I r gx ô, where all but finitely many of the 
<5eA 

coefficients r. equal zero. Then define: 

= { E r* x
f ir*v

 E r x» e M }, 
1 6eA 6 6 ( ô ) Ô £A

 6 6 

M ~ = { E r x ( x . - X _ R R O : E R . X . e M Î 
2 ÔeA 0 ( ô ) 6eA 6 6 
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It is easily shown that M^ and M 2 are in and that M, 

M^ and M 2 generate the five-element modular lattice of length two. 

Prop. 5. If M is in R-Mod and 3 > + card(M), then there 

exists a lattice embedding r(M;R) 

Proof: Assume the hypotheses. Let y = card (M), and extend a 

bisection fQ:y >M to an R-linear epimorphism f:R^ >M by 

the free module property. Then r(M;R) is isomorphic to the interval 

sublattice [ker f , R ] of R . Since R can be regarded as a 
y y Y 

bounded submodule of R , there exists an embedding 

r(M;R) H T ( R Y ; R ) ^ ( R ^ R ) . 

Prop. 6. If M is an R-module with generating set G, then 

card (M) < + card(R) + card(G). 

oo 

Let X be the set ) (Rn x G11), and define the function 
n=l 

onto M given by: 

n 
m((r r r 2, ... , r n), Cgp g 2, ... , g ^ ) = r.g..' 

If y = KQ + card(R) + card(G), then: 

00 ? 
card(M) < card(X) < I ( Y

n r = y. 
n=l 

Proof: 

m from X 

In the next two propositions, we will use the definitions and 

notations of [5] without reference. 
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Prop. 7. Let L be an ideal of some r(M;R), and Hom R denote Horn 

in R-Mod. If A, B:2 are r-dis joint, then there is a one-one 

correspondence v:S(A, B) •HomR(A
1
/A°, B

1
/^

0
) given by: 

v(f) (x + A
0
) = (x + f") 0 B

1
, 

for f :T kL in S(A, B) and x e A
1
, and 

v _ 1(h)" = {x - y: x e A 1 , y e B 1, h(x + A°) = y + B 0}, 

for h:A1/A° ^B1/B° in R-Mod. Furthermore, 

ker v(f) = K(f)/A° and im v(f) = I(f)/B°. 

If A, B, C:2 is a mixed sequence, f e S (A, B) and g e S(B, C), 

then v (gof ) = v (g) v (f ). Also, f is isorepresentative if and only if 

- 1 - 1 
v(f) is an isomorphism, and v(f ) = v(f) in that case. 

Proof: Assume the hypotheses. Using the known relations between 

a \ A°, B 1, B^ and f , we can show that (x + f") fl B 1 is a coset 

1 0 1 

in B /B for x e A , and v(f) so defined is R-linear. Straight-

forward computations prove that v~*(h)~ is in L, A^ v B°C v'^Qi) " C 

A X v B 1, B 1 v v_1(h)* = A 1 v B 1 and B 1 A v_1(h)~ = B°. So, 

v _ 1(h):T >-L in S (A, B) can be defined as above. We also omit 

the computations proving that v"*v(f) = f, vv'^Qi) = h, ker v(f) = K(f)/A^ 

and im v(f) = I(f)/B°. 
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Let k = v_1(v(g)v(£)) in S(A, C). By definition k " C A 1 v C 1 . 

Suppose x - z g k", with x e A 1 , z e C 1 and v(g)v(f)(x + A 0) = 

z + C°. Choose y e B 1 with v (f) (x + A 0) = y + B°, and observe 

that x - y e f and y - z eg", so x - z e f '" v g" and 

k" C (gof)~ = (£' v g") A (A1 v C 1). 

So, k = gof by [5: 3.4], proving v(gof) = v(g)v(f). Using the 

fonnulas for ker v(f) and im v(f) and [5: 3.21], f is iso-

representative if and only if v(f) is an isomorphism. If 

h:A^"/A^ »-bVb° is an isomorphism, then v_1(h)~ = v" 1^" 1)" by 

- 1 - 1 direct computation. Then, v(f ) = v(f) follows. 

Prop. 8. Let 6 be an infinite nondenumerable cardinal, 3 > card(R), 

and let L = r^CR ;R). Then there exists a full exact embedding 

1 0 
equivalence functor F: A L •R-Mod (3), given by F (A) = A /A and 

F([£2, f x]) = vff^vCfp. 

Proof: Assume the hypotheses. If A 0 C A 1 in L, then card (A1/A0) < 3 

by Prop. 6, and P̂ /fiP is in R-Mod(3). There is no problem in verifying 

that F is well-defined and is a full exact embedding functor, by Prop. 7 

and [5: 3.13, 3.15, 3.17, 3.19, 3.25]. To prove that F is an 

equivalence functor, it suffices to show that every M in R-Mod(3) 

is isomorphic to F (A) for some A in A L [9: IV. 4, Thm. 1, p. 91]. 

Let card(M) = y < 3, and choose an R-linear epimorphism f:R^ >M 
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as in the proof of Prop. 5. Now R can be regarded as a bounded sub-

0 1 

module of R^, so F (A) is isomorphic to M for A = ker f C R^ = A 

in L. 

We can now prove: 

Theorem 1. Let R and S be rings with unit. Then ^C(R) C $(S) if 

and only if there exists an exact embedding functor R-Mod(3) •S-Mod 

for every infinite cardinal 3. 

Corollary. <£(R) C X(S) if and only if there exists an exact embedding 

functor C •S-Mod for every small exact subcategory C of R-Mbd. 

Proof: By a slight modification of the proof of Prop. 1, we can 

show that ^l(R) C £(S) if there exists an exact embedding functor 

R-Mod(3) >-S-Mod for every infinite 3. 

Assume <£(R) c £(S). To prove the theorem, it suffices to show 

that there exists an exact embedding functor R-Mod(3) >-S-Mod 

whenever 3 > Kq + card(R). (If <5 < y, then R-Mod(6) is an exact 

subcategory of R-Mod(y).) So, assume 3 > + card(R), and choose 

y > XQ + card(S) such that there exist lattice embeddings: 

r b(R 3 ; R ) - ^ r ( M ; S ) ( S y ;S), 

using 3C(R) C X(S) to obtain f and Prop. 5 to obtain g. Let L(R) 

denote ^ ( R ^ R ) and L(S) denote r^ (S ; S), and construct an exact 

embedding R-Mod(3) •S-Mod by composing: 
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F F F F 
R-Mod(3) ^ A l ( R )

 2 » A l —•S-Mod(y) S-Mod. 

Here, F 4 is an exact inclusion functor, and F 1 and F^ are exact 

embeddings obtained from the equivalences of Prop. 8. The functor F 2 

equals A ^ : A^q^ ^ L ( S ) ' 3 1 1 e x a c t embedding by the 

discussion following Prop. 3. This proves Thm. 1. 

Half of the corollary is proved by adapting the proof of Prop. 1. 

Since every small exact subcategory of R-Mbd is an exact subcategory 

of R-Mod(3) for sufficiently large 3, the other half of the 

corollary follows from the theorem. 

There is a foundational point worth mentioning. The construction 

of the reciprocal functor to the equivalence functor F : A L >-R-Mod(3) 

in Prop. 8 using [9: IV.4, Thm. 1, p. 91] seems to require the strong 

axiom of choice (there exists a choice function for the class of all 

nonempty sets). However, the corollary of Thm. 1 can be proved using 

a slightly modified version of Prop. 8 requiring only the ordinary 

axiom of choice. Furtheimore, most of the consequences of Thm. 1 here-

after can also be proved using the corollary. 

In the remainder of the text, we will sometimes treat integers as 

members of an arbitrary ring R with unit. In each case, the integer 

n is identified with the additive multiple n-1 of the ring unit 

( 2 = 1 + 1 in R, etc. ). Note that an integer n is a central 
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element of R, so nR is a two-sided principal ideal of R. If p 

is a prime number and j > 0, we will say that p is "j-invertible" 

in R if (pr - 1) = 0 for some r in R. If p is 0-invertible 

in R, then p is invertible as a ring element of R. If p is 

j-invertible in R, then it is k-invertible for k > j. Also, p is 

k-invertible in R if char(R) = p m for relatively prime p and m. 

The next theorem gives some simple tests for proving that i£(R) C 3C(S) 

is false in various cases. 

Theorem 2. Let C i£(S), and let a and b be integers such 

that b divides a. If ax + b = 0 for some x in S, then 

ax + b = 0 for some x in R. Therefore, char(R) divides char(S). 

Also, for any prime p and j > 0, p is j-invertible in R if p 

is j-invertible in S. 

Proof: Assume the hypotheses. Using Thm. 1, choose an exact 

embedding functor F : R-Mod (3) •S-Mod for 3 > + card(R). 

For any S-module M, im(b.l^) 3 im(a«l^) because b divides a. 

Conversely, irnQvl^) C imCa-l^) because ax + b = 0 for some x 

in S. In particular, im(b.lp^) = im(a-lp^). Since F is an 

exact embedding, im(b-lR) = im(a-lR) [3: pp. 65-66]. So, 

b e im(a.lR), and therefore ax + b = 0 for some x in R. 

Letting a = 0 and b = char(S), we see that char(S) = 0 in 

R, and so char(R) divides char(S). (By convention, 0 divides 

0 0 
/ 
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If p is j - invertible in S, then ax + b = 0 has a solution in 

S, hence in R, for a = and b = . Therefore, p is 

j - invert ib le in R. This proves Thm. 2. 

More information on ring characteristics is given by: 

Theorem 3. Let R and S have characteristics m and n, respec-

tively. Then <C(R) C £(S) if and only if £(R) C £(S/mS), and 

m divides n and char(S/mS) = m in this case. 

Proof: Assume the hypotheses, and that m Y 0 (the case m = 0 

is trivial). Since £(S/mS) C £(S) by Prop. 2, £(R) C £(S/mS) 

implies £(R) C £(S). Assume £(R) C j£(S), and suppose M is 

an R-module. By Thm. 1, let F : R-Mod (3) •S-Mod be an exact 

embedding for some 3 > + card(R) + card(M). Then F induces an 

embedding homomorphism r(M;R) >-r(F(M);S), as usual. Since 

char (R) = m and F is additive, m - l p ^ = Ffa.l^) = F(0) = 0. There-

fore, s Qx = 0 if Sq e mS and x e F(M). But then we can make F(M) 

into a S/mS-module M Q , retaining the additive structure of F(M) 

and defining (s + mS)x = sx for s e S and x e M Q = F(M). 

Clearly r(MQ;S/mS) is isomorphic to r(F(M);S), and so r(M;R) is 

in £(S/mS). This proves £ (R) C £(S/mS) . 

If d = char(S/mS), clearly d divides m. If C f(S/mS), 

then m divides d by Thm. 2, and so m = d. By Thm. 2, m divides 

n if £ ( R ) c £ ( S ) . 
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Using Thm. 3, we can evaluate the ring predicate £(R) C in 

general if we can evaluate it for rings with the same characteristic. 

After some preparation, we will prove that only rings with zero or 

prime power characteristic need be considered. 

Prop. 9. Let char(R) = char(S) = ab, where a and b are relatively 

prime positive integers. Then j£(R) C £(S) if and only if 

£ ( R / a R ) C £ ( S ) a n d £ ( R / b R ) C £ ( S ) . 

Proof: Assume the hypotheses. Suppose 3£(R) C £(S). Then 

£(R/aR) C *(S) and £(R/bR) C £(S) by Prop. 2. 

Now assume that £(R/aR) C and «C(R/bR) C £(S). Let M 

be an R-module. Make M/aM into an R/aR-module by defining: 

(r + aR) (m + aM) = rm + aM for r e R and m e M, 

and make M/bM into an R/bR-module similarly. Let L = r(M;R), and 

let L & and L^ denote the interval sublattices [aM, M] and [bM, M] 

of L, respectively. We can verify that L and L^ are isomorphic 

to r (M/aM;R/aR) and r(M/bM;R/bR), respectively. Therefore, there 

exist lattice embeddings f:La •rOtpS) and g:L^ •rQ^jS) for 

some S-modules M ^ and M2« Then f x g ^ x ^rCM^S) x r(M2;S) 

is a lattice embedding. Also, i^CM^S) x r(M2;S) •rO^ x M2;S) 

given by i(N^, N 2) = N^ x N 2 is a lattice embedding. 

82 



Let au + bv = 1 for some integers u and v, since a and b 

are relatively prime. For any m £ M, aum G aM and bvm E bM, so 

m = (au + bv)m e aM v bM, proving M = aM v bM. Furthermore, if 

m £ aM A bM, then m = am^ = bm 2 for some m^ and m 2 in M. 

Therefore, am = abm2 = 0 = bam^ = bm, since char(R) = ab. But 

then m = uam + vbm = 0, proving aM A bM = 0. Finally, suppose 

W £ L. Then M' = M 1 A (aM v bM) = (M1 A aM) v (M' A bM), since 

m = aum + bvm £ (Mf A aM) v (Mf A bM) if m G M'. Therefore, aM, 

bM and M' generate a distributive sublattice of L [1: Thm. 12, 

p. 37]. Now define functions as follows: 

h:L >L x given by h(MT) = (M1 v aM, M' v bM). 

ft A 
h :L ax given by h (MT, M") = M* A M M . 

Then h*h(Mf) = (MT v aM) A (Mf v bM) = M f v (aM A bM) = M' for all 

M 1 £ L. Also, if M ' D a M and M" 3 bM, then: 

hh* (Mf, M") = ((M' A M") v aM, (M1 A M") v bM) = (M', M") , 

since aM v (M" A M') = (aM v M1') A M' = M' by modularity and 

aM v M M 3 aM v bM = M, and similarly (M' A M") v bM = M". Since 
* 

h and h preserve order, they are reciprocal lattice isomorphisms 

between L and L & x L^. We have proved that L is in £(S) by 

the embedding : 
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L - ^ L a x f * S t C M ^ S ) x r(M 2;S)-^-^rCM 1 x M 2;S). 

So, 3C(R) C j£(S), completing the proof. 

Prop. 10. Let p be a prime, t > 0 and j = min A for: 

A = {t} U {k: p is k-invertible in R}. 

Then char (R/p^) = p^. If char(R) f 0 and n divides char(R), 

then char(R/nR) = n. 

Proof: Assume the hypotheses. Since p^ e p^R, char(R/p^R) = p d 

k t 
for some d, 0 < d < t. If 0 < k < d, then p isn't in p R. But 

k 

then p (pr - 1) = 0 is false for all r e R, since otherwise 

t t-k k p r = p . So, d < min A. If d = t, then min A < d, so assume 

d < t. Then p*"r = p d for some r in R, so p^Cpr^ — 1) = 0 for 

t-d-1 

TQ = p r. So, p is d-invertible in R, and min A < d. This 

proves that d = min A in all cases. 
Now suppose m = char(R) f 0 and n divides m. Let d = char(R/nR), 

so d divides n. To prove char(R/nR) = n, it suffices to show that 

k k 
p divides n implies p divides d, for any prime p and k > 0. 

k k 
Assuming that p divides n and using n divides m, let m = xp . 

k i 

Now char(R/p R) = p J for some j, 0 < j < k. If j < k, then there 

exists r in R such that p*' = p^, by the above. But then 

xp-' = xp^r^ ^ = mr^ = 0 in R, contradicting m = char(R). Therefore, 
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char (R/p^R) = p
k
. Since n R C p^R because p

k
 divides n, there is 

a ring homomorphism R/nR —>R/p R preserving 1, and so 

&(R/p
k
R)C X(R/nR) by Prop. 2. Therefore, p

k
 divides d by 

Thm. 2, proving that char (R/nR) = n. 

We now prove that the predicate X(R) C £(S) can be evaluated for 

rings with the same nonzero characteristic if it can be evaluated for 

rings with the same prime power characteristic. 

k-. k^ k. 
Theorem 4. Let char(R) = char(S) = n ï 0, and n = p 1 p 2 ... p r 

for distinct primes p^, p 2 , ... , p t and any positive integers 

k. 
k v k 2 , ... , k t . Then £(R) C JC(S) if and only if 3C(R/pi

1R) c 

k. k. k. k 
X (S/pi

1S) and char(R/pi
1R) = char(S/pi

1S) = p i
i for all i < t. 

Proof: Assume the hypotheses. Suppose 3C(R) C I(S), and let 

k k 

p = P i and k = k i for some i, i < t. Then char(R/p R) = p 

by Prop. 10, and £ ( R / p k R ) C £(R) C £(S) by Prop. 2. Therefore, 

£ ( R / p k R ) C £(S/p kS) and char(S/pkS) = p k by Thm. 3. 

Now assume that « R / p ^ ) C £(S/p kS) for p k = p. 1, all i < t. 

k 
To prove ^t(R) d «C(S), use induction on t. If t = 1, n = p^ 

k 

and the result is trivial. Assume t > 1, and let a = p^ and 

k k 
b = n/a = p 2

2 ... p ^ . If R f = R/bR and S' = S/bS, then 

k. 

<C(R/p kR)C JC(S/pkS) implies X C R ' / p V ) C X ( S 7 p k S * ) for p k = p. 1, 

i = 2, 3, ... , t. Since char(R') = char(S') = b by Prop. 10, and b 

has t - 1 prime factors, £(R/bR) = X C R ^ C 3C(S') = 3C(S/bS) C *(S), 
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by the induction hypothesis and Prop. 2. Since ^(R/aR)C £(S) by 

Prop. 2, <3t(R) C JC(S) by Prop. 9. This completes the proof. 

We turn now to consideration of some particular rings. Two types 

of ring are especially important: the homomorphic images Z n = Z / n Z 

of the ring Z of integers, and the unitary subrings of the field 

Q of rationals. 

Let P denote the set of prime numbers, and let P R denote the 

subset of P of primes invertible in R: 

-1 
P R = (p £ P: p exists in R}. 

Given any subset PQ of P, let Q( pg) denote the unitary subring 

-1 

of Q generated by {p : p e PQ}. It is easily proved that the 

unitary subrings of Q are in one-one correspondence with the sub-

sets of P via the reciprocal bijections: 

R — P 0 — * Q ( P 0 ) . 

(That is, P Q = P Q ( P q )
 i £ p

0
 c P> 811(1 R = Q ( p

R )
 i £ Z C R C Q.) 

In the next theorem, we give the basic lattice representability 

relationships between rings of these types, and some other relation-

ships between lattice representability by these special rings and 
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lattice representability for arbitrary rings satisfying certain tests. 

A proposition preparing for the use of Prop. 3 is inserted first. 

Prop. 11. Let M be a flat right R-module, and let 1<M denote 

im(k-lM) for k > 0. If R = Z n for some n > 2, then M is 

faithfully flat if dM ^ M for every proper divisor d of n. 

If R = Q(P q) for some P Q C P, then M is faithfully flat if 

pM f M for every prime p not in PQ. 

Proof: Assume the hypotheses. To prove M is faithful, it 

suffices to show that M ® R R/u f 0 for every proper left ideal 

u of R. (If MQ is nonzero, there is an R-linear monomorphism 

R/u—MQ for some proper or trivial u. Since M is flat, 

M ® R R/u >M ® R M q is a monomorphism. Since M ® R R « M f 0, 

M ® R R/u f 0 for all proper u implies M ® R M Q f- 0 whenever 

MQ F 0.) If R = Z N or R = Q(PQ), then every proper left 

ideal of R equals kR for some k > 1. But: 

M ® R R / k R « M ® R (R®Z Z k ) « ( M ® R R ) ® z Z k « M / m , 

using well-known properties of tensor products. So, it suffices to 

show that kM ^ M if kR is a proper ideal of R. If R = Z n , 

every proper ideal of R equals dR for some proper divisor d of 

n. So, M is faithful if dM / M for such d. If R = Q (P ), 
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then kR is a proper ideal if there exists a prime p not in P^ such 

that p divides k. But then kM C pM, so M is faithful if 

pM f M for every prime p not in PQ. This proves Prop. 11. 

Theorem 5. Suppose n, m > 2 and P^ and a r e subsets of P. 

Then: 

CD £ ( Z n ) C £ ( Z m ) iff n divides m. 

(2) X ( Z n ) C i(Q(P 1)) iff no prime in P divides n. 

(3) £ ( 0 ^ ) ) C £ ( Z n ) is always false. 

(4) Ï C Q f P ^ ) C £CQ(P 2)) iff => P2-

(5) If char (R) = n, then *(R) C X C Z n ) . 

(6) If char(R) = n and n is a prime or a product of distinct 

primes, then Ï(R) = £ ( Z n ) . 

(7) If char(R) = 0, then 3t(R) C £(Q(P R)). 

(8) If R is torsion-free, then j£(R) =3C(Q(PR)). 

(9) If char(R) = 0, then £(R) « X(Q(P R)) iff every prime p 

which is j-invertible in R for some j > 1 is invertible in 

R. 

(10) If some unitary subring of R is a field, then 3C(R) = £ ( Q ) 

if char(R) = 0 , and 3C(R) = £ ( Z ) if char(R) = p, p prime. 
ir 
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Proof: Assume the hypotheses. If char(R) = n, then R has a 

unitary subring isomorphic to Z . If char(R) = 0, then R 

has a unitary subring isomorphic to Q(P D), since integers are 
JK 

central elements of R. Using Prop. 2 and Thm. 2, we can then verify 

parts (1), (3), (4), (5) and (7). If t ( Z C ^ ( Q C P ^ ) , then 

each p in P^ is invertible in Z n by Thm. 2, and so p doesn't 

divide n. This proves half of (2); the converse follows from 

Prop. 2 and the observation that Q(P-L)/nQ(P1) is isomorphic to 

Z n if no prime in P^ divides n. 

Suppose char(R) = n, where n is prime or a product of 

distinct primes, and let M denote R considered as a bimodule 

(left R-module, right Z n-module). Now Z n is a semisimple 

ring [12: p. 71], hence it is a regular ring [12: Thm. 4.11, p. 78]. 

Therefore, M is flat as a right Zn-module [12: Thm. 4.24, p. 86]. 

Given a proper divisor d of n, d is not invertible in R and 

so dM f M. So, M is faithfully flat by Prop. 11. Therefore, 

X ( Z n ) C X(R) by Prop. 3, and then part (6) follows from part (5). 

Suppose R is tors ion-free, and let M denote R considered as 

a bimodule (left R-module, right Q(PR)-module). Now Q(PR) is a 

principal ideal domain, and so is a Prufer ring [12: p. 73]. There-

fore, M is flat as a right Q(PR)-module [12: Thm. 4.23, p. 85]. 

Given p prime not in P R , p is not invertible in R and so pM f M. 

Therefore, M is faithfully flat by Prop. 11, 
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and £(Q(P R)) C-XfR) by Prop. 3. Then part (8) follows from part (7) 

Suppose î£(R) = 3!,(Q(PR)) and p is a j-invertible prime in 

R for some j > 1. Then (pr - 1) = 0 for some r in Q(P R) 

by Thm. 2, and so p is invertible in Q ( p
R ) since pr - 1 must 

equal 0. Therefore, p is invertible in R. Now suppose char(R) = 0 

and every j-invertible prime of R is invertible. Let t denote 

the two-sided ideal of all torsion elements of R ( r e t if 

nr = 0 for some positive integer n ), and let S = R/t. Then S 

is a nontrivial torsion-free ring, and clearly P R C P^. If 

p e Pg, then px = 1 + z for some x in R and z in t. So, 

k(px — 1) = 0 for some k > 0. Let k = p^m, where p and m 

are relatively prime. So, pu + mv = 1 for certain integers u and 

v. Let r = mvx + u in R. Then p^ (pr - 1) = p-* (pmvx + pu - pu - mv) 

vk(px - 1) = 0. So, p is j-invertible in R, and therefore p e P R 

by hypothesis. That is, P R = Pg. But then 

*(Q(P r)) = *(Q(P S)) = X(S) C £(R) C £(Q(P r)), 

by parts (7) and (8) and Prop. 2. This proves part (9). 

Part (10) follows immediately from parts (6) and (8). (If R 

contains a unitary subring which is a field of characteristic zero, 

then R is tors ion-free and Q(P R) = Q.) This proves Thm. 5. 
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For arbitrary n > 2, the author has been unable to establish a 

necessary and sufficient condition on R so that 3C(R) = <îC(Zn). 

However, the final result sheds some light on this problem. 

Prop. 12. Let char(R) = p u for prime p and u > 1. If there 

exist r 1 and r 2 in R and integers i, j and k such that 

1 < i, j, k < u - 1, i + j + k < 2u, r ^ = p 1 , p ^ = 0 

and p kr 2 = 0, then j£(R) Ï <£(Z ). 

P 

Proof: Assume the hypotheses, and suppose aC(R) = <£(Z ). 

P U 

By Thm. 1, there exists an exact embedding F:Z -Mod(^ ) •R-Mod. 

P U 

Let M denote Z as an object of Z -Mod($ „). Since 

P P U 

(p 1 1^-^, P K - 1 M ) is exact, so is ( P ^ ' l p Q ^ , P ^ f C M ) ^
 L e t v 

k k 
be in F(M). Then p r 2v = 0, since p r 2 = 0 in R. So, 

p U~ kv Q = r 2v for some v Q in F(M). But then p ^ v = p U" 1~ ip 1
v = 

u-l-i u-l-i u-k 2u-i-j-k-l j n . ^ 
p R I r2 v = P rlP vQ = P P rl v0 = ' using the 

hypotheses. Therefore, FCp
11
"

1
-!^) = P ^ ' l p Q ^ = But p

1 1
"

1
-^ Ï 0, 

contradicting the embedding property for F. This proves Prop. 12. 

Given Pq C P and Pq f P, one can easily construct a ring R 

with characteristic zero such that P R = P Q but «£(R) T 5 C ( Q ( P q ) ) . 

For example, choose a prime p not in P N and j > 1, and let R 
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denote the quotient of the polynomial ring Q(Pg)[y] divided by the 

principal ideal generated by (py - 1). Then char(R) = 0 , 

P R = P Q and p is j-invertible but not invertible in R. So, 

£ ( R ) f £(Q(P 0)) by Thm. 5(9). 

Another family of counterexamples is related to Prop. 12. Suppose 

? 

n > 2 and n is not square-free, that is, n = p m for some prime 

p and integer m. Let R be the quotient ring of the polynomial 

ring Z n[y] divided by the ideal generated by the polynomials py 

2 

and y - pm. We omit the proof that R is a commutative ring with 

characteristic n and pn elements; each element of R is 

representable by a polynomial uy + v with 0 < u < p and 0 < v < n. 

Assume <£(R) = £ ( Z R ) , and construct an exact embedding F:Z n-Mod(&Q) •R-Mod. Let M equal Z n as an object of 

Z n-Mod(K 0), and note that (pm-lp^, P'lpQ^) i s exact because 

(pm-1^, p-ljyj) is exact. Suppose v e F(M): since pyv = 0 there 

exists VQ in F(M) such that pmVg = yv. But then pmv = y v = 

2 
ypmvQ = 0, since pm = y and py = 0 in R. Then F(pm»l^) = 

pm.lpQ^ = 0 and pm-l^ f 0 leads to contradiction. So, R is a 

ring with characteristic n but î£(R) f Z ( Z n ) . We remark that 

this R is also a counterexample for the converse of Thm. 2. That 

is, the equation ax + b = 0 for integers a and b has a solution 

in R if and only if it has a solution in Z , but £(R) f £( Z ). 
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P r o c . U n i v . of H o u s t o n 

L a t t i c e T h e o r y C o n f . . H o u s t o n 1973 

IDEAL COMPLETIONS 

Roberto Mena 

The purpose of this note is to illustrate how some 

lattice theoretical ideas, which have not been exploited 

in the context of abstract (ring) ideal theory, can be 

put to work. Namely, we will exploit the fact that 

lattices of (ring) ideals are algebraic lattices» 

0. Ideal completions of join-semilattices 

Let P and Q be posets, P £ q * Q is an extension of 

P if the ordering of P is the restriction to P of the 

ordering of q (i.e., for x,yfcP, x é y in P if and only 

if x 4 y in q). P is join-dense in q if every q€. q is 

representable as the join (In Q) of some subset M S P , 

q = s u p g M ; one can then take as M the set of all elements 

p e p such that p £ q , M=Pf\(ql<, An element x c P is called 

compact if the following condition holds true for each 

subset MSrP: 

(0.1) if x ^ s u p p M , then x ^ s u p p M 1 for some finite 

M ' C M. 

A complete lattice L is said to be algebraic if the 

set of compact elements, C(L), of L is join-dense. Note 

Tnis paper is part of a dissertation submitted to the 
University of Houston. The author was supported by the 
Ford Foundation during most of his graduate work. 
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that in any complete lattice L, C(L) Is a join-subsemi-

lattlce containing the least element of L. 

Theorem Q.l, Let P be a join-semilattice with least 

element o. Then there exists a complete extension I(P) 

of P satisfying the following conditions : 

(i) P is join-dense in I(P); 

(ii) the compact elements of I(P) are exactly the 

elements of P, P=C(I(P)). 

Such I(P) is uniquely determined up to a unique P~ 

isomorphism and is called "the" ideal completion of P. 

Note that I(P) is an algebraic lattice. As a consequence 

of condition (i) P is completely meet-faithful in I(P), 

i.e., if p-infpM where pfcP and M S P , then p ^ i n f ^ ^ M . 

So, in particular, if P has e as largest element, then e 

is also the largest element of X(P). Also, as a conse-

quence of condition (ii) P, being finitely join-closed 

in I(P), is finitely join-faithful, i.e., if p=suppM where 

p€ p and M is a finite subset of P, then p=supj^pjM. 

Caution: this does not necessarily hold for infinite M . 

But it does allow us to write x ^ y and x * y for x , y t P 

without any risk of ambiguity. 

The usual proof of this theorem is by construction. 

l £ p is called an ideal if I is a lower end (i.e., if 

y e I and x £ y then x € I) and I is closed under finite 
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joins. In particular, o€l . Let I(P)={l|l is an ideal 

of P } . For p€ P , let C ?» q£P*J- T^en (plci(P) 

and the mapping pi—*(p"] is an embedding of P into I(p). 

One shows I(P) satisfies conditions (i) and (ii) of the 

theorem. For a more detailed exposition, cf. [?). 

As an immediate consequence of Theorem 0.1 we ob-

tain the following corollary: 

Corollary 1 . Each algebraic lattice L is the ideal 

completion of the semilattice C(L), L=I(C(L)). 

Henceforth we will use the term semilattice to mean 

join-semilattice with least element o. 

The aforementioned uniqueness of the ideal completion 

is a special case of the following universal property: 

Theorem 0.2. Let L be a complete lattice, P a sub-

semilattice of L containing the least element. Then the 

following statements are equivalent: 

(i) L=I(P); 

(ii) for each complete lattice F, each finitely join-

preserving mapping V$:P—*F, there is exactly one com-

pletely join-preserving mapping Y : L— > F extending 

Note that finitely join-preserving means that 

V$(xv y)-VJJ(x) v V$(y) and V$(o)=o. The statement of this 

theorem verbatim can be found in Schmidt . 

The proof of (1 )==*>( li ) is again by construction; 
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for x in I(P) one defines "Vf(x )=suppV!((P (\ (x}). Then 

one checks that yf is the unique completely join-preserv-

ing extension of U • Por the proof of (ii)rss^(i) one 

uses the standard universal algebra device for universal 

solutions. 

1 . Ideal completions of si-semigroups 

A semllattice-semlgroup S or, in short, an gl-semi-

group is a (join-) semilattice and at the same time a 

semigroup (In multiplicative notation) subject to the 

following compatibility conditions: 

(i) for any x , y , z e S , x ( y v z ) = x y v x z , 

(y v z ) x = y x v z y ; 

(ii) for any x€S, xo=ox=o. 

(i) and (ii) may be combined in the statement that 

the product xy as a function of one of its factors is 

finitely join-preserving. As a consequence, multipli-

cation with an element, be it on the right or the left, 

is order preserving. 

L.et I(S) be the ideal completion of S. We would like 

to extend the multiplication to I(S) so that it also 

becomes an si-semigroup. 

Note that for x,y€. S, xy=max\x 1 y ' |x 1 € (x\ (\S, 

y'€ (y] H s}=3up x ( s ){x'y'|x» € ( x ^ Q s , y ' e (ylfts}. 
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Thus, if we define 

( 1 . 1 ) x ^ s u p j - ^ ^ x ' y ' l x 1 e ( x T H s , y ' M y l f t s } 

for x,y€ I(s) we indeed obtain an extension of the multi-

plication on S. Let x,y,z€l(s). First, we prove that 

multiplication by an element is order preserving. Assume 

x £ y , let x f £ ( x l H s , z f £ (zl«\3. Then x ' £ (ylf\S, so, 

x ' z ' é y z , thus, x z £ y z . Similarly, z x i z y . Next we show 

that for any M £ S , 

(1.2) if y=s^Pj( S)M, then x y = s u p I ^ g ^ x M , yx=sup ].^ gjMx. 

Clearly, sup^ jgjxM. Conversely, let x ' £ (xlf\S, 

y ! € (y]O S. Then y \ £ s u P x ( s ) M > b u - t ^y compactness there 

exists M 1 C M, finite, such that y ' < s u p . . K ^ s u p M 1 , so 
** X v s ; s 

x ' s u p J I ^ s u p x ' M ' é sup T / c,vXM. The proof of the 
« S 11 o ; 

other half is alike. Now we are ready to prove associa-

tivity. By (1.1) y z = s u p I ( s ) £ y
, z , | y '€ ( y l H s , z.1 £ ( z l C \s ) , 

so, by (1.2), x(yz )=sup^ ̂  j^x(y fz 1 )\y 1 ,z 1 as above^. But 

for x ' M x j O s , x ! ( y , z ' ) = ( x , y , ) z f £ ( x y ) z . So, x ( y » z ' ) £ 

(xy)z, thus x(yz ) < (xy)z. Similarly, ( x y ) z £ x ( y z ) . Fi-

nally, since (1.2) implies that xo=ox=o, it is enough to 

show that x ( y v z ) = x y v x z and (yv z ) x = y x v z x . Clearly, 

x(y v z )£.xy v xz. On the other hand, y v z=sup . ,îy'y 2 ' I I ( S )
w 1 

y 1 »z ' as above}. Thus, by (1.2), x ( y v z l r s u p ^ g ^ x f y ' v z' 

But for x ' £ ( x \ C i S , x 1 ( y 1 V z 1 ) = x ! y ' v x ' z x y v x z . There-

fore, we have that I(S) with the multiplication defined 
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by (1.1) is an sl-seraigroup. Yet we are ready to prove a 

stronger result than (i). By a strong sl-semigroup we 

mean a complete sl-semigroup (completeness refers here to 

the semilattice structure), where multiplication by an 

element is completely join-preserving. We are now going 

to show that I(S) is a strong sl-semigroup: 

(1.3) (Vy* )x=Vy<x, and x(\J y+) = \J xyK, * « «. * 
for x 9y^ 6 I(S). Let y f é V y A and y' fc S. Then, by com-

pactness, there exist y A %,...,y A m such that y ' i 

so, x y x ( y « % v . . .vy < tJ=xy i %w.. V xy c . 

Suppose we have defined a multiplication, say on 

I(S) such that it extends the multiplication on S and 

makes I(S) into a strong sl-semigroup; since x = s u p T . s (xU\S 
u s ; 

and y=:sup I ( sj(y3t\ S, x * y = s u p I ^ s ^ x
, ^ y \ x l 6 (x"](\s}=: 

s u P l ( S ) % r y t \ x * * ( X1 n s , y'fc (ylf\S^=xy. Thus, the 

following theorem is now clear: 

Theorem 1.1. Let S be an sl-semigroup. Then there 

is exactly one way of extending the multiplication to I(S) 

so that 1(8) becomes a strong sl-semigroup. 

The reader may note that the proof of Theorem 1.1 is 

similar to proving Theorem 0.2 for mappings of two var-

iables. Actually, an alternate proof may be based on 

Theorem 0.2. However, this would be no shorter than the 

given one. 
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Note that I(S) is a commutative semigroup if and 

only if S is. Also, if S is a monoid, then its identity 

1 is also the identity of I(S). Note that 1 need not be 

the largest element. 

Putting Theorem 1.1 together with Corollary 1 of 

Theorem 0.1 we get: 

Corollary 1. Let L be a strong sl-semigroup which 

is an algebraic lattice. Assume that C(L) is a subsemi-

group. Then L=I(C(L)). 

The equality above is meant not only as lattices, 

but as sl-semigroups. 

We also obtain the following result corresponding 

to Theorem 0.2: 

Theorem 1.2. Let L be a strong sl-semigroup, S an 

sl-subsemigroup of L«, Then the following statements are 

equivalent: 

(i) ICL(s); 

(ii) for each strong sl-semigroup P, and each sl-

homomorphism l $ : 3 — t h e r e is exactly one strong sl-

homomorphism — e x t e n d i n g MJ . 

By an sl-homomorphlsm we mean, of course, a semi-

group homomorphism that is finitely join-preserving. If 

it is completely join-preserving we call it strong. Por 

the proof of (i )s=>(ii ) 'it is enough to show that the X 
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given by Theorem 0.2 is a semigroup homomorphism. Let 

x , y £ I ( S ) . Then Y ( x y ) = Y ( s u p I ( s ) ( ( (x} C\S) ( (y\ft S) ) = 

s u p p Y ( ( (xl O S) ( (yl(\ S) )=sup F( (xl O S ) (ylTVS) ) = 

(sup FY((x3C\S))(sup p'Y((ylC\S))=
#>r(x)'V(y). The proof 

of (ii)s^^(i) is, again, by the device for universal 

solutions. 

Let us close with some examples. 

First, let us consider an arbitrary complete lattice 

L , and a pre-fixed non-compact element c L. We make L 

a strong sl-semigroup by the following multiplication: 

xy=c when neither x nor y is o and xy=o otherwise. This 

shows that in a given strong sl-semigroup, the compact 

elements need not always be a subsemigroup, even if it 

is algebraic. 

Next, let us consider a complete lattice L . Let L* 

be the set of completely join-preserving mappings of L 

into itself. L*, then, is, as a subset of the complete 
T 

lattice L , at least a poset. Being closed under arbi-

L 

trary joins in L , L* is actually a complete lattice 

Itself. Composition makes it a strong sl-monoid. The 

Cayley representation can be used to show that any strong 

sl-monold L is embeddable in L*. 

Let us now consider a commutative ring R with 

identity 1. Let K be a unitary (associative) algebra 
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over R. L(K) will denote the lattice of R-submodules of 

K . L(K) is an algebraic lattice where C(L(K)) (which we 

will write C(K) for short) is the set of finitely gen-

erated submodules. For M,N fe L(X) let MN be the submodule 

generated by the set of all mn where m * M and n * N . This 

multiplication makes L(K) into a strong sl-monoid (with 

identity R1 K)> where, moreover, C(K) is an sl-submonoid. 

Thus, by Corollary 1 of Theorem 1.1, L(K)=I(C(K))• This 

was actually the kind of example that led to the present 

formal considerations. 

Finally, let D be an integral domain, and K its field 

of quotients. So K is an algebra over D. D is a Prtifer 

domain (cf. [l] ) if and only if 0*(K) (=C(K)\io}) is a 

group. But then C*(K) is a lattice-ordered group (1-

group). Thus, 

Theorem 1.3. Let D be an integral domain with field 

of quotients K. Then D is Prtifer if and only if L(K)=I(G) 

for some Abelian 1-group G with o. 

By an 1-group with o we mean, of course, an 1-group 

with an element o added to it acting both as a zero for 

the semigroup and the semilattice structures. 

By a theorem of Jaffard (cf. £tj ), for every Abelian 

1-group G with o, there exists a Bezout domain D with 

field of quotients K such that L(K)=:I(G) (or, equiva-
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lently C(K)=G, or L(D)=I(G-), where G- denotes the nega-

tive cone of G), Thus, from the sl-monoid point of view, 

there is absolutely no difference between Prtlfer and 

Bezout domains. Similarly, there is no difference be-

tween Dedekind domains and principal ideal domains. In 

particular, one cannot detect principal submodules in 

L(K) (cf. g j ) . 
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P r o c . U n i v . of H o u s t o n 

L a t t i c e T h e o r y C o n f . . H o u s t o n 1973 

On the equational theory of submodule lattices. 

By Christian Herrmann 

Equational problems for modular lattices have been studied 

for a long time, although available results have been 

established only under significant syntactical difficulties 

(see e.g. the papers of RALPH FREESE and ALEIT MITSCHKE 

in this volume), Furthermore, they have been more or less 

partial in nature. For lattices of submodules things become 

surprisingly easy, by simply making use of well known alge-

braic facts. As a by-product algebraic results can be ex-

tended by lattice theoretic methods. §1-3 are based on 

joint work of the author and A.HUHN; the results in §4 

have been partially reported in [6]. 

§1 The two basic lemmas. 

For p prime, n < , k ̂  <*> , let L(p,k,n) be the lattice of 

subgroups of the n-th power of the cyclic group Z k of 

k 
order p or of the quasicyclic p-group Z . If M D is a 

p K 

unitary R-module, then L(M R) denotes the lattice of R-sub-

modules of M R . The lattice varieties generated by all nor-
N 

mal subgroup lattices of groups or subgroup lattices of 

abelian groups or complemented modular lattices will be 

written as J\f or $ or £ . X shall denote the variety 

generated by 
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Lemma 1. L(M R) is in the variety generated by all lattices 

k 

L(p,k,n) where k < u> , p divides the characteristic of R, 

and n is less than or equal to the cardinality of a gene-

rating set of the P-module M , where P is the subring of tr 
R generated by the unit element. 

Corollary 2. St is generated by the finite primary lattices 

L(p,k,n) (p prime, k,n 

Sketch of proof. L(M R) is a sublattice of L(M p) and L(M p) 

is in the variety generated by the submodule lattices of 

its finitely generated submodules. By the Homomorphism 

Theorem these are sublattices of the LfP n Now, if P 
p ' 

k 1 k m n 
is finite and IP|= p x

 1 • . . . - p m
 m , then P = X (Z ^.) 

n m i=1 p i i 
and L (P ) = X L(p.,k. ,n) . If, finally, P is isomorphic 

P i= 1 

to the ring Z of integers, then we use the fact that 

a system of linear diophantine equations is solvable in 

iff it is solvable in all Z ^ and the following con-

struction: To each lattice polynomial w attach a system 

w ( x i , y ^ , X k ) of linear equations in variables 

such that for any elements a n , . . . a , bJ", . . . b m of a 1 n ' 1 ' n 

R-module M r , ... a n > R e ,. . .b^> R,. . ̂ , . . .b^> R) 

holds iff the system w ( a i , b ^ , A k ) is solvable with values 

of the in R. This can be easily done by induction over 

the length of w. Hence, if all R-submodules of M D are 

106 



generated by at most n elements, the inequality w-v is 

valid in L(M R) if and only if, for any choice of con-

stants a. ,b-? in M D , the solvability of wfa. , L ) 
1 1 K 1 1 K 

implies the solvability of , yyL over R . 

Lemma 3. If M R is the J-ultraproduct of the modules 

M. , then the T-ultraproduct of the lattices L(M. ) 
1 R i ^R±

J 

is a sublattice of L ( M R ) , containing all finitely gene-

rated R-submodules. 

The proof is by the classical model theoretic method of 

correspondences between classes: consider the structures 

(M R,L(M R) , (f>) , (j) being the relation a t U on M x L(M R) 

(c.f. MAKKAI, McNULTY [13]). 

Corollary 4. £ is generated by subspace lattices of 

finite projective geometries over prime fields and arbi-

trary nondesarguesian planes. 

§2 Lattices generated by a frame. 

In [ A.HUHN introduced the concept of an n-diamond in 

a lattice: a sequence s.^, ... a n of elements such that 

any n-element subset is independent in the interval 
n n _ 

| T T a - , 2 a. ] . It is called a frame in L, if J T a ^ O j 
l-i=o i=o 1 
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and ^ If L is modular, a frame in the usual sense 

can be derived and vice versa. 

Theorem 5. For n-3 there is a complete list of all sub-

directly irreducible lattices in jf which are generated 

by an n-diamond: 

the rational projective geometry L(Q nQ); 

the lattices L(p,k,n), where p is prime and k ^ oa ; 

the duals of the L (p, <*> ,n) , where p is prime. 

The generating n-diamond is given, up to automorphism, by 

the submodules eQ=(x,...,x), e^=(0,...,0,x,0 , . . . ,0) , 

with x in the i-th entry, for i=l,...n . 

The following notation has been used: For k^ , . . . k n in R 

and variables x n , . . . x not necessarily distinct we have 
1 ' n 3 

( k 1 x 1 , . . . ,k nx n) = { ( k 1 a 1 , . . . | a ^ M and x±=x.=*>
 ai = aj\> 

a submodule of M R
n . 

The proof consists of the following main steps: 

1) Reduction to vft : If the lattice of normal subgroups of 

G contains an n-frame (n-3), then G is abelian. 

2) If L is a sublattice of any L(p,k,n) (k < OÙ ) generated 

by an n-diamond, then L is a £0,... n}-subdirect product 

(in the sense of WILLE [.18]) of lattices L(p^,k^,n), 

each generated by the diamond e n , . . . e . 
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3) By Corollary 2 the lattice F A ( P ) freely generated in 

vft by an n-diamond is a {0,... n^J -subdirect product 

of the lattices L(p,k,n) (p p r i m e , k < o ô ) with genera-

tors e Q , . . . , e n . 

4) Any subdirectly irreducible lattice in vft which is 

generated by an n-diamond is, using the Lemma in 

JONSSON [12], a homomorphic image of the sublattice 

M generated by (i=0,...n) in F A ( p
n ) / © ^ . 

for a suitable ultrafilter on the set 

{p^l p prime, k . Now, if p-^00 in ^ , then 

M= L(Q nQ) is proved with the method of Lemma 3. If, 

on the other hand, k-^ 00 for fixed p , then M is a 

subdirect product of L(p,oo,n) and its dual. But the 

only nontrivial homomorphic image of these lattices is 

L(p,l,n). 

Corollary 6. The subdirectly irreducible lattices in C 

generated by an n-diamond are, for n^3, exactly those 

in the above list and , for n=3, those in the above list 

as well as nondesarguesian planes generated by four 

points. 
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§3 Applications to equational classes 

In order to apply Theorem 5 we need polynomials 

d^(x Q,..,x 3) (i=0,..,3) such that in any modular lattice 

the following holds: For any choice of x , . . t h e 

d^(x Q,..,x 3) (i=0,..,3) are equal to each other or form 

a 3-diamond; if x ,..,x- is a J-diamond, then x.=d.(x 
' o ' ' 3 ' i i v o ' ' 

(i=0,..,3). Such polynomials are defined in A.HUHN C9"J : 
3 

d f x ,..,x-): = TT b.(x ,..,x T) + a (x ,..,x 7) o v o ' ' h ^J^ i v o ' ' 3 o v o ' ' 3 y 

3 
d i ( x Q , . . ,x 3) := T T b. (x , . . ,x-) for i = 1,2 ,3 

j=1>j*i J 

3 3 
where a (x ,..,x 3)=x . IE x a. (x , . . ,x ) = E L X j , 

i=1 3 = 1,3*1 J 

3 
V ( X O , . . , X 3 ) = T T a o ( x o , . . , x 3 ) + a i ( x O , . . , X 3 ) 

3 3 
b i ( x o , . , x 3 ) = a i ( x o , . , x 3 ) . v ( x o , . , x ) + Z x . 2 L - .x k 

3=1 k = 1 , k = 3 

for i=1,2 , 3. 

Now we can define inductively w (x ,..,x,)=d,(x ,.. 
O O o o O «3 

w n + 1
C x o " - ' x 3 ) = { [ W " ' 3 ^ + d o ( x o > " > x 3 ) ' d 2 ( x o ' " ' x 3 

[d 1(x o,..,x 3) +d 2(x o,..,x 3(l + d o ( x o , . . ( x 3 ) } • 

[ d 2 ( x o > . . , x 3 ) + d 3 ( x o , . . , x 3 ) ] . 

3 
Lemma 7. w (e ,. . ,e = (0 ,nx ,x) in any module M„ . 
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Theorem 8. The lattice identity w (x ,.. .x~)=d Tfx 7 n v o' ' 1)J 3 V o' ' V 

is valid in L(M R) if and only if the greatest common divi-

sor of the additive orders of any three weakly independent 

elements of M divides n . 

Theorem 9. Each lattice L(p,k,n) (n^.3, k<£o) is splitting 

in M. . For k > 1 splitting universal disjunctions are "length^3" 

o r d 3 ^ x o ' ' ' , X3^ ' w p k ( X o " ' , x 3 ^ d 3 ( x o ' ' * , x3^ ' w p k " 1 K ' " , x3^ ' 

and for k=1, they are "length^3 and L(p,k,n) not order em-

beddable" or d 3 ( x Q , . . - w (x Q,..,x 3)^ x . We remark that 

L(p,1,n) is neither projective nor finitely projected nor 

bounded epimorphic image of a free lattice. 

Theorem 10. If jC is any class of lattices contained in JpL 

and containing all sublattices of lattices L(V K) where V^ 

is any five dimensional vector space over a field of charac-

teristic zero, then £ cannot be defined by a finite set 

of first order axioms. 

The proof is immediate by the following Lemma 11 and the 

fact that a nontrivial ultraproduct of L p
 f

s is embeddable 

in a L(V K), (see [5]) . 

Lemma 1 1 . There is an identity valid in which does not 

hold, for p+q, in the Arguesian lattice L = [0,a^ vj ̂ b , "Q 

with b«a, [0,a] =L(p,1 ,3) , and [b , 1] =L (q, 1 , 3) -'cf. JONNSON [1 1̂ } . 
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§4 Lattices with four generators. 

In |J J the authors asked for 

irreducible modular lattices 

solution is still distant. 

a complete list of subdirectly 

with four generators; the 

Lemma 12. Any 1 attice listed in Theorem 5 is generated by 

four elements. 

Furthe rmore, with the methods of £ 7] it is possible to con-

struct from a sufficently large partial sublattice of a 

lattice L(p,2,3) a nondesarguesian uniform Hjelmslevplane 

with four generators. 

The systems of generators and a partial converse of the lemma 

stem from the work of GELFAND and PONOMAREV [ 3 ] on linear 

spaces with four subspaces. 

If V is a linear space with subspaces V^, ... V^, then 

, ... V^) is called a quadruple. It is called indecompos-

able , if there is no nontrivial complementary pair A,B of 

subspaces such that AnV^ + BrjV^ for i=1 , ...4 . 

Lemma 13. If L=<v-j , ... v ^ is subdirectly irreducible and 

can be embedded in the subspace lattice of a linear space of 

finite dimension, then there is an indecomposable quadruple 

, ... V^) (with V of finite dimension over an algebraically 

closed field F ) and an isomorphism of L onto the sublattice 

, ... V ^ o f L(Vp) mapping v^ onto V^ for i = 1 , ... 4 . 



Theorem 14. (GELFAND,PONOMAREV [3]) The indecomposable quadruples 

of finite dimensions over an algebraically closed field F are 

given (up to isomorphism, permutation, and duality) by the 

following list: 

1) ( F 2 n , (x n,0 n) , (0 n,x n) , (x n,x n) , (x1 .y11'1 ,'Ay n" 1*x 1)) 

with % F-{0,1], 

2)a) C F 2 n + \ ( x n + \ o n ) > C O
n + U n ) , ( x \ y V n ) , ( x I \ o \ x n ) ) , 

b) ( F 2 n
) ( x

n
) 0

n ) ( ( 0
n
> x

n ) ) ( x
1 , y n - 1

> y
n - 1 , 0 1 ) , ( x n

> x
n ) , 

3) a) ( F 2 n + 1
( ( x

n , 0 n + 1 ) ) ( 0
n , x n + 1 ) ) ( x

n , x n
) 0

1 ) , ( x n
> 0

1
) x

n ) , 

b) (F ,(x ,0 ),(0 ,x ),(0 ,x ,x ,0 ),(x ,x ) , 

4) ( F 2 n + 1 , ( x n , 0 n + 1 ) , ( 0 n , x n , 0 1 ) , ( 0 , x 1 , .. x n _ 1 , x 1 , .. x n , x n ) , 

(x-j , . . x
n , 0 , x .j , . . x^) ) 

Let S(n,4) be the lattice of fig.1 and FM(j|) the modular 

lattcice freely generated by J^ (cf. fig.2 and ) . 

Lemma 15. V-j , ... V^ c. L(Vp) is in cases 1)-4) isomorphic to 

M 4 , S(m,4), L(P mp) where m=2n+1 or m=2n and P the prime 

field of F, respectively. 

Theorem 16. If L is subdirectly irreducible in X, and generated 

by four elements, then L is isomorphic either to a nondes-

arguesian plane or one of the following lattices: 

M 4 , S(m,4), L ( P m
p ) P a prime field, FM(jj) or its dual . 

Sketch of proof. Similarily as in the proof of Theorem 3 we 
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have to study ultraproducts of lattices listed in Lemma 15. 

As there is only a finite number of types, we may assume that 

all components are of the same type. In case 1) there is nothing 

to do; in 2) the untraproduct is again of breadth two, hence 

we may use the result of FREESE[2^J that any subdirectly irre-

ducible breadth two modular lattice with four generetors is 

S(m,4), FM(jj) or its dual. But the sublattice M generated by 

v^, ... v^ in the ultraptoduct can be visualized and decom-

posed in a straightforward manner. 

3) ,4): If m is fixed, then M = L ( P m
p ) follows trivially. 

If m o o , then we consider structures 

( P m
p , L ( P

m
p ) ,v1 , . . . ,v4,<j),I,J,K,K,'(),1I,1J,^I,^J) such that: 

( P m
p , v 1 , is the given quadruple; ( j ) is defined as in 

Lemma 3; 1= , J= £n+1 , ...,2n+lJ in case 3a), J= 

[n+1, ...,2nJ' in cases 3b) and 4), K=0 in cases 3 a) and b) , 

and K=^2n+1^ in cases 4) ; I and J are equipped with the par-

tial poeration of taking the successor; »p is the mapping from 

I onto J with \p (i)=i+n ; K is the mapping from P m*(IuJuK) 

into P such that i< (a,i) is the ith coordinate of a ; 1̂ —1 , 

1j=n+1 , oOj=n , <x>j=2n+1 in case 3a), and cOj = 2n in cases 3b) 

and 4) . 

In any of the cases 3a), 3b), and 4) we have formulas oc^ , . .. oc ̂  

in the first order language of these structurs such that for 

any m and P v i = ̂ xjxeP m a n d 0 ( i ( x ) ] holds for i=1, ..4 . 
T T IR 

Now, in the ultraproduct we have a vector space V-F u u and 

v i=^x|xtV and (x) ̂  is valid as well. 
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Let I .j and be the subalgebras of IuJ generated by U j ' ^ j l 

resp., and = ( 1\jJ) - ( I -jul^) . Define A y = 

£fjféV and (f,i)=0 for all iel^-J , a subspace of V , for 

çtÇl ,*]. or |j-=jo and case 3a,b) ; A^'^f. i'féV and (f,i)=0 for 

all ifcl^uK^ in case 4) . 

Then A ^ , A k y i e l d a direct decomposition of the quadruple 

(V,v.j , ...v 4) into three quadruples ( A ^ v * , ... vj) 

thus a subdirect decomposition of M into three factors. 

But for $" = 1,* or œ and case 3a,b) ... vj together 

with 0 and V form a partial lattice ; hence they generate 

a lattice FM(J^) (cf.£lj). In case 4) from ... vj we 

4 

get a partial lattice J^ (fig.3) which generates a third 

subdirect power of FM(J^) (see[l4]). In any case, M is a 

finite subdirect power of FM(jj) and the only subdirectly 

irreducible epimorphic images of M are M^ and FM(J^) . 

§5 Word problems. 

HUTCHINSON[1CQ proved that in a quasivariety GT of modular 

lattices such that L ( R U 3
R ) ^ C t for a nontrivial ring R 

there is a finitely presented lattice with seven generators 

which has an unsolvable word problem (cf. FREESE[~2^, too). 

The attempts on the word problem for free modular lattices 

FM(n) by S C H 0 T Z E N B E R G E R [ 1 a n d GLUHOVjj] may be regarded 

as unsuccessful (cf. WHITMAN jj 7] and HERRMANN [8]) . The 

following solvability results do, however, hold. Here 
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m7Vt
n denotes the class of all modular 

length ^n and primitive breadth ^m . 

lattices of primitive 

Theorem 17. (FREESE 2 ) In the word problem in four 

generators is solvable. 

Theorem 18. £ For né6 and m^3 or n <oc and m^2 the word 

problem in JVtn is solvable, m 

Theorem 19. In Ç the word problem in four generators is 

solvable. 

Theorem 20. The word problems for the free lattices F(f(n) 

and Fji( n) are solvable. 

Proof. By Theorem 16 any four generated lattice in C is em-

beddable in a complemented modular lattice. Hence a Horn 

formula in four variables is valid in C if and anly if it 

can be derived from the finite set of axioms of complemented 

modular lattices by a calculus of first order logic. On the 

other hand the four variable Horn formulas not valid in C 

are enumerable by Theorem 16, too. 

Theorem 20 is an immediate consequence of Corollaries 2 and 4 

and the fact that £ and SL can be defined by enumerable sets 

of identities. For "C these are just the identities derivable 

from the axioms of a complemented modular lattice; for Jt this 

116 



follows by the result of S C H E I N ( _ 1 t h a t the class of lattices 

erabeddable in subgroup lattices of abelian groups can be 

recursively defined. 
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Modulare Verbânde von Lange n<6 

Christian Herrmann 

1 . Einfuhrung 

Fur einen Verband L wird die Lange 1(L) erklârt 

als das Supremum aller IKI-1 (K Kette in L) und 

die Breite b(L) als das Supremum aller n , fur 

die es eine Abbildung ip des Booleschen Verbandes 

2 n in L gibt, bei der fur beliebige a,be2 n 

genau dann gilt, wenn a<b. 1st L atomistisch und 

modular, so gilt l(L)=b(L) . 1st L modular von 

endlicher Lange und b(L)<2 , so heifte L quasi-

planar. 

In [4] wurde fur einen modularen Verband M=(M,+,.) 

endlicher Lange das Skelett S(M) als die Menge der 

kleinsten Elemente der maximalen atomistischen Inter-

valle von M eingefuhrt. Es wurde gezeigt, daft 

•k + 
S(M) = {x|xeM und x =x} , wobei 

* 
a =H 

rsup{b|bya} fur a<1 , finf{b|b«<a} fiir a>0 + 
a = 

1 fiir a= 1 0 fur a=0 

(a-tb bedeute stets, daft a unterer Nachbar von b 

ist) . 

S(M) ist +Unterhalbverband von M und ein Verband 

( S ( M ) , V , A ) mit x v y - x + y und x A y = ( x - y ) *
+ , mit klein-

stem Element 0 und grotètem Element 1 . Es gilt 

offenbar 1(S(M))<1(M) und b(S(M))<b(M). Das duale 

Skelett S Ô ( M ) = {x*IxeS(M)} ist zu S(M) isomorph 
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mit dem Isomorphismus x •—> x . 

Gemâft dem Hauptsatz von [4] erhàlt man M aus den 

if 

Intervallen M^ = [x,x ] zuriick durch die Konstruk-

tion der S-verklebten Summe mit S=S(M). 

B. JONSSON hat in [8] die modularen Verbande von 

Lange n<4 klassifiziert. Mit dem Begriff des Ske-

letts lâftt sich eine Klassifikation auch fur grôtèere 

n gewinnen: 

Satz 1 : 1st M ein modularer Verband von Lange 

<6 so gilt entweder 

a) S(M) ist quasiplanar oder 

b) S(M) hat einen modularen Unterverband $ m(M) 

von Lange 3 so da/3 die Elemente von S(M)-S m(M) 

gleichzeitig Atome und Koatome von S(M) sind. 

Hat nun M zusâtzlich Breite <3 , so sind aile 

M modulare Verbande von Lange <3 . Daher erhâlt 

man durch Satz 1 eine Reduktion von Einbettungspro-

blemen fur solche Verbande - zu einer Klasse von 

Verbânden ein Verfahren anzugeben, das fur jeden end-

lichen partiellen Verband entscheidet, ob er in einen 

Verband aus t eingebettet werden kann - auf Einbet-

tungsprobleme fiir modulare Verbande von Breite <2 

(die nach [5] losbar sind) bzw. von Lange <3 - hier 

fùhrt die Konstruktion freier projektiver Ebenen zu 

einer Losung. 
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Satz 2: Zu jedem n<6 und m<3 ist das Einbettungs-

problem fur die Klasse M n aller modularen Verbânde r m s 

von Lange <n und Breite <m losbar. 

Die Klasse M n ist stabil im Sinne von BAKER [2], 
m s ' 

also ist jeder Verband in der von M n erzeugten J m s 6 

gleichungsdefinierten Klasse m M
n subdirektes Pro-

dukt von Verbânden aus M n . Daher ist auch fiir M n 

m s m 

das Einbettungsproblem losbar. Da fiir gleichungsdefi-

nierte Klassen nach EVANS [3] das Einbettungsproblem 

zum Wortproblem âquivalent ist, erhalten wir: 

Korollar 3: Zu jedem n<6 und m<3 ist das Wortpro-

blem fiir M n losbar. 

m 

HUTCHINSON [7] hat jedoch bewiesen, daft das Wortpro-

blem fiir eine gleichungsdefinierte Klasse modularer 

Verbânde schon dann unlosbar ist, wenn sie den Ver-

band aller Untermoduln eines Moduls R* (R nichttri-

vialer Ring, I unendlich) enthâlt. 

Der Vollstândigkeit halber konstatieren wir noch, daft 

nach [6] die Klasse M n durch endlich viele Glei-
m 

chungen definiert werden kann (n,m beliebig) und daft 

sie fiir m>3, n>6 unendlich viele obere Nachbarn im 

Verband der gleichungsdefinierten Klassen modularer 

Verbânde hat - namlich die von den Verbânden L^ aus 

Fig. 1 erzeugten. 
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2. Das Skelett eines modularen Verbandes von Lange 

Wir geben zunâchst einige Formeln an, die wir spâter 

zur Bestimmung von Skeletten benôtigen (M sei modular 

von endlicher Lange): 

(1) Sei xeS(M) und aeM. a ist genau dann oberer 

Nâchbar von x in S(M), wenn a minimal ist 

beziiglich der Eigenschaft x<a<x <a 

it 
(2) Fiir jedes xeS(M) gilt sup{y|y>-x in S(M)}<x 

(3) Fiir jede Kette K aus S(M) und jedes xeK 

gilt 1 (K) + 1 ( [x , supty | y>~x in S(M)}]) < 1(M) . 

(4) 1st S(M) modular, so gilt 

1 (S (M) ) + b (S (M) ) < 1 (S (M) ) + b (M) < 1 (M) . 

(5) Wird M von n Elementen erzeugt und ist S(M) 

modular, so wird S(M) von n+l(M) Elementen er-

zeugt. 

Beweis zu (1): Sei a minimal bzgl. der Eigenschaft 

x<a<x*<a* . Fiir jedes yeS(M) mit x<y<a gilt 

x<y<a<x*<y* , also wegen der Minimalitât von a y=a; 

da es ein solches y gibt (y:=a* +), folgt aeS(M) 

und xxa in S(M) . Gilt umgekehrt x-<a in S(M) , so 

a<x* nach [4; Lemma 6.3] und x*-< a* in S^(M) . Fiir 

jedes beM mit x<b<a<x*<b* gilt b*<a* und b*eS^(M), 
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* * * + * + 

also b =a und b^b =a =a . Daher ist a m der 

gewiinschten Weise minimal. 

(2) folgt unmittelbar aus (1). Sei K die Kette 

x /.
<x 1 < . . . <x. =x< . . . <x . Dann ergibt sich (3) aus 

0 1 i n 6 ^ } 

(2) und aus x n < x 1 <... <x. ~x<x*<x? .,<... <x* . 1st v y U i i i+1 n 

schlieftlich S(M) modular, so wâhle man xeS(M) 

so, daft b(M ) maximal ist, und eine maximale Ket-

te K von S(M) mit xeK . Wie in (3) folgt 

l(K)+b(M )^1(M) . Nach [4; Folg. 6.7] gilt jedoch 

b(M)=b(M ) und wegen der Modularitât 1(S(M))=1(K), 
x 

woraus sich (4) sofort ergibt. 

(5) Seien e^, ... ,e die Erzeugenden von M 

und e.eM fur i=l,...,n . Man wâhle nun eine 
JL X • 1 

maximale Kette K von S(M) und betrachte den von 

Kuix-^, . . . ,x n> erzeugten Unterverband S ! von S(M) . 

Wegen 1 (S(M) ) =1 (S ' ) gilt x-ty in S' genau dann, 

wenn es in S(M) gilt. Daher bilden die Verbande M fxeS 1) 
A 

ein monotones S'-verklebtes System von atomistischen 

Unterverbânden von M und es folgt aus Korollar 5.4 

sowie Lemma 7.1 in [4] , daft M 1 = {M IxeS'} ein 

Unterverband von M ist und S C M ' ^ S 1 . Aber 

e,,...,e eM f und deshalb M'=M . 1 n 

Beweis von Satz 1. Sei M ein modularer Verband 

von Lange <6 . S(M) muft genau eine der drei fol-

genden Eigenschaften haben: 
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A: S (M) modular und b(S(M))<2 

B: S (M) modular und b(S(M))>3 

C: S(M) nicht modular. 

Der Beweis des Satzes (und weitere zur Losung der 

Einbettungsprobleme wesentliche Information) ergibt 

sich dann aus den aus A,B,C abgeleiteten Folgerun-

gen: 

Aus A folgt: 

(A1) S(M) ist quasiplanar von Lange <5 und Kette, 

falls 1(S(M))=5. 

(A2) Hat M Breite >3, so ist S(M) planar von 

Lange <3. 

(A3) 1st M endlich erzeugt, so auch S(M). 

(A4) Es gibt eine berechenbare Funktion f so, daft 

fur aile M mit n Erzeugenden I S(M) |<f(n) 

gilt. 

Aus B folgt: 

(B1) S(M) ist modularer atomistischer Verband von 

Lange 3. 

(B2) S(M) ist Unterverband von Mq mit grotëtem 

+ * 

Element 1 =0 

(B3) 1(M)=6 und b (M)=l (M )=3 fur aile xeS(M). 

Die Verbande M , fur die aile MX irreduzible pro-

jektive Ebenen sind und S ( M ) = M Q , S Ô ( M ) = M 1 gilt, 

sind gerade die Verbande von uniformen projektiven 

Hj elmslev-Ebenen im Sinne von A R T M A N N [1] . 
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Aus C folgt: 

(C1) 1(S(M))=3 , S(M) hat einen grôftten modularen 

Unterverband S m ( M ) , 1(S (M))=3, allé 

xeI(M):= S(M)-S ( M ) s i n d zugleich Atome 

und Koatome von S(M). 

(C2) S(M)eM , S (M) ist Unterverband von M^ , y v o m o 
k + k k 

0 =1 und x^O-<x in M fur aile xel(M). 

(C3) 1(M)=6, b(M)-1(M )=3 fur aile x e S . b(M 1=2 
A i l l A 

fiir aile xel (M) . 

(C4) M' = \J{M |xeS (M)} ist Unterverband von M 
x m 

und S(M')"S (M) 

(C5) Jedes aeM-M f ist irreduzibel und von Rang 3; 

zu a gibt es genau ein xel mit aeM 

(C6) Fur xel(M) hat M die Form von Fig. 2 

mit a^eM-M 1. 

(C7) Wird M von n Elementen erzeugt, so hat I(M) 

hochstens n Elemente und wird S (M) von 
m 

2n+6 Elementen erzeugt. 

Ein Beispiel fûr einen Verband von Typ B bzw. C 

findet man in Fig. 3 bzw. 4. 

Nun zum Beweis von (A1) - (C7): 

(A1) und (A2) folgen sofort aus (3), (A3) und (A4) 

aus (5) und der Tatsache, daft die Elementanzahl 

eines quasiplanaren Verbandes aus der Lange und der 
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Erzeugendenanzahl mit einer berechenbaren Funktion 

abgeschâtzt werden kann ([5; Satz 3.1]). 

Zu B. Nach (4) gilt 1(S(M))<3, also b(S(M)) = 

1(S(M)) = 3 und S(M) ist atomistisch. Hieraus 

folgt wegen (2) S(M)c[0,0*]=M ; also gilt fur 

jede maximale Kette 0-<x-<y-<1
 +
 von 

S(M) 1
+
<0*<x*<y*<1*

+
 = 1 und somit 

CMx-<y-i1
+
 = 0*-4x*-< y*4 1 in M . 

Man liest ab, daft 1(M)=6 , 1(M )=3 fur allé 

xeS(M) und b(M)=3 - nach [4; 6.7]. Daft S(M) 

in Mq auch gegen Schnitte abgeschlossen ist, 

folgt aus "Platzmangel" : sind x,yeS(M) un-

vergleichbar, so ist xAy unterer Nachbar von 

x oder y in S(M), also auch in M und somit 
o 

x * y = X A y e S ( M ) . 

Zu C. Da S(M) nicht modular ist, gibt es einen 

zu N 5 isomorphen Unterverband U von S(M) - es 

sei U={u,x,y,z,v}, u<x<y<v und yAz=u, xvz=v . 

U lâftt sich so wâhlen, daft jedes echte Teilin-

tervall von [u,v] (in S(M)) modular ist, daft 

fur aile y',z' mit y<y'<v und z<z'<v gilt 

y'Az>u und yAz'>u und daft xXy in S(M). Es soil 

nun zunâchst gezeigt werden, daft y und z untere 

Nachbarn von v in S(M) sind. 
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Wenn y nicht unterer Nachbar von v ware, ga.be 

es y' mit y-<y'<v. Dann ist y f A z > u , also 

y^yAz und somit yv(y ,Az)=y t . Da [u,y f] modu-

lar ist, folgt y 1>xv(y'A Z )>y ' A Z , also hat man 

einen zu N^ isomorphen Unterverband 

{y'A Z,xv(y 1 A Z),z,y 1,v} in [y'Az,v] im Wider-

spruch zur Annahme liber U . 

Sei nun angenommen, daft z nicht unterer Nachbar 

von v ist. Dann gibt es z ! mit z-<z'<v . Es 

gilt Y A Z * > u . Ware X A Z ' > U , SO folgte aus der 

Modularitât von [ X A Z ' , V ] , daft X A z f < y A z f , und 

man hâtte einen zu N^ isomorphen Unterverband 

{ u , X A Z 1 , Y A Z 1 , Z , Z ' } von [u,z'] im Widerspruch zur 

Annahme iiber U . Also gilt X A Z ' = U . Wegen x-<y 

und z ^ z ' ergibt sich x v ( y A z ' ) = y und 

zv(yAz ,)=z' , d.h. {u,x,yAz',z,y,z',v} bilden 

einen Unterverband von S(M) wie in Fig. 5. 

Seien schlieftlich u^,U2,u^eS(M) mit ' 

u-(u.j<x, u - o ^ y A z ' und sowie v ^ u ^ v ^ v u ^ , 

und sei S
f
 = [ u , v ' ] g ^ . Dann ist M^CxeS') ein 

S ' -verkleb tes System, also S'=S(M
f
) mit M ' = U C f M J

 *
 v J

 xeS' x 

nach [4; 7.1]. Ware 1(S')<2, so wurde v=u^vu2<y 

und v ^ y v u ^ z * , also u^<v<yAz' und somit 

u ^ X A y A z 1 folgen. Daher gilt 1(S')>3 und man 

*kann mit Lemma (3) schlieften, daft u=0 und 

v
f
= v = 1

+
 , also S'=S(M) ist. Mit (1) folgt 
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0<z<z f<v<0 <z <z 1 <v und 0<x<y<v<0 <x <y <v , 

also wegen 1(M)<6 insbesondere u-<x, u-tz und 

v=0 . Hieraus ergibt sich durch die Modularitât von 

Mq der Widerspruch xvz=x+z<v . 

Wir haben somit in S(M) einen zu Ng isomorphen 

Unterverband {u,x,y,z,v} mit u<x<y<v , z-<v , 

yAz = u und xvz=v erhalten. Man folgert u*<x*<y*Av*, 

* * * * * * * * 5 
z v , y AZ =u , x vz =v in S (M) und mit der 

^ ^ ^ ^ ^ 

zu (1) dualen Aussage v >y >x >u >v =v>y>x>u . 

Damit muft 1 ( M ) = 6 , u= CWx-»y-iv=1+ = 0* und 1 (M q) =1 ( M 1 + ) =3 

gelten, also S ( M ) Ç M q von Lange 3 sein. 

Sei nun I(M) definiert als die Menge aller zeS(M) 

zu denen es x,yeS(M) gibt mit 0 <x<y<1 + und 

yAz=0, x v z = 1 + . Dann gilt fur aile zel(M) 

(*) 0 -<z in S (M) und zA *-tz* in M . 

Gâbe es nâmlich z'eS(M) mit 0<z'<z , so wurde 

0*<z'*<z*<1 und 0*<x*<y*<1 , also y*,z* 1 und 

som.it 0 *= (y Az) *= (y • z) * + *= (y • z ) *=y* . z*>0 * folgen 

(nach [4; 6.1 und 6.2]). Wegen CMx , hat man x• z=0 

und x+z=xvz=0*, also auch z-<0* aus der Modularitât 

Aus y 1 , y +z =1 , y .z =y AZ =0 
* * 

folgt ebenso z >-0 . 

Da nach (•*) aile zel in S(M) irreduzibel sind, ist 

S m(M):= S(M)-I(M) ein Unterverband von S(M). S m ( M ) ist 
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nach der Definition von I(M) der groftte modulare 

Unterverband von S(M) . Aus (*) und 1(S(M))=3 

folgt ferner l(S m(M))=3 und wie unter 3, daft 

S (M) Unterverband von M ist . Damit sind zu-

nâchst (C1) und (C2) voll bewiesen. 

Daft M 1 Unterverband von M und S (M)=S(M f) 

ist, ergibt sich aus [4; 5.4 und 7.1] wie im Beweis 

von (5). Fur jede maximale Kette CHx-iy-H in S (M) 

gilt CMx-ty-<1+=0 x W y*A 1 in M und somit 1 (M )=3 

fiir jedes xeS m(M) . 

1st xel(M), so gilt 1(M )<2 nach (*) , insgesamt 
A 

also b(M)=3. Sei nun aeM mit x-<a-lx*. 1st a=z + b 

+ + 

mit a^b+z, so folgt z>a eS(M) , also a =0 , 

a<a +*<0* und a=0*. Mit dem dualen Schluft ergibt 

sich, daft a nur dann reduzibel in M ist, wenn ~k it 

a=0 . 1st a+0 , so gehôrt a zu keinem M^ mit 

y+x: a£M Q und a^M^ sind schon gezeigt und aus 

aeMy fur ein y , das zu x unvergleichbar ist, 

wiirde 0*=1 +=xvy<a , also a=0* folgen. Umgekehrt 

muft aber auch jedes aeM-M' zu einem M mit • x 

xel(M) gehoren, und a+x,x*eM QuM 1 sein. Damit 

sind auch (C3) - (C6) nachgewiesen und es bleibt 

(C7) zu zeigen. 

Dazu sei M von der n-elementigen Menge E erzeugt. 

Fur zel(M) sei E ={a|aeM,z a40*} . Wegen E cE , 
ZJ z |E zl>1 und E z A E z,=0 fur z4z' folgt, daft I(M) 
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hôchstens n Elemente hat. 1st aeE , so zieht fur 
z ' 

jedes beM b<a schon b+a=b+z* und b>a schon 

b«a=b*z nach sich. Daher ist 

E'=EnM'uI(M)u{z |zeI(M)} eine Erzeugendenmenge 

von M' . Da | E ! U 2 n gilt, wird S (M) nach (5) 

von 2n+6 Elementen erzeugt. 

Satz 4: Jeder nach A,B und C môgliche Verband 

tritt als Skelett eines modularen Verban-

des von Lange <6 auf. 

Beweis: Fur den Fall A entnimmt man dies unschwer 

aus der Charakterisierung der quasiplanaren Ver-

bande von Lange <4 in JONSSON [8]. Sei nun S ein 

beliebiger atomistischer modularer Verband von 

Lange 3. Wir setzen M ={x}xS fur x=0,1eS und 

ô ô 
M ={x}xS xeS sonst, wobei S den zu S dualen 

A 

Verband bezeichne. Fur jedes Paar x,y aus S 

mit xsy sei ein Isomorphismus ty gegeben so, 

daft 

4 y o : C ( 0 , y ) , ( 0 , 1 ) ] M * C(y,1),(y,y)] M mit 

^oy ̂ ' z ) = (y > z) f û r aile z>-y 

^ v x:C(x,y),(x,0)] M > [(y,1),(y,x)]„ mit 

x y 
^ y x(x,x)=(y,y) 

ip 1 x:[(x,x) ,(x,0)] M * [(1 ,0) ,(1 ,x) ] M mit 
x 1 

(z ,x) = (1 , z) fiir aile z x 

Fur 0=x 1 A X 0 - < X 1 ,x0-<y=x1 vx 0 und aeM ist \b *\l> (a 
1 2 1* 2 } 1 2 o ryx. r x . o v 

1 1 

genau dann definiert, wenn a=(0,y) bzw. (0,1), und 
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hat dann den Wert (y,1) bzw. (y,y) . 

Ebenso ist fiir x=y ̂  ̂ 2 ^ - j »>r2H>r=>r 1 y Y 2 u n c* a e M
x 

(a) genau dann erklârt, wenn a=(x,x) 
y y i y i x 

bzw. (x,0), und zwar mit dem Wert (1,0) bzw. (1,x). 

Daher liegt eine lokal S-verbundene Summe im Sinne 

von [4; Satz 4.3] vor und man erhalt einen modu-

laren Verband M mit S(M)=S (nach [4; 7.1]). 

1st schlieftlich S ein unter C als Skelett zuge-

lassener Verband, so kann man stets einen modula-

ren atomistischen Verband T finden so, daft ScT , 

der groftte modulare Unterverband S von S Unter-& m 

verband von T ist und fiir allé zeS-S ZH1™ gilt 
m T 6 

und x<z fiir x e S m schon x=0 impliziert. 

Nach Fall B kônnen wir annehmen, daft T=S(L) ist 

fiir einen Verband vom Typ B. Fiir jedes X E S - S / r j m 

sei eine Menge J *0 mit J nL'=0 und J n J =0 
x x x y 

fiir x+y gegeben. Wâhlt man M =L fiir xeS 
x x m 

und M als den Verband mit kleinstem Element x, 
A 

grofttem Element x* und Atommenge (0*}uJ fiir 

xeS-S m, so erhalt man ein monoton S-verklebtes 

System im Sinne von [4]. Die S-verklebte Summe M 

ist dann ein Verband vom Typ C mit S=S(M) und 

S (M)=S . 
m v J m 
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3. Zum Einbettungsproblem 

Unter einem schwachen partiellen Verband verstehen 

wir eine Menge L mit partiellen Operationen + und • , 

auf der es eine Halbordnung i gibt so, daft gilt: 

1st a+b=c, so c=sup(a,b) ; ist a-b=c, so c=inf(a,b). 

Dann gibt es auch eine kleinste solche Halbordnung 

(und diese werden wir stets benutzen). Jeder par-

tielle Verband ist in einen Verband (schwach) ein-

bettbar, namlich in seinen Idealverband. Umgekehrt 

ist jede partielle algebraische Struktur (L,+,«), 

die in einen partiellen Verband (schwach) einbett-

bar ist, selbst ein solcher. Es liegt auf der Hand, 

daft es ein Verfahren gibt, urn fur jedes endliche 

(L, +, • ) zu entscheiden, ob es ein partieller Ver-

band ist, aber auch ob es in einen (modularen) 

Verband von Lange 1 bzw. 2 eingebettet werden kann. 

Lemma 5. Es gibt ein Verfahren, um fiir jeden endli-

chen partiellen Verband L und gegebene Elemente 

aeL und Zahlen zu entscheiden, ob L in einen 

modularen Verband M der Lange 3 eingebettet werden 

kann, so daft a in M den Rang r & hat. 

Beweis. 1st L in ein M einbettbar, so besteht 

L aus zwei disjunkten Teilmengen P und G und ge-

gebenenfalls noch den Elementen 0 und 1 derart, 

daft (P,G,<) eine Inzidenzstruktur ist (d.h. daft 
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die Elemente aus P bzw. G jeweils untereinander un-

vergleichbar sind und es zu a^beP hôchstens ein 

ceG gibt mit a,b<c und zu a^beG hochstens 

ein ceP gibt mit c<a,b) und daft fur a4beP 

bzw. c + deG gilt: ist a+b bzw. c-d in L erklârt, 

so a+beG bzw. c-deP . Man wâhle einfach P als 

die Menge aller Atome von' M , die zu L gehoren, 

und G als die Menge aller in L enthaltenen Ko-

atome von M . 

Sei umgekehrt zu einem partiellen Verband L eine 

Inzidenzstruktur der beschriebenen Art gegeben. 

Dann ist diese Unterstruktur einer projektiven 

Ebene (P',G f,<') - z.B. der von ihr erzeugten 

freien projektiven Ebene (s.G.PICKERT [9]) - d.h. 

insbesondere, daft PcP', GçG ! und fiir aeP und 

beG a< ?b genau dann gilt, wenn a<b . Durch Hinzu-

nahme von grofttem und kleinstem Element entsteht 

aus (P
f
uG

?
,<') ein modularer Verband M , in den 

(L,<) eingebettet ist. Sind a und b aus L 

unvergleichbar und a+b=ceL definiert, so gilt 

c=sup^(a,b) : sind a,beP , so ceGcG' , also 

c=sup M(a,b) ; ist aeP beG und a£b , so 

c=1=sup M(a,b) ; sind a,beG , so ebenfalls 

c=1=sup M(a,b) . Mit der dualen Aussage hinsicht-

l i c h " f o l g t , daft der partielle Verband (L,+,«) 

in den Verband M eingebettet ist. 
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Die folgenden Lemmata geben nun Voraussetzungen an, 

unter denen "lokale" Einbettungen zu "globalen" 

zusammengesetzt werden konnen. Dazu eine Definition: 

Eine Teilmenge X eines partiellen Verbandes 

L=(L, + , • ) heifte +Teilbund von L , falls a+b 

fiir aile a,beX definiert ist und a+beX . 

X mit der eingeschrânkten Operation v=+|X wird 

dann ein Supremum-Halbverband und im Falle endli-

cher Lange auf kanonische Weise ein Verband ( X , V , A ) 

Lemma 6. Sei L=(L,+,*) ein abzâhlbarer partieller 

Verband, S ein +Teilbund von L, S ein .Teilbund 

von L, S und S modulare Verbânde endlicher Lânge, 

S isomorph zu S mit einem Isomorphismus xi—>x so, 

daft x<x und aus x-<y in S y<x folgt. 

Sei L die Vereinigung aller Intervalle [x,x] L (xeS) 

Sei fiir jedes xeS [x,x] L eingebettet in einen mo-

dularen Verband M von Lânge <3 so, daft x das 
x 

kleinste und x das grôftte Element von M ist und 

fur allé x-ty in S gilt l([y,x] M ) = l([y,x] M ) . 
x y 

Sei AsS ein +Teilbund und B^S ein «Teilbund von L . 

Dann ist der partielle Verband (L,+|A,*|B) einbett-

bar in einen modularen Verband M mit b(M)<3 , 

S(M)^S und (wenn K eine beliebige maximale Kette 

von S ist) 1(M)= 

I 1 ( M V ) 5 1 l([y,xJ M ) . 
xeK x-;y in K X 
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Beweis. Wir konnen annehmen, daft allé die 

M (xeS), die Lange 3 haben, abzâhlbare projek-
x 

tive Ebenen sind. Daher sind fur aile x4y aus 

S die Intervalle [y,x] M und [y,x] M entweder 
x y 

beide einelementig, oder beide zweielementig 

oder aber beide abzâhlbare Verbânde von Lânge 2 . 

Also gibt es einen Isomorphismus \J> von [y,x]„ 
Y x 

auf [y,x] M , der die Elemente von L fest lâftt. 
y 

Die Verbânde M (xeS) mit den Abbildungen 
X 

\pyx (x ,yeS , x-<y) bilden ein lokal-S-verbundenes 

System im Sinne von [4; Abschnitt 4] : 

Sei xAy-<x,y-<xvy in S , aeM to f A . a und 7 i J J 9 XAy 9 x(xAy) 

^y(xAy) a definiert. Dann gilt x,y<a<xAy, also 

xAy<x<xvy<a<xAy , also a=xvy oder a=xAy ; 

in jedem Falle ist aber aeL , also 

^x(xAy) a = ^y(xAy) ^ = a ; wegen x v y < a < x j 

sind auch ^ ( x v y ) x a = ^ ( x v y ) y
 a = a definiert. 

Sei nun M die lokal-S-verbundene Summe des Systems 

mit den kanonischen Einbettungen TT :M —»M . Da 
X X 

aile M modular von Breite <3 sind, ist auch 

M modular von Breite <3 [4; 3.2 und 3.3] und es 

liegt die Aussage liber die Lânge auf der Hand. 

S(M)=S folgt nach [4; 7.1], da aile M atomistisch X 

sind und die Verklebung monoton ist. 

Da fur aile aeL ÏÏx a = 7ry ip a gilt, ist 

= U { j xeS} | L eine injektive Abbildung von L 

in M . Zum Nachweis, daft $ mit den partiellen 
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Operationen +|A und *|B vertrâglich ist, zei-

gen wir: 

a) ip(x) - ^(y) fur aile x<y in S 

b) ty(xvy) = x̂+ijjy fiir aile x,yeS 

c) iKa+y) = ipa+ipy fiir aeA, x, yeS und x<a<x,x<y 

d) ip(a+b) = ipa+ b fiir aile a,beA 

Dabei benutzen wir, daft ty|[x,x] nach Konstruktion 

ein Homomorphismus ist. Der Beweis ist im wesent-

lichen derselbe wie bei Satz 5.1-5.2 in [4], es 

mùssen jedoch aile Voraussetzungen des Lemmas aus-

geniitzt werden. 

Zu a) 1st x-<y in S, s.o gilt y^x, also y. 

Die Aussage fur x<y folgt nun durch Induktion 

Zu b) G i l t xAy-<x,y-<xvy in S , so f o l g t x , y < x A y , also 

xvy<xAy und somit b) in diesem Fall. Die Be-

hauptung ergibt sich nun mit Hilfe der Modu-

laritât durch Induktion iiber die Lange von 

[ x A y , x v y ] in S . 

Zu c) Fiir x=y folgt wegen x<a<x sofort 

ip(a+y) =\{ja+ipy. Fur x<y schlieftt man induktiv: 

es gibt zeS mit x<z-(y und es gilt 

ip(â+y) =\Jj (a+z+y) =\l>(a+z) +\py=\}ja+^z + i}jy-ipa+iljy , 

da a+z definiert ist, a<x<z und somit 

a+z,ye[z,z] . 

Zu d) 1st ae[x,x], be[y,y], so gilt 

xvy=x+y<a+b<x+y<xvy und somit 

ip (a+b) =ip (a+b + x+y) = \Jj(a+x+y) +.jfj (b+x+y) 
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Lemma 7. Sei L=(L,+,•) ein endlicher partieller 

Verband, seien S,SçL mit 1(S)=1(S)=3 , x«—»x 

ein Isomorphismus von (S,+|S,-|S) auf (S,+|S,«|S) 

mit x<x . Sei u kleinstes und v grôfttes Ele-

ment von S und v=u . Sei L= U (Cx,x] L|xeS} . 

Fur jedes xeS sei [x,xl L eingebettet in einen 

modularen Verband von Lange 3 so, daft x das 

kleinste und x das groftte Element von M x ist. 

Maximale Ketten in S(S) seien maximal in M (M ) v J u v
 v J 

und es gelte fur aile x-<y aus S, daft 

l([y,x] M ) = l([y,x] M ) = 2 ist. Sei A ein 
x y 

+Teilbund von L so, daft gilt: zu aeA gibt es 

xeSnA mit x<a<x; sind x<y in AnS, so gibt es 

eine maximale Kette . . .-< x^=y in S mit x^eA 

fur i=l,...k . Sei B ein «Teilbund mit den ent-

sprechenden Eigenschaften hinsichtlich S. 

S(S) seien abgeschlossene Teilmengen des mit der 

Relativstruktur in M u ( M v ) versehenen partiellen 

Verbandes (AuB)nM u ((AuB)nM^) . Dann ist der 

partielle Verband (AuB,+|A,•|B) einbettbar in 

einen modularen Verband der Lange 6 und Breite 3 

mit atomistischem Skelett von Lânge 3. 

Beweis. M u kann man insbesondere so wâhlen, daft 

das Erzeugnis von Eu,u] A l Jg die freie projektive 

Ebene iiber der Inzidenzstruktur von ist. 

Dann ist auch das Erzeugnis <S> von S in M u 

freie projektive Ebene iiber der Inzidenzs truktur von S. 
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Wâhlt man M^ analog, so ist das Erzeugnis <S> 

von S in M„ isomorph zu <S> mit einem Iso-v 
»» _ ?» 

morphismus der fortsetzt. 

Sei L f der partielle Verband AuBuM uM r u v 

Dann gilt fiir aile x>-u aus <S>, daft 

[x,x] L, = [x,x]^ u Bu[x,v] M ist - auch als par-
u 

tielle Verbande. Somit ist [x,x]^ f in einen modu-

laren Verband der Lange 3 einbettbar so, daft x 

das kleinste und x das groftte Element von M 

ist. Entsprechendes gilt fiir y-<v und es konnen 

aile M (xe<S>) als abzâhlbare projektive Ebenen 
A 

gewâhlt werden. Nach Lemma 6 erhâlt man eine lokal 

<S>-verklebte Summe M und eine injektive Abbil-

dung ip von L' in M, die auf (AuB, + | A , • | B) ein 

Homomorphismus ist. Es gilt 1(M)=6, b(M)=3 und 

S(M)=<S> . 

Lemma 8. Sei L ein endlicher partieller Verband 

seien S,ScL und X H > X ein Isomorphismus von S 

auf S mit x<x. S habe ein kleinstes Element u 

und ein grofttes Element v und es sei u=v. Sei 

ferner IçS und 0+J cL-(SuS) so, daft gilt: 

L-J = L/{ Cx,x]jJ xg-S-I} ; der partielle Verband L-J 

ist in einen modularen Verband M' von Lange 6 

und Breite 3 mit modularem Skelett S(M')3S-I ein 

bettbar, wobei zAvAz in M' fiir aile zel ; jedes 

aeJ ist irreduzibel in L und es gibt genau ein 
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zel ; mit z-<a-<z in L . Dann kann L in einen 

modularen Verband M von Lânge 6 und Breite 3 

mit nichtmodularem Skelett eingebettet werden. 

Beweis. M* kann insbesondere wie im Beweis von 

Lemma 7 konstruiert werden. Sei S der von S-.I 
m 

in M^ erzeugte Unterverband. Nach Voraussetzung 

gilt L-Jc\j{[x,x ]|xeS m> und, da die projektive 

Ebene M f frei erzeugt ist, fur allé xeS und o 6 > m 

zel , daft aus x<z schon x=0 folgt. Bestimmt 

man nun M wie im Beweis von Satz 4 mit 

J z = {a|aeJ und a>z} fiir zel , so ist der partielle 

Verband L in M eingebettet. 

Beweis von Satz 2. Vermôge Lemma 5 ist fiir jeden 

endlichen partiellen Verband entscheidbar, ob er 

die Voraussetzungen von Lemma 6 bzw. 7 erfiillt. 

Daher erhalten wir eine Lôsung des Einbettungspro-

blems fiir Verbânde vom Typ B oder A von Breite <3, 

indem wir eine berechenbare Funktion g angeben, 

derart, daft jeder partielle Verband P, der in einen 

solchen Verband M einbettbar ist, so in einen par-

tiellen Verband L mit |L|<g(|P|) und ausgezeich-

neten Teilmengen S,S,A,B und ggf. K eingebettet 

werden kann, daft die Voraussetzungen von Lemma 6 

bzw. 7 erfiillt sind und, wenn a+b in P definiert 

ist a und b zu A , wenn a*b in P definiert ist, 

a und b zu B gehoren. 
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Diese Funktion ist: 

wobei f die nach (A4) existierende berechenbare 

Funktion ist, fur die I S(M) |<f(|P|) gilt, falls 

M vom Typ A ist und von P erzeugt wird - was wir 

selbstverstandlich hier voraussetzen konnen. 

1st nun M vom Typ A , so setzen wir 
r 

P f =PuS(M)uS (M) und es sei A der von P f in M 

erzeugte +Teilbund, B der von P' in M erzeug 

te «Teilbund, L=AuB mit der Relativstruktur in 

M , S=S(M) , S=S 6(M) und K eine beliebige 

maximale Kette in S(M) . 

1st M jedoch vom Typ B , so wâhle man S Q Ç S ( M ) 

so, daft P = U { C x , x * ] p ! x e S o } und I S Q I < | P I . 

Aus S Q erhalt man S.j£S(M) so, daft aus xly in 

SQ XAy in Mq folgt, durch Hinzunahme von hochstens 

2 

2 • ( I SJ + 2) Elementen von S(M) . Sei A der von 

PuS^ erzeugte +Teilbund von M , B der von P u ( s p * 

erzeugte «Teilbund von M . Sei L f=AuB und S2 

so gewahlt, daft S 1çS 2gS(M) , |S 2I<|L
,| und 

L'c\J{Cx,x*] L,|xeS 2> . Sei schlieftlich L=L'uS 2uS 
S = < S 2 > L ' n M M

 u n d § = S * • 
o L nM * 

o 

Insbesondere ist also fur einen endlichen partiel-

len Verband L entscheidbar, ob er die Voraussetzun 

gen von Lemma 8 erfullt und wir konnen die Lôsung 
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des Einbettungsproblems fiir Verbande vom Typ C 

hierauf zuruckfiihren, da jeder in einen solchen 

Verband einbettbare partielle Verband P in ein L 

mit hôchstens 3|P|*4 Elementen eingebettet wer-

den kann. 

Es sei bemerkt, daft aile hier verwendeten Algo-

rithmen in den Bereich der primitiv rekursiven 

Funktionen gehôren. 

4. Abschlieftende Bemerkungen. 

Bei dem Versuch, die hier entwickelten Methoden 

fiir die Losung von Einbettungsproblemen fiir wei-

tere Klassen modularer Verbande endlicher Lange 

nutzbar zu machen, stellen sich folgende Problème: 

Problem 1. 1st das Einbettungsproblem fur projek-

tive Geometrien von fester Dimension n losbar? 

Problem 2. 1st das Skelett eines endlich erzeug-

ten modularen Verbandes stets endlich erzeugt? 

Problem 3. 1st das Einbettungsproblem fiir die 

Klasse aller Skelette von modularen Verbânden 

fester Lange n lôsbar? 

Unschwer lassen sich jedoch die folgenden kleinen 

Ergebnisse herleiten: 
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(I) Das Einbettungsproblem fiir pappus'sche projek-

tive Geometrien fester Dimension n ist losbar: 

1st P in den Untervektorraumverband von 

- K kommutativer Kôrper - eingebettet und P 

endlich, so kann K immer schon als endliche Er-

weiterung seines Primkorpers gewahlt werden. Daher 

kann man die einbettbaren P aufzâhlen, andererseits 

aber, da die Klasse der pappus'schen projektiven 

Geometrien von Dimension n endlich axiomatisier-

bar ist, ist auch die Menge der nicht einbettbaren 

P aufzâhlbar. 

(II) Im Beweis von Satz 2 ist insbesondere ent-

halten, daft das Einbettungsproblem fiir modulare 

Verbande von Breite <3 mit endlichem Skelett 

losbar ist. 

(III) Kombiniert man die Methoden von (I) und (II) 

so erhâlt man eine Lôsung des Einbettungsproblems 

fiir pappus'sche Verbande mit endlichem Skelett; 

dabei ist ein pappus'scher Verband M ein modularer 

Verband endlicher Lange so, daft M pappus'sche 

(môglicherweise reduzible) projektive Geometrie 

ist fiir jedes xeS(M). 

(IV) Wie im Falle von Verbânden vom Typ B erhalt 

man eine Losung des Einbettungsproblems fiir "pro-

jektive Hjelmslevebenen n-ter Stufe", d,h, fiir 

folgende induktiv definierte Klassen $ von Ver-
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bânden: If • bestehe nur aus dem einelementigen 

Verband; genau dann, wenn S (M) £ n 

M projektive Ebene ist fur jedes xtS(M) und 

<5 
S(M) und S (M) Intervalle in M sind. 
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Fig. 1 

Lange n+1 

[a,b] projektive 

Ebene iiber GF(p) 

Fig. 3 



Fig.2 

Fig.4 

Fig.5 
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L a t t i c e T h e o r y C o n f . . H o u s t o n 1973 

The Filter Space of a Lattice: Its Role in General Topology 

B. Banaschewski 

Introduction 

A filter in a lattice L is a non-void subset F of L for 

which XA y e L whenever x,y e L, and y e L whenever y > x 

for some x e L. On the set of all filters F in L one has a 

naturally arising topology whose basis consists of the sets 

{F | a e F} where a e L; the resulting topological space is 

the filter space $L of the lattice L. 

If X is a topological space, with t o p o l o g y & X , we let 

$X = $JOX, the filter space of X3X viewed as a lattice (with 

set inclusion as its partial order). Each x e X determines 

the filter J5(x) = {U | x e U eflX} of its open neighbourhoods, 

and thus one has the map X $X given by x*»j3(x). This map 

is continuous for any X, an embedding for exactly the T 0 -

spaces X,and in general its image is the reflection of X in 

the subcategory, of the category of all topological spaces 

and continuous maps, given by the T 0 - s p a c e s . In the following 

all spaces are taken to be T 0 . 

The fundamental significance of the embedding X $X 

lies in the fact that a large class of extensions E of a 

given space X can be realized within $>X, i.e. are such that 

the embedding X $X can be lifted to an embedding E $X. 

The E in question are exactly the strict extensions E 3 X, 

i.e. those in which the open sets 
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U* = u w (Xn W = U, W e «DE) 

form a basis forJ3E. This notion goes back to Stone [9]; a 

detailed account of the rôle of in this context is given 

in Banaschewski [1]. The main point about strict extensions 

of spaces is that many interesting types of extensions 

(e.g. compactifications, and various of their analogues) are 

of that kind and hence can be described as, or have actually 

been explicitly introduced as, suitable subspaces of $X. 

The use of $X in the study of extensions of X has a long 

history (not to be recalled here); of more recent origin is 

the result that certain onto maps E X can also be realized 

within $X, in such a way that E is embedded into $X and the 

given E •*> X corresponds to the operation of taking limits of 

filter bases in X (Iliadis [7], Banaschewski [2]). This is 

of importance in the context of projective covers, first 

introduced for compact and locally compact Hausdorff spaces 

in Gleason [6]. 

The purpose of this note is to give an account of the 

most recent use of the filter spaces $X. The notions we are 

concerned with in this case are the following: 

(i) Essential extensions: An extension E 2 X of a 

space X is called essential iff any continuous map f : E Y 

for which f | X is an embedding is itself an embedding. 

(ii) Injectivity: A space X is called injective (in 

the category of all T 0-spaces and their continuous maps, 
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with respect to embeddings) iff any continuous map f: Y X 

lifts to any extension Z 2 Y. 

(iii) Injective hulls: An essential injective extension 

of a space X is called an injective hull of X. 

These concepts have been investigated, and indeed play 

an important rôle, in various areas of mathematics. As far 

as T 0-spaces are concerned, a systematic discussion of 

injectivity was first given in Scott [8] where the relation-

ship between a particular class of lattices is analyzed in 

preparation for certain constructions of model theoretic 

import. Here, we are specifically concerned with the question 

of the existence of injective hulls and the properties of 

essential extensions, for which the filter spaces $X turn 

out to provide a natural setting. 

The proofs of the results discussed below are given 

in Banaschewski [3]. 

1. The Ad.iointness between Lattices and Spaces. 

The correspondence L *** from lattices to spaces is 

readily seen to be the object part of a cofunctor (= contra-

variant functor) from the c a t e g o r y o f all lattices and 

lattice homomorphisms to the category : For a lattice 

homomorphism h: L M, the map <&h: which takes each 

filter F c m to the filter h ^ C F ) is continuous, and the 

correspondance h $h is functorial. Similarly, one has 

the "lattice of open sets" cofunctor J3 : where 0 X , 
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as before, is the topology of X and £3f : £JY + J3X is again 

given, for any continuous f: X Y, by taking inverse images. 

$ and<0 are adjoint on the right, and the embedding X -»• $X 

introduced above is actually one of the adjunctions. Incident-

ally, this pair of cofunctors, or some variants of it, provide 

the starting point for certain studies of duality in Hofmann-

Keimel [5]. For the present purpose, the following properties 

of<0 and $ are worth noting: 

Lemma 1. A continuous map f is an embedding iff J5f is 

onto, and a lattice homomorphism h is onto iff $h is an 

embedding. 

By basic categorical principles, an immediate consequence 

of this is: 

Corollary 1. If a lattice L is projective then its 

filter space $L is injective. 

Now, for lattices one has the following facts: The two-

element chain 2 is projective, and every lattice is a homorphic 

image of a coproduct of two-element chains. It follows from 

this that the functor $ produces the corresponding "dual facts". 

Moreover, the filter space 4>2 is actually a familiar object, 

namely the Sierpinski space S, i.e. the two-point space with 

three open sets: 

points: 0,1 ; open sets: 0, {1}, {0,1}. 

Thus one has : 
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Corollary 2. S is injective, and every space X can be 

embedded into a power of S. 

This is well-known (Cech [4], p.485), and can easily 

enough be proved directly. In the present context it seemed 

of interest to see how this can be viewed as the counterpart 

of the rôle of the two-chain among lattices, via the adjoint-

ness between and 

As far as the spaces are concerned, one can actually 

show much more than the above Corollary 1, but this requires 

reasoning about specifics rather than general principles. 

It turns out that the map from the power set of a lattice L 

to given by generation of filters is continuous if the 

former is viewed as a power of S; since products and retracts 

of injectives are injective this proves 

Lemma 2. The filter space of any lattice is injective. 

2. Essential Extensions 

Topologies are, of course, complete lattices, and for 

any continuous map f: X + Y the associated lattice homomor-

phism «Of: <0Y -> J3X does indeed respect some completeness 

properties - it preserves arbitrary joins. Thus, the lattice-

of-open-sets functor can also be considered as going from 

into the category 'fyC&L of complete lattices and their join-

complete homomorphisms. This viewpoint provides a duality 

for essential embeddings: 
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Lemma 3. A continuous map f: X Y in S7 is an essential 

embedding iff f: Y X is a coessential onto homomorphism 

in 

Here, coessential onto for a homomorphism h: L + M is 

to mean that h(K) = M iff K = L, for any sublattice K C L in 

the sense of i.e. closed with respect to arbitrary 

joins in L. 

A subspace of the filter space of a lattice L will 

be called separating iff its members distinguish the elements 

of L, i.e. for any two distinct elements of L there is a 

filter in the subspace containing one of them but not the 

other. 

Lemma 4. For separating subspaces L and P 2 £ of a 

space P is an essential extension of E iff each F e P 

is the join of all G Ç F in E. 

Putting these lemmas together, one then obtains, with a 

few additional arguments: 

Proposition 1. For any extension E 2 X of a space X, 

the following conditions are equivalent: 

(1) E is essential. 

(2) E is strict, and every trace filter of E on X is 

a join of filters<P(x). 

(3) E is superstrict. 

Here, the trace filters of E on X are the filters 

(Un X | U eJ3(y)> for the points y e E - X, and superstrict 
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means that any ring of sets Q «DE which yields a basis for 

OX by restriction to X is itself a basis forjDE. 

As a fairly direct consequence one obtains: 

Proposition 2. Every space X has a largest essential 

extension which is unique up to a unique homeomorphism over 

X, namely the strict extension XX given by the subspace of 

3>X consisting of all joins of filters J9(x). 

3. Injective Hulls. 

It is clear that the extension XX of a space X is the 

only possible candidate for being an injective hull of X, 

and thus X has an injective hull iff XX is injective. More 

generally, we first consider subspaces E of filter spaces 

for an arbitrary lattice L, which are separating and 

closed with respect to taking joins of filters. Any such 

determines a kernel operator k: E for which kF is the 

largest G e E contained in F. For such E and k one then has: 

Lemma 5. The following conditions are equivalent; 

(1) E is injective. 

(2) The kernel operator k is continuous. 

(3) The kernel operator k preserves updirected joins. 

(4) For each F e E, F « V k ( F a ) (a e F) where 

F a = (x | x £ a}. 

A topological criterion for the injectivity of XX which 

can be derived from this reads as follows: 
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Proposition 3. A space X has an injective hull iff, 

for any U e«Ô(x) (x c X) there exists a V e«D(x) such that 

U n rp V + 0, where T0 V = O T{z}(z e V). 

This immediately leads to an "internal" characterization 

of injectivity itself, and can be used to obtain various 

further results. For instance: A T^-space has an injective 

hull iff it is discrete, and any open subspace of a space 

which has an injective hull also has an injective hull. 

4. Continuous Lattices. 

We conclude with some of the results in Scott [8] for 

which the present setting provides new proofs. 

With any partially ordered set S one can associate the 

space TS whose points are the elements of S and whose 

topology, the d-open end topology, consists of the ends 

U C s (i.e. x ^ y and y e U implies x e U) for which 

V A e U implies A n U 0 for any (up)directed subset A Ç S. 

On the other hand, any space X determines a partially 

ordered set PX whose elements are the points of X and whose 

partial order is such that x ^ y iff <0(x)Ç £J (y). 

Finally, a partially ordered set S is called a continuous 

lattice iff S is complete and for any x e X, x - V ( A U | U e £ D ( x ) } 

where iD = £îTS. 

Proposition 4. (Scott) For any continuous lattice S, 

TS is an injective space and S = PTS; similarly, for any 
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injective space X, PX is a continuous lattice and X = TPX. 

It should be added to this that the correspondances 

S TS and X-^> PX between continuous lattices and injective 

spaces can be extended to a category isomorphism, where the 

maps between the spaces are the continuous maps and the maps 

between the lattices are those which preserve updirected 

joins. 

References 

1. B. Banaschewski, Extensions of topological spaces, 
Can. Math. Bull. 7 (1964), 1-22. 

2. , Projective covers in categories of 
topological spaces and topological algebras. Pro-
ceedings of the Kanpur Topological Conference 1968. 
Academia, Prague 1971, 63-91. 

3. , Essential extensions of T o-spaces. 
(To appear). 

V 

4. E . Cech, Topological spaces. Revised edition by Z. 
Frollk and M. Katetov. Czechoslovak Academy of 
Sciences, Prague, and John Wiley and Sons, London-
New York-Sidney 1966. 

5. K. H. Hofmann and K. Keimel, A general character 
theory for partially ordered sets and lattices. 
A.M.S. Memoir No. 122, A.M.S., Providence, Rhode 
Island, 1972. 

6. A. M. Gleason, Projective topological spaces. 111. J. 
Math. 2 (1958), 482-489. 

7. S. Iliadis, Absolutes of Hausdorff spaces. Sov. Math. 
Dokl. 4 (1963), 295-298. 

8. D . S. Scott, Continuous lattices. Lecture Notes in 
Mathematics No. 274, Springer, Berlin-Heidelberg-
New York 1972. 

9. M. H. Stone, Applications of the theory of Boolean 
rings to general topology. Trans. A.M.S. 41 (1937), 
374-481. 

155 



P r o c . U n i v . of H o u s t o n 

L a t t i c e T h e o r y C o n f . . H o u s t o n 1973 

Disjointness conditions in free products of 

distributive lattices: An application of Ramsay's theorem. 

Harry Lakser< 1 ) 

1. Introduction. Let L be a lattice. We say that L satisfies the 

finite disjointness condition if, given any a € L and any subset S £ L 

such that a ^ S and such that x A y « a for any distinct x, y € S , 

it then follows that S is finite. Similarly we say that L satisfies 

the countable disjointness condition if the above hypotheses imply that 

S is countable (rather than actually finite) . It has long been known 

that any free Boolean algebra satisfies the countable disjointness 

condition -- see e.g. R . Sikorski [6], §20, Example L ) , on page 72, 

where the countable disjointness condition is called the cr-chain condition. 

R. Balbes [1] proved that any free distributive lattice satisfies the finite 

disjointness condition. 

In this paper we extend these results to free products in the 

category & of distributive lattices and in the category whose objects 

are bounded distributive lattices and whose morphisms preserve the bounds. 

Clearly any free distributive lattice is the free product in & of a 

family of one-element lattices, and it is well-known (see [3]) that the 

(1) This research was supported by the National Research Council of Canada. 
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free B o o l e a n a l g e b r a , r e g a r d e d as a b o u n d e d l a t t i c e , is the free p r o d u c t 

in a family of f o u r - e l e m e n t l a t t i c e s . W e then g e n e r a l i z e the a b o v e 

d i s j o i n t n e s s c o n d i t i o n s by p r o v i n g the f o l l o w i n g t h e o r e m . 

L e t ( L i | i € I) b e a family of l a t t i c e s in & ( r e s p . in $ b ) 

a n d , for e a c h i € I , let L ^ s a t i s f y the f i n i t e d i s j o i n t n e s s c o n d i t i o n . 

T h e n the free p r o d u c t of the family (L^ | i € I) iii & ( r e s p . in JS>b> 

s a t i s f i e s the f i n i t e d i s j o i n t n e s s c o n d i t i o n ( r e s p . the c o u n t a b l e d i s j o i n t n e s s 

c o n d i t i o n ) . 

I should like to t h a n k G . G r a t z e r and A . H a j n a l for m a n y h e l p f u l 

c o n v e r s a t i o n s r e g a r d i n g the s u b j e c t m a t t e r of this p a p e r . 

2 . T h e w o r d p r o b l e m . T o a c c o m p l i s h o u r a i m w e shall need a c h a r a c t e r i z a t i o n 

of c o m p a r a b i l i t y of e l e m e n t s in the f r e e p r o d u c t in & and in • L e t 

(L^ | i. 6 I) b e a f a m i l y of l a t t i c e s in S or and let L b e the 

f r e e p r o d u c t of ( L i | i € I) in the a p p r o p r i a t e c a t e g o r y . W e take the 

p o i n t of v i e w that each L ^ is a s u b l a t t i c e of L ; it f o l l o w s that in S 

O L . » 0 w h e n e v e r i ^ j , and that in & h h i (1 L ^ » { 0 , l ) w h e n e v e r 

i ^ j . A s u s u a l , 0 d e n o t e s the l o w e r b o u n d in & and 1 d e n o t e s the 
b 

u p p e r b o u n d . W e d e n o t e by P the s u b s e t (J( | i € I) of L . N o t e 

t h a t , in & , if x , y € P and x S y then' there is a u n i q u e i € I such 

that x , y € L t a n d , c l e a r l y , x <; y in that L ± . S i m i l a r l y , in J®b , if 

x , y € P and x £ y then e i t h e r x « 0 or y » 1 or t h e r e is a u n i q u e 

i € I such that x , y € L . (and x £ y in that L . ) . 
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S i n c e L is d i s t r i b u t i v e , each a G L can be e x p r e s s e d in the 

f o r m \/(/\X j X € J) w h e r e J is f i n i t e and n o n e m p t y , and each X € J 

(2) 

is a f i n i t e n o n e m p t y s u b s e t of P . W e can a l w a y s c h o o s e e a c h s u c h X 

to b e r e d u c e d t that i s , to s a t i s f y | x 0 L | ^ 1 for all i G I , w h e r e 

|A | d e n o t e s the c a r d i n a l i t y of the set A . In a d d i t i o n , the t e r m 

" r e d u c e d " w i l l b e u s e d only for n o n e m p t y s e t s . N o t e that in if X 

is r e d u c e d and 0 6 X then X = { o } , and s i m i l a r l y for 1 . 

A n y e l e m e n t of L can a l s o b e e x p r e s s e d in the d u a l f o r m 

/\(\/X | X € J) , J f i n i t e and e a c h X r e d u c e d . 

L E M M A 1 . L e t X , Y be r e d u c e d s u b s e t s of P . In e i t h e r c a t e g o r y & or 

/\X £ \/Y if and only if t h e r e are e l e m e n t s x € X and y € Y s u c h that 

x £ y . 

P r o o f . A s s u m e that for e a c h ( x , y ) Ç X X y ^ x £ y . O b s e r v e f i r s t that 

0 ^ X , 1 ^ Y if w e are in . In the r e m a i n d e r of the p r o o f it is 

i r r e l e v a n t w h e t h e r w e are in & or in JSL . L e t 
D 

• - { I € I | |x n L J = 1 , |Y n L I | = 0 } 

12 - { I € 1 I |x n L J - 0 , |Y n L I - 1 } 

13 - { I f 1 I |x n L J '- |Y n L J - 1 } 

(2) T h i s n o t a t i o n is p r e f e r a b l e for o u r p u r p o s e to the e q u i v a l e n t d o u b l e 

i n d e x n o t a t i o n 

1
 nl 1 n? 1 "lr • 

a « ( x x A . . . A x 1
A ) V (x£ A ... A x 2

z ) V • • • V (x£ A . . . A x ^ ) , x } € P . 
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L e t 2 be the t w o - e l e m e n t l a t t i c e f O , l ] w i t h 0 < 1 . For (N/ 

each i € I w e d e f i n e a h o m o m o r p h i s m cp̂  : L ^ + 2 u s i n g the P r i m e I d e a l 

T h e o r e m : 

If i € I - ( I x U I 2 U I 3 ) cpi is a r b i t r a r y . 

If i € I 1 , let x t p i = 1 w h e r e X fl L ± = [x] . (This is c l e a r l y 

p o s s i b l e in & by taking the c o n s t a n t L ^ 2 . In ^ w e n o t e that 

x ^ 0 and so b y the P r i m e I d e a l T h e o r e m w e c a n take 0 cp^ = 0 , x cp^ = 1 , 

a n d , p e r f o r c e , 1 cpi = 1.) 

S i m i l a r l y , if i € I 2 , l e t y cp̂ ^ - 0 w h e r e Y fl L ^ - ( y ) . 

If i € I 3 , let X 0 L ± « { x } , Y fl L ± » fy) . S i n c e x £ y , 

w e can d e f i n e cp^ so that x cp^ = 1 , y c P ^ = 0 . 

T h e f a m i l y of h o m o m o r p h i s m s (cp^ | i € I) then e x t e n d s to a 

h o m o m o r p h i s m cp: L £ such that xcp •» 1 for all x € X and yep 83 0 for 

a l l y € Y . T h u s ( N / Y > 9 « 0 < 1 » ( A X ) c p , s h o w i n g t h a t A X ^ V Y , 

and p r o v i n g the l e m m a . 

A m o r e c o m p l e t e t r e a t m e n t o f the w o r d p r o b l e m c a n b e found in 

G r a t z e r and L a k s e r [ 3 ] . 

3 . T h e f i n i t e d i s j o i n t n e s s c o n d i t i o n in & . If F is any set w e d e n o t e 

the d i a g o n a l { ( y , y ) € F X r ) by ujp . W e f i r s t r e c a l l the c l a s s i c r e s u l t 

of R a m s a y in the f o l l o w i n g form: 

L E M M A 2 ( R a m s a y ' s T h e o r e m ) . L e t F be an i n f i n i t e set and let R , , . . . t R 
~ , i' ' i 

b e b i n a r y s y m m e t r i c r e l a t i o n s on T such that U ) r U R , U ••• LI R « r X r . 
i 1 n 
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T h e n there is a s u b s e t r ' £ T and an i £ n such that 

(i) for any d i s t i n c t a, $ € r ' , (a, P> € R ; 

and 

(ii) r ' is i n f i n i t e . 

For our p u r p o s e s the f o l l o w i n g a l t e r n a t i v e c h a r a c t e r i z a t i o n of the 

f i n i t e and c o u n t a b l e d i s j o i n t n e s s c o n d i t i o n s is p r e f e r a b l e . 

L E M M A 3 . A d i s t r i b u t i v e l a t t i c e L s a t i s f i e s the f i n i t e ( r e s p . c o u n t a b l e ) 

d i s j o i n t n e s s c o n d i t i o n if and o n l y if the f o l l o w i n g c o n d i t i o n h o l d s . 

G i v e n any a € L and any s u b s e t S £ L such that x ^ a for 

all x € S and such t h a t x A y £ a for d i s t i n c t x , y € S , it then 

f o l l o w s t h a t S is f i n i t e ( r e s p . c o u n t a b l e ) . 

P r o o f . T h e p r o o f f o l l o w s i m m e d i a t e l y by o b s e r v i n g t h a t if S s a t i s f i e s 

the c o n d i t i o n of the l e m m a t h e n 

(i) x V a > a for all x € S ; 

(ii) If x , y € S are d i s t i n c t t h e n 

(x V a) A (y V a ) = (x A y ) V a = a (and so the c o r r e s p o n d e n c e x + x V a 

f r o m S to {x V a | x Ç S } is o n e -to -one) . 

T H E O R E M 1 . L e t (L | i € I) b e a f a m i l y of l a t t i c e s i n & s a t i s f y i n g 

the f i n i t e d i s j o i n t n e s s c o n d i t i o n . T h e n . L , the free p r o d u c t in & , a l s o 

s a t i s f i e s the f i n i t e d i s j o i n t n e s s c o n d i t i o n . 
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p r o o f . L e t a € L and let (s | Y € O b e any family of e l e m e n t s of 

L such that 

(A) for each Y € P , s ^ ^ a ; 

and 

(B) if a , 3 € r are d i s t i n c t then s A s D £ a . 
' a p 

W e show t h a t F m u s t b e f i n i t e b y p r o v i n g a s e q u e n c e of 

s t a t e m e n t s i n v o l v i n g s u c c e s s i v e l y w e a k e r h y p o t h e s e s a b o u t the f o r m of the 

s and of a . 
Y 

S t a t e m e n t 1 . If a € P and s P for a l l Y € T then T is f i n i t e . 

L e t a € L ^ for s o m e i 6 I and let a , 3 be d i s t i n c t e l e m e n t s 

of Y • Then, since s A s Q £ a , it f o l l o w s that s , s . € L . by 
. a $ ' a' 8 i 

L e m m a 1 and c o n d i t i o n ( A ) . T h u s { s ^ | \ Ç f ] £ L . also and p e r f o r c e 

r is f i n i t e s i n c e L ^ s a t i s f i e s the f i n i t e d i s j o i n t n e s s c o n d i t i o n . 

S t a t e m e n t 2 . If a € P and s = for each Y € T w h e r e X is a 
Y Y Y 

r e d u c e d s u b s e t of P then T is f i n i t e . 

For e a c h Y € T and each x € X ^ , x £ a by L e m m a 1 and ( A ) . 

L e t a € . By (B) if a , 0 € T are d i s t i n c t A x ^ A A x ^ £ a . 

T h e r e are thus x € X ^ fl L i ; y 6 X ^ fl L . such that x A y £ a . B u t 

|X H L | S I for all Y € T . T h u s w e h a v e a f a m i l y (x | Y € D such 
Y J- Y 

that x ^ € L i for a l l y € T , such t h a t x ^ if a for a l l Y € T and 

such that x ^ A x R £ a for d i s t i n c t a , 0 . T h u s , by S t a t e m e n t 1 , F is 

f i n i t e . 
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Statement 3. If s^ = A X ^ , X ^ reduced, for each Y , and if a = V y , 

Y reduced, then T is finite. 

Let Y = {y^, y^} . Then for each j £ p and each Y € F 

/\ x ^ y • > b y (A)• Define binary relations R , - -•, R on T by setting 
Y J P 

(a, 8> £ R. if and only if A x A A x „ . Since, for any distinct 
j a P j 

a , 0 £ F , A x ^ A A X p < VY it follows, by Lemma 1, that 

u i p U R , U ••• U R = r X r . Now let j <; p and let r ' be a subset of F r i p 

such that (a, p) € R^ for any two distinct a, 3 € f' . Then, by 

Statement 2, T ' is finite. Thus, by Ramsay's Theorem, T is finite. 

Statement 4 . If a - X/Y, A ... A \/Y where each Y . is a reduced subset 
1 r J 

of P and if, for each Y € T , s^ • V ( A X I x ^ f o r s o m e f i n i t e 

nonempty set J^ of reduced subsets of P , then T is finite. 

Since for each Y € F s^ £ a then for each Y € P there is an 

X ^ € J^ and a j(y) * r such that A x ^ If . For each j £ r let 

let Fj = {Y € T j j(Y) * j) . Then if a , 0 are distinct elements of F^ , 

/\X A A X f i £ s a A s D £ a ^ V Y , . But, by definition of F. , 
' a p a p j ' J ^ 

/ \ x y
 i f v € F^ . Thus, by Statement 3, F^ is finite. It thus 

follows that r - r x U ••• U r is finite^proving Statement 4 . 

Since each element of L can be expressed in both forms 

V ( A x | X € J) and A ( V Y | Y € K) , Statement 4 is the statement of the 

theorem. 
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4 . The countable disjointness condition in . The situations in & j b 

and in JŜ  differ essentially because of the following fact. In & , if 

x , y € L^ , if z € L^ , and if x A y <. z then i = j . In ^ , 

however, it is possible that i ^ j ; if z 1 then x A y s z if and 

only if x A y = 0 . It is precisely this difference which yields the 

countable disjointness condition only, rather than finite disjointness. 

We will also need a more delicate analysis since the argument establishing 

Statement 2 of Theorem 1 does not apply in precisely because of this 

difference. 

THEOREM 2. Let (L t | i € I) be a family of lattices in & satisfying 

the finite disjointness condition. Then L , the free product in J&b , 

satisfies the countable disjointness condition. 

Proof. Let a € L and let (s^ | Y € D be any family of elements of 

L such that 

and 

(A) for each y T , s £ a; 

(B) if oi, p € r are distinct then s A s Q £ a . 

a p 

We show that T is countable by proving a sequence of statements 

involving successively weaker hypotheses about the form of the s^ and 

of a . 

Statement 1. If a € P and s^, € P for all Y € T then T is finite 
Y 
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Let a € L^ . Since, for each Y € T , s^ ^ a and if a ^ B 

then s A s n ^ a , it follows that there is a j € I such that s € L . 
a 3 ' Y J 

for all Y € F . If i = j the finiteness of F follows as in 

Statement 1 of Theorem 1. If i / j then s A s n - 0 for distinct ot, P . J a 5 7 

Since s^ ^ a implies s^ ^ 0 , the finiteness of T follows in this 

case from the fact that L^ satisfies the finite disjointness property. 

Statement 2. Let n ^ 1 be an integer, let a € P , and let s = /\X 

for each Y € F , where X ^ is a reduced subset of P with |x^| = n . 

Then F is finite. 

The case n = 1 is Statement 1. We prove Statement 2 by induction 

on n . Let n > 1 . First fix Yrt € T and let X = fx,, •••, x } . 
0 Yq I n 

Then there are distinct i(l), i(n) in I such that x, € L . N for 
k i(k) 

each k £ n . For each k £ n let F, - {y € F I X ^ fi L. „ N i . Now 
k 1 Y i(k) ^ 

r i U " " U F n " r ; S i n c e A X
y £ a > A X y £ a if Y + Y Q , and 

/ \ X A / \ x £ a it follows that, for each y, X fl L. v ^ 0 for some k . 
Yq Y Y I v. K/ • 

It suffices thus to prove that each F^ is finite. For each Y € let 

be defined by setting X ^ fl « {x y} and let = X y — L i ( k ) . 

Then = n - 1 and = U {x^} . We define two symmetric binary 

relations R and S on T^ . We set (a, p> € R if and only if 

x^ A Xp £ a and we set (a, P> € S if and only if a î 8 and (a, p) $ R -

Then {a, € S only if A * a . Since n > 1 and = n - 1 

if Y € F^ we conclude by Ramsay's Theorem and the induction hypothesis 

that r R is finite for each k . Thus T is finite. 
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Statement 3. Let n ^ 1 . For each Y € T let s = A x where X 
Y Y Y 

is reduced and |x^| « n . Let a = \ / Y , Y reduced. Then T is finite. 

The proof of this statement is a word-for-word duplicate of the 

proof of Statement 3 of Theorem 1. 

Statement 4 . Let a = X/Y.. A ••• A V Y where each Y . is a reduced 
I r J 

subset of P . For each Y € P let J^ be a finite nonempty set of 

reduced subsets of P such that s^ = V ( A x I X € J ) . Then T is 
Y 1 Y 

countable. 

For each Y € T there is an X ^ € J^ and a j(y) ^ r such that 

/\X,Y ^ V Y J ( Y ) " F O R E A C H ^ R A N D N ^ 1 L E T 

I\ = (Y € r | j(Y) « j and |x | « n) . 
jn Y 

If ot, 0 are distinct elements of R then / \ x ^ A A X G <; sq A s^ <: a <: V Y 

By definition of R , |X y| « n if Y € T j n and /\Xy £ V Y J . Thus 

r. is finite by Statement 3. But P = U C P . I n H , M j « r ) ; 
jn jn 

thus r is countable, proving Statement 4 . 

Statement 4 is the statement of the Theorem. 

To complete this section we present an example of a countable 

family of finite lattices whose free product in does not satisfy the 

finite disjointness condition. Let the index set I be the set of positive 

integers and, for each i € I , let the lattice L± be the four-element 

lattice in the diagram. 
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1 Let L be the free product in & 
b 

|b. 
i 

Let S = (s ] . Then S is infinite 

0 < s for each n , and if m ^ n , say 

of the L 

for each n > 1 let s = a, A a . A...Aa , A b 
n 1 I n — 1 n 

n 

i € I . Let s, = b, and 
1 

y 

0 n 

L 
i 

m < n , then s A s = 0 , since s ^ b 
m n m m 

and s £ a 
n m 

Thus L does not satisfy the finite disjointness condition. Of course, L 

is just the underlying lattice of the free Boolean algebra generated by a 

countable set, and this example shows that it need not satisfy the finite 

disjointness condition. 

5- Epilogue. For any infinite cardinal m one can of course define the 

m-disjointness condition: a lattice L is said to satisfy the m-disjointness 

condition if, given any a € L and any S £ L such that a $ S and 

x A y = a for distinct x , y € S , it then follows that |s| < m . An 

obvious question is the following: 

In either category £ gr_ is the m-disjointness condition 

preserved under free products for m > ^ ? 

The methods presented in sections 3 and 4 cannot be applied to 

answer this question in the affirmative because, as first observed by 
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Sierpinski [5], the obvious extension of Ramsay's Theorem to infinite 

cardinals does not hold. 

There are Ramsay-type theorems for infinite cardinals; see 

Erdos 5Hajnal, Rado [2] for a rather complete survey. Of particular interest 

to our problem is the following result of Kurepa [4], under the assumption 

of the generalized continuum hypothesis : 

Let oi be any ordinal. Let T be a set such that 

|r| ^ ^ + 2 ' a t l d * e t Rl> R n b e b i n a r y symmetric relations on T 

such that ujr U R. U • • • U R = T x r . Then there is a subset r ' c T 
i l n 

and an i £ n such that |r'| ^ + a n d a n y d i s t i n c t P € T' 

<00 6) € R. . i 

Using this result in place of Ramsay's Theorem the methods of 

sections 3 and 4 carry over to prove: 

Let (L. I i € I) be a family of lattices in $ or & 

satisfying the N , ..-disjointness condition , a ^ 0 . Then the free 
Qfti ' -

product in fi or S b satisfies the N + 2 -disjointness condition. 

Unfortunately I have been unable to construct an example to show 

that ^ + 2
 c a n n o t b e replaced by N + 1 . This is thus to date an open 

problem. 
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THE ORDER-SUM IN CLASSES OF PARTIALLY ORDERED ALGEBRAS 

by 

Margret Hoft * 

The order-sum of partially ordered algebras will be defined as the 

solution of a universal problem and as a generalization of the coproduct. We 

show that the order-sum exists without restriction in quasi-primitive classes, 

and we investigate some of the properties of the order-sum. 

1. Order-sum and lexicographic sum 

We will consider classes (L of partially ordered algebras. The algebras 

under consideration will be partial algebras (A»(f.j).j j) of arbitrary fini-

tary or infinitary type A = (K-).- T . I.e., the index-sets K. may be finite or 
i iei K i 

infinite, and f. is a mapping of a subset of A into A. If the domain of f. 
Ki 

is all of A , for each iel, we may call ( A , ( f . j ) a complete algebra of 

type A. A partially ordered algebra is a triple (A,(f^)^ j, where 

(A,(f.)• T) is a partial algebra and (A, a partially ordered set. The alge-I I £ 1 

braic structure may be empty, 1=0. In that case, the partially ordered algebra 

is nothing but a partially ordered set, and any class of partially ordered sets 

is an example of a class of partially ordered algebras. Since, on the other 

hand, the partial order may be total disorder, we can also interpret any class 

of partial algebras as a class of partially ordered algebras. 

* This paper is a summary of part I of the author's Doctoral dissertation àt 

the University of Houston. The complete text will be published in Crelle's 

Journal. The author expresses her gratitude to Prof. J. Schmidt, her super-

visor for many helpful suggestions. 



We do not require any kind of compatibility postulates to hold between 

the algebraic structure and the partial order. But there is no ban on compa-

tibility conditions either. 

A homomorphism of the partially ordered algebra ( A » ( f . ) - , 4 ) into 

the partially ordered algebra ( B » ( g i ) i e I » - of the same type A - is a 

mapping < } > : A -—that is order-preserving: 

(1.1) if x * y , then cf>(x) ̂  <j>(y) , 

for all elements x,yeA, and at the same time an algebraic homomorphism: 

(1.2) (f.fajKeK.)) = g.,- U ( a K ) \ ), 

for each index i d , for each sequence ( a ^ ^ i n t h f i d Q m a i n Q f ^ ( m a k i n g 

the left side exist - it is understood that the right side will then exist 

too). 

In the sequel, A will always be a class of partially ordered algebras 

of the same type A-

Suppose T is a partially ordered set, and assume that a partially 

ordered family of partially ordered algebras P^e <£is given. A family of 

homomorphisms >P, where P is also supposed to be in Â. , is called 

a T-family provided that the following condition holds true for all indices 

s,t eT: 

(1.3) if s < t (in T), then <f> (x) ̂  <j>t(y) (in P), 

for all elements x e P s , yeP^.. The order-sum is now simply a universal 

T-family. I.e., the T-family ^ « ' P j . — i s an order-sum if, for each algebra 

Qetfi and each T-family — > Q > there is a unique homomorphism îjr.P—»Q 

such that ijj<>c|>t = for all indices teT. 
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In the special case where the index-set T is totally unordered, the 

order-sum coincides with the coproduct. Clearly, the order-sum (if it exists) 

will be unique up to unique isomorphism, and in that sense it is justified 

to talk about "the" order-sum. 

Assume now that Si is the class of all -partially ordered algebras of 

a given type A = (K^ )-j j » a n d assume further that the type A is without 

constants, i.e. K. f 0 for each i d . The algebraic lexicographic sum of 

partially ordered algebras that we are going to define, is a combination of 

the partial direct sum of partial algebras (cf. Schmidt [9]) and of the well-

known lexicographic sum of partially ordered sets (cf. Birkhoff [2], Schmidt 

[7],[8]). 

For a partially ordered family of partially ordered algebras P^, we 

define L j P^ to be the set of all ordered pairs (t,x), where teT and xeP^., 

endowed with the lexicographie order : 

(1.4) (s,x) ^ (t,y) iff s < t or s = t and x « y 

The natural mappings i^P-j. ^ ^ t ' ^ ^ n e d ^ ^ t ^ = a r e obviously 

order-preserving, even order- embeddings. On L P t , there exists now the 

"weakest" algebraic structure (f^ )^ Gj such that the natural mappings i't 

become algebraic homomorphisms, i.e. the final structure for the mappings i^. 

(cf. Bourbaki[3], Schmidt [9]). 

L P t with the lexicographic order < and this algebraic structure - and 

with the natural mappings i t - will be called the algebraic lexicographic 

sum of the partially ordered algebras P^ (teT). 

If T and all algebras P. are totally disordered, then the algebraic 
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lexicographic sum coincides with with the partial direct sum of the algebras 

P^ (cf. Schmidt [9]). On the other hand, if I = 0, our algebraic lexico-

graphic sum is nothing but the ordinary lexicographic sum of partially ordered 

sets P^. 

Theorem 1.1 In the class (ft of all partially ordered algebras of 

type A, the algebraic lexicographic sum i^P-j. is the order-sum. 

In the class of partially ordered topological spaces, a topological 

lexicographic sum can be defined in a similar manner as for partially ordered 

algebras: It will be a combination of the topological sum of the spaces and 

the lexicographic sum of the partially ordered sets. An exact analogue of 

Theorem 1.1 holds true. 

Unfortunately, we had to restrict ourselves so far to the case where 

A is a type without constants. This is to a good extend due to 

Theorem 1.2 Suppose ^ P j . — > P is a T-family of order-preserving 

mappings. Assume that for each teT, there is an a^eP^. such that ^ ( a ^ ) = a, 

where a is independent of t. Suppose s < t in T. Then max ^ S ( P $ ) = 

min ^ t ( P t ) = a. 

Corollary 1. max ^ S ( P S ) = a if s is not maximal in T, min^ (P ) = a 

if s is not minimal in T. ^ S ( P S ) collapses into (a) if s is not extremal in 

T (neither maximal nor minimal). 

Corollary 2. If s is not maximal in T, and min P g = a g , then again 

^ s ( P s ) collapses into (a). 

Let us show which damage Theorem 1.2 does to the order-sum in the 

presence of constants: Let tfi, be the class of partially ordered algebras 
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with least and greatest elements, the latter explicitly listed among the 

constants. I.e., the homomorphisms in Si are supposed to preserve both least 

and greatest elements. We now assume that T contains a pair of comparable 

elements s < t . Consider a T-family ^ P j . — > P . Since s is not maximal, ^ S ( P S ) 

consists of the least element of P only, according to Corollary 2. On the 

other hand, it contains the greatest element of P. So the latter has to 

coincide with the least element, thus squeezing P down to one element. In 

such a class, the old coproduct will be the only meaningful order-sum. If 

we give up insisting on the preservation of extrema, however, other order-sums 

become highly meaningful. 

Theorem 1.3 Let the class fl be closed under taking subalgebras. Let 

4> t:P t—>P be an order-sum in Si . Then the union (Jim generates P. 

2. The algebraic lexicographic sum with constants 

We want to extend the notion of the algebraic lexicographic sum to the 

general case where the type A may now contain some constants, K. = 0 for some 

iel. This should be done in such a way that Theorem 1.1 remains true. The 

construction is similar to the construction of the partial direct sum of 

algebras (cf. Schmidt [9]), but somewhat more involved in the presence of 

partial orders. 

Throwing out the indices iel standing for constants, we arrive at the 

reduced index-domain I* = { i | K. ^ 0 land the corresponding reduced type A * ̂ 

without constants. The partially oredered algebras P^ are turned into parti-

ally ordered algebras P^* of type A*. We can consider the algebraic lexico-

graphic sum of the latter, L P Î . In order to arrive at an appropriate facto-



rization, we consider quasi-orders f of L P £ which are admissible in the sense 

that the following three conditions hold: 

(i) is a congruence relation of the algebra L P * ; 

(ii) p contains the lexicographic order of L P * ; 

(iii) p takes care of the constants insofar as (s,fsl- ) p ( t , ^ ) , for each 

s,teT and for each ielvl*. 

It is easy to see that there is a least admissible quasi-order, say a. 

The contraction L P * / A ^ A - " ' is then a partially ordered algebra of type A*, 

and the natural projection p : L P £ — ^ L P £ is a homomorphism between 

them. One makes L P £ /a A a""' an algebra of type A by introducing the 

constants g. = p(t,f^^), for each i e I , this definition is independent of t. 

The partially ordered algebra L P* /a a a""* so enriched may be called the 

algebraic lexicographic sum of the partially ordered algebras P^ (teT) and 

again be denoted by L P ^ . Clearly, in the case without constants, I* = I, 

A* = A, P* = nothing has happened at all. We introduce the mappings 

= ^ ^ t ' w'1lc'r| a r e homomorphisms by construction (in particu-

lar, they preserve the constants). 

Theorem 2.1 In the class of all partially ordered algebras of type A , 

the algebraic lexicographic sum j^P-j. ^ L P ^ is the order-sum. 

Note that the homomorphisms need no longer be one-one since p can 

not be expected to be one-one. Indeed, a and aAO~"' may become the universal 

relation in Pf, forcing L P t to collapse into one element. 
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3. A qeneral existence theorem 

The order-sum in a class ft of partially ordered algebras can be build 

up in two steps. The first one of these has been described in sections 1 and 

2. In qeneral, of course, the algebraic lexicographic sum of alqebras P^ 

will not be in (fl . So the second step will consist in associating with the 

latter a universal object in H . 

Theorem 3.1 Consider a T-family of homomorphisms ^ P ^ ^P in (Si and 

the associated homomorphism L P ^— ^ P (which exists accordinq to 

Theorem 2.1). Then the followinq two conditions are eouivalent: 

(i) ^ t : P t ^ o r c ' e r ~ s u m ^ » 

(ii) c}) : L P t — > P is the universal homomorphism of L_P t into a ft.-algebra. 

As in universal alqebra without partial order, a quasi-primitive 

class of partially ordered alqebras will be a class closed under taking 

cartesian products, subalqebras, and isomorphic images. After reinterpreta-

tion of the partial orders as partial operations, such a class will become 

a quasi-primitive class in the ordinary sense of universal alqebra. 

Theorem 3.2 (Existence of Order-sums) 

In a quasi-primitive class all order-sums exist. 

4. When is the order-sum an extension of the lexicographic sum? 

Suppose that itI is a class of partially ordered alqebras. Suppose 

<J>t:Pt—»P to be an order-sum in (H and i ^ P t ^L-Pt the 1 exicoqraphic 

sum. Let —^P be the universal homomorphism of Theorem 3.1. 
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In order to avoid the difficulties connected with the constants, we 

shall assume from now on that the type A be without constants (K.. f 0 for 

each i eI). 

Theorem 4.1 Equivalent are: 

(i) ^ L P ^ — > P is one-one; 

(ii) the homomorphisms *P are one-one, and their imaqes are 

pairwise disjoint; 

(iii) there is a fL-alqebra 0 and a one-one homomorphism — > 0 . 

Theorem 4.2 Eauivalent are: 

(i) <j>: l_p£ >P is an order-embeddinq; 

(ii) the homomorphisms 4> t:P t—>P are order-embeddinqs, and the indexed 

family of their imaqes is not only pairwise disjoint, but a "lexicographic 

decomposition" of the partially ordered set ^ im (= 1m<|>); 

(iii) there is a & - a l q e b r a Q and an order-embedding (and algebraic 

homomorphism) >0. 

Theorem 4.3 Equivalent are: 

(i) the homomorphisms <J>t:Pj.—>P are one-one; 

(ii) for all indices seT and all elements x,.yePs such that x£y, there 

is a (fl-alqebra 0 and a T-family — s e p a r a t i n g x and y , ip (x) ï 

Theorem 4.4 Equivalent are: 

(i) the homomorphisms ^ ' P ^ >P are order-embeddinqs; 

(ii) for all indices seT and all elements x,yeP s such that x ^ y , there 

is a fi,-alqebra 0 and a T-family ^ ' P ^ such that ^ $ ( x ) ^ 

Whenever the universal homomorphism <p is an order-embeddinq, we can 

replace it by the inclusion mappinq of the lexicoqraphic sum into an iso-
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morphic copy of P, due to the well-known Zermelo - van der Waerden replace-

ment procedure.I.e., the order-sum can be considered as an extension of the 

lexicographic sum. L P^ becomes a subset of P, the lexicographic order of 

L P t is the restriction of the partial order of P. However, the inclusion 

of the partial alqebra L P^ into the alqebra P will only be a homomorphism, 

not necessarily an embedding. I.e., L p may only be a weak relative alqebra 

of P. We will refer to this situation by sayinn that P is an order-extension 

of L P t (alqebraicall.y, it may only be a weak extension). If all fc-algebras 

are complete, at least the inclusions of the pieces i t(P t)(= «^(P^)) into P 

are strong, the pieces are then genuine subalqebras of the complete alqebra P. 

We now find convenient sufficient conditions on the class <f{. to 

garantee that our mapping L p ^ — > P will be an order-embeddinq. 

(I) & is non-trivial, i.e. it contains a non-trivial algebra 

0 in the sense that 0 contains a pair of distinct comparable elements. 

(II) All constant mappinqs between fà-alqebras are homomorphisms. 

(III) For every (j^-alqebra P and all elements x,yeP such that x ^ y» 

there is a (ft-alqebra 0 and a homomorphism c*:P—>Q such that 

oi(y) = min a(P) <a(x) = max a(P) ("separability"). 

Condition (III) may be replaced, for our purposes, by the followinq: 

(III') Every <?t-alaebra is embeddable into a non-trivial ^ - a l q e b r a 

with least and qreatest element. 

Mote that in the class fa, of all distributive lattices, all four con-

ditions hold. In the class of modular lattices, at least (I), (II), (III 1) 

hold. 
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Theorem 4.5 Let < l > t : p £— b e an order-sum in (ft . Suppose that R. ful-

fills the conditions (I), (II), and (III) or, alternatively (III 1). Then the 

universal homomorphism <$>: L P ^— ^ P is an order-embeddinq. 

Corollary Suppose is a class of complete alqebras fulfilling 

conditions (I), (II), and one of (III) or (III 1). Then the order-sum P 

(provided it exists) is an order-extension (and weak algebraic extension) of 

the lexicographic sum L p and the pieces i^(P^) are subalgebras of P. 

Recall that the order-sum exists, if ft is quasi-primitive. 

5. The order-sum extends the lexicographic sum in some nice classes 

Theorem 5.1 In the class fL of semilattices, the order-sum exists 

without restriction and is an order-extension of the lexicographic sum. 

Theorem 5.2 In the class <fi of lattices, the order-sum exists 

without restriction and is an order-extension of the lexicographic sum. 

Theorem 5.3 In the class 0. of distributive (modular) lattices, the 

order-sum exists without restriction and is an order-extension of the 

lexicographic sum. 

Theorem 5.4 In the class /ft of semilattices (lattices, distributive, 

modular lattices), the order-sum over a chain T coincides with the lexico-

graphic sum of the partially ordered sets, 
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ARITHMETIC PROPERTIES OF RELATIVELY FREE PRODUCTS 

By Stephen D . Comer 

Arithmetic properties of direct products have been studied 

for many years. W . Hanf showed in [3] that the cancellation law, 

Cantor-Bernstein and square-root properties fail for direct products 

of Boolean algebras. The present note contains some observations 

concerning analogous problems for free products. Free product is 

understood to mean coproduct where the canonical injections are monic. 

Unlike direct products, the free product of algebras depends on the 

variety where it is formed and it may not even exist. Free products 

are assumed to exist in any variety considered. Consider the following 

three properties for algebras A,B,C in a variety V . 

(1) A * B = A * C implies B = C. 

(2) A = B * D and B = A * C implies A = B . 

(3) B * B = C * C implies B = C. 

Properties (1),(2),(3) are known as the cancellation law, Cantor-

Berstein property and square-root property, respectively. These 

properties are established in section 1 under suitable finiteness 

assumptions. Counterexamples to (1),(2),(3) are given for Boolean 
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algebras in section 2. In section 3 the results from section 2 

are applied to derive counterexamples for other classes of alge-

braic structures. 

1. We first consider the cancellation property (1) for a variety 

V . Normally this property will obviously fail if we do not require 

some finiteness condition on A . For example, it usually fails if 

we let A be a V-free algebra generated by an infinite set and let 

B,C be V-free algebras generated by finite sets with different 

cardinalities. For a subclass K of V we say that A cancels 

for K if (1) holds for all B,C in K . The results below give 

conditions under which A cancels for the class of all finite 

members of V . 

Theorem 1.1. Suppose A * B = A * C for A,B,C in V and, in 

addition, B,C are finite and 0 < |Hom(A,X)| < CO for every 

a. 
subalgebra X of B and every subalgebra X of C. Then B » C. 

Proof. From the conditions on A,B,C,X and the fact that 

|Hom(A,X)| • |Hom(B,X)| =» |Hom(A*B,X)| - ]Hom(A,X)| • |Hom(C,X)| 

it follows that 
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(1.2) |Hom(B,X)| = |ïïom(C,X)| for every X £ s { B , c } . 

Let < n), for some n , be a listing without repetition of 

the maximal proper subalgebras of X. ,For an algebra D the 

principle of inclusion-exclusion gives 

I Epi(D,X) I = j Hom(D,X) [ - £ . | Hom(D,X. ) | + . |HOIU(D,X 0 X )|~ 
i x i f j i j 

The right sides of the two equations obtained by letting D «= B 

and D = C are the same by (1.2). Thus, 

(1.3) |Epi(B,X)| = |Epi(C,X)| for every X€ S{B,C}. 

Setting X = B in (1.3) gives 0 4 Epi(B,B) = Epi(C,B) so 

|G| _> |B[. Similarly, setting X - C in (1.3) gives an epimorphism 

from B onto C. |c| >_ |B| implies this map is an isomorphism 

so B = C. 

The above proof was obtained by "dualizing" the proof of the 

analogous result for direct products due to L. Lovasz [5]. The 

following statements are immediate corollaries of (1.1). 
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(1.4) If A * B » A * C for A,B,C in V where B,C are finite, 

A finitely generated and Hom(A,X) ^ 0 for every X € S{B,C> 

then B » C. 

(1.5) If every member of V has a one element subalgebra, then 

every finitely generated meiiibcr cancels for the finite members of V . 

(1.6) Finitely generated V-free algebras cancel for the finite 

members of V . 

In particular, (1.5) applies for any variety of lattices or 

groups. By (1.4) finite Boolean algebras cancel for the class of 

finite BA's. 

We now consider the Cantor-Bernstein property (2) and the 

square-root property (3) for the finite members of a variety. The 

message of (1.7) and (1.8) is that the finite versions hold. The 

proof of (1.7) depends on the following lemma due to Bjarni Jonsson. 

Lemma. Suppose A,B in V and A is not isomorphic to a proper 

subalgebra of itself. Then A • A * B if and only if, for every 
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extension E of A and every homomorphism h:B E, h maps B. 

into A. 

Proof. Given E and h let k = 1. * h:A * B E. Let i,i 
A

 J 

denote the canonical embeddings of A,B into A * B. By the 

i - -"u 

assumption on A , the monic A A * B ^ A is onto so i(A) = 

A * 3. Hence h(B) = k(j(B)) £ k ( i ( A ) ) = A as desired. Conversely, 

consider i : A ^ A * B ^ B : j and let E = A * B (identifying i(A) 

with A) and h = j. Then j (B) £ i(A) and so A «=> A * B. 

Theorem 1.7. The Cantor-Bernstein property (2) holds in V whenever 

A is not isomorphic to a proper subalgebra of itself. In particular, 

it holds whenever A is finite. 

Proof. (2) implies A « = A * C * D ; s o C * D satisfies the condition 
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of the Lemma and there exist a map of D into A. Then C satisfies 

the condition of the lemma; so A = A * C as desired. 

Two proofs of the square-root property for finite algebras 

are given below. The first one uses the argument in 1.1. The 

second was communicated to me by Jan Mycielski who reported that 

it was discovered a few years ago by A . Ehrenfeucht (unpublished). 

Ehrenfeucht fs proof is outlined below since it illustrates an 

alternative way of giving the counting argument basic to both 1.8 

and 1.1. 

Theorem 1.8. The square-root property (3) holds whenever B,C are 

finite members of V. 

Proof. For every X É S{B,C}, 

|Hom(B,X)| 2 « jHom(B * B,X)| « |Hom(C * C,X) | = |Hom(C,X)| 2; 

hence, (1.2) holds. Thus, B » C by the same argument used in the 

proof of 1.1. 

The key to 1.8 and also 1.1 is to show that, for finite 

algebras B and C, (1.2) implies (1.3). 
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E h r e n f e u c h t p r o v e d (1.3) b y i n d u c t i o n on |x[. F o r |x| = 1 

the r e s u l t is t r i v i a l . N o w , for a n y a l g e b r a A , 

|Hom(A,X)| = |Epi(A,X)| + ^ | E p i ( A , D ) | . 

In the t w o e q u a t i o n s o b t a i n e d b y l e t t i n g A = B a n d A = C , the 

l e f t s i d e s are e q u a l b y (1.2) a n d the right; i.v.riu;; on the r i g h t 

s i d e are e q u a l b y the i n d u c t i o n h y p o t h e s i s . H e n c e 

j Epi(B,X)1 = |Epi(C,X)| f o l l o w s . 

2 . W e n o w turn our a t t e n t i o n to s o m e c o u n t e r e x a m p l e s . To m i n i m i z e 

o u r w o r k w e i n t r o d u c e p r o p e r t y (4) b e l o w . P r o p e r t y (2) is c l e a r l y 

e q u i v a l e n t to the s t a t e m e n t t h a t A = A * C * D i m p l i e s A = A * C 

T h i s s t a t e m e n t , in t u r n , i m p l i e s 

(4) A = A * C * C i m p l i e s A = A * C . 

O b s e r v e that (3) a l s o i m p l i e s (4); f o r if t h e r e e x i s t A 

a n d C w h e r e A ^ A * C b u t A = A * C * C , then (A * C) * (A * 

A * A w h i l e A ^ A * C . 
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For BA's we will show that (1) fails with A finite and 

(4) fails with C finite (and thus, (2), (3) also fail). The 

examples in (2.4), (2.5) are based on those due to Hanf and 

Tarski in [3] for direct products. We need the following from [3]. 

2 ^ 2 

(2.1) There exist denumerable BA's B,C such that B = C and 

B | C. 

(2.2) For each integer n > 1 there exist a BA H^ such that 

H = H x 2 n but H % H x 2 k for k = l,...,n-l. The H 's 
n n n n n 

2 ^ 
are uncountable and H - H . 

n n 

The following simple observation is crucial. 

(2.3) If A,B are BA's and B is finite with n atoms then 

^ n \ 
A * B =» A (the direct product of A with itself n times). 

Proof. The dual space of A * B is the cartesian product of the 

dual X of A times an n element discrete space. Thus, it is 

also a disjoint union of n copies of X. 

2 

Theorem 2.4 (1) The four element BA 2 does not cancel for the 

class of all denumerable BA's. 

(2) The two element BA is the only finite BA to cancel for the 
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c l a s s of B A ' s . 

P r o o f . (1) L e t A = 2 2 a n d c h o o s e B , C f r o m ( 2 . 1 ) . B y ( 2 . 3 ) , 

A * B = B = C = A * C b u t B f C . 

(2). S u p p o s e A = 2 n for n > 1 . L e t B ~ H and C = H x 2 . 
n n 

F r o m ( 2 . 2 ) , B ^ C . H o w e v e r , u s i n g (2.3) a n d ( 2 . 2 ) , A * C = 

(H x 2 ) n ï (H x 2 ) n = H n x 2 n = H n = A * B . 
n v n n n 

T h e o r e m 2 . 5 . P r o p e r t y (4) f a i l s f o r B A ' s w i t h C f i n i t e . 

P r o o f . L e t C = 2 2 a n d A = H x 2 . B y (2.3) a n d ( 2 . 2 ) , 

A * C * C = ( H 3 x 2) = H ^ x 2 = (H^ x 2 ) x 2 « A b u t 

O; 2 'V 
A * C = H 3 x 2 f A . 

It is w o r t h n o t i n g the c o u n t e r e x a m p l e to (3) o b t a i n e d f r o m 

2 

(2.5) is A = Il3 x 2 a n d B = H ^ x 2 . B y p a s s i n g to t h e d u a l 

s p a c e s w e get B o o l e a n s p a c e s X , Y w h i c h a r e n o t h o m e o m o r p h i c h o w e v e r , 

X x x is h o m e o m o r p h i c to Y x y . T h i s a n s w e r s an o l d q u e s t i o n 

p o s e d b y H a l m o s in [2]. 

3 . W e can o b t a i n c o u n t e r e x a m p l e s to the a r i t h m e t i c p r o p e r t i e s 

( 1 ) , ( 2 ) , and (3) for o t h e r c l a s s e s of a l g e b r a s f r o m the r e s u l t s 

in t h e p r e v i o u s s e c t i o n b y c o n s t r u c t i n g a p p r o p r i a t e f u n c t o r s . 
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Proposition 3.1. Suppose £ is a category (with free products) 

and r is a full embedding of the category of BA's into C- that 

preserves free products. Then (1), (2), (3), and (4) fail in 

IT . Moreover. does not cancel for G for finite n > 2. 

The proof is straightforward using the fact that a full 

embedding has the property: A = B iff TA « TB. 

We apply (3.1) below to obtain examples for the variety 

generated by a primal algebra, bounded distributive lattices, and 

rings. In each case the functor used is 

one that arises in the 

study of sectional representations over Boolean spaces. Let X^ 

denote the Stone space of a BA B. For a universal algebra A and 

a Boolean space X let F(X,A) denote the algebra of all continuous 

functions from X into A (given the discrete topology). For 

each of the varieties (categories) to be considered a natural 

algebra A is selected in I? . The functor F from BA's into 

£ is defined for a BA B by T(B) « r(X^,A). T does the 

natural thing to homomorphisms. This functor F is always an 

embedding. To apply (3.1) we have to check in the categories 

below that F is full and preserves free products. 

(3.2) is the variety generated by a primal algebra A. 

In this case the functor F establishes an equivalence 
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between the category of BA's and ^ (see Hu[4]). Thus, (3.1) 

applies and its conclusion holds for *£. . In particular, A does 

not cancel for ^ . 

(3.3) ^ is the variety of (0,1)-distributive lattice. 

Let A be the two element distributive lattice with 0 and 

1 distinguished. The functor Y in this situation essentially 

just forgets the complementations opération. The embedding is full 

since any 0,1 preserving lattice homomorphism between BA's also 

preserves complements. The following lemma (3.4) implies that 

F preserves free products. 

(3.4) If B^ is a Boolean subalgebra of a BA B (i £ I) and 

B = II*Bi (as BA's), then B = IÏ*B± as (0,1)-distributive lattices. 

The proof of (3.4) easily follows from the internal 

description of free products of BA's and a similar description for 

bounded distributive lattices due to Gratzer and Lakser [1]. 

Thus, (3.1) applies and its conclusion holds for the class 

of bounded distributive lattices. In particular, 2 n does not 

cancel for this class for 1 < n < U). 

(3.5) Rings. 

Let A denote a fixed field and ^ the category of all 
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commutative rings that contain A as a subring. Mappings in Ç ai 

A-homomorphisms. The free product operation in is the tensor 

product over A (see Zariski, Samuel [6]). The ring F(B) =» 

r(X B,A) is in when A is identified with the subring of 

constant functions on X^. Observe that T(B) is commutative and 

B is isomorphic to the BA B(T(B)) of all idempotent elements of 

T(B). In fact, B(F(B)) is just the double dual space of B. It 

easily follows that the embedding F is full. We need the 

following lemma. 

^ / 

(3.6) For Boolean spaces X,Y,F(X,A) T(Y,A) - (X x y,A). 

The obvious projections of X x Y onto X and Y induce 

embeddings f:F(X,A) F(X x y,A) and g:T(Y,A) F(X x y,A). Let 

R = f ( r(X,A)) and S = g ( r(Y,A)). Note that cr 6 F(X x y,A) is in 

R if and only {a _ 1(a):a € A} partitions X x y into disjoint . 

sets of the form N x y where N is a clopen subset of X. A 

similar description of S also holds. 

For N,N' clopen subsets of X,Y respectively, let 

denote the characteristic function of NxN'. For NXN 

a € A a c N X N , « (ac N x y^) • ( c X X N » ) is in the subring generated by 

R and S; thus, R and S generate F(X x Y,A) . 

Below we need the observation that (f(cr') • g(T*))(x,y) « 

a'(x) • XT (y) for all a' 6 F(X,A) , T' € T(Y,A), x € X, y € Y. 
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To verify (3.6) it remains to show R and S are linearly 

disjoint over A(cf., Zariski-Samuel [6]). Suppose € R 

and S a r e e a c h linearly independent sets over A. 

For each i,j choose cr̂  (: F(X,A) and .tj 6 F(Y,A) such that 

f (o> ! ) = a. and g(TÎ) = T.. In addition consider c. . 6 A such 
i i J 3 iJ 

that ;. .c..a ft.. 
ij i J 

For (x,y) G X x Y, the observation above shows that 

0 - ï i / i j t V i » ^ ' • l i d ^ w K U ) . 

Since are linearly independent in I'(X,A) over A, it 

follows that 0 «= y . c . . T Î ( y ) for each j and y G Y. The linear 

independence of in T(Y,A) over A now implies that 

= 0 for each i,j. Thus, {a^T_.:i = l,...,n; j = l,...,m} is 

linearly independent over A; so R and S are linearly disjoint 

and consequently (3.6) holds. 

From (3.6) it follows that T preserves free products and 

hence (3.1) applies. So (1), (2), (3), and (4) fail in & , In 

particular, A n (1 < n < U)) does not cancel for the category of all 

commutative rings that contain the field A. 

192 



References 

1. Gratzer, H . Lakser, Chain conditions in distributive 
free products of lattices. Trans. Amer. Math. Soc. 144 
(1969), 301-302. 

2. P.R. Halmos, Lectures on Boolean Algebras. Mathematical 
Studies No. 1, 1963. Van NosLraiuif Priur jtun, N.J. 

3. W. Hanf, On Some Fundamental Problems Concerning Isomorphism 
of Boolean Algebras. Math. Scand. 5 (1957), 205-217. 

4. T.K. IIu, Stone Duality for Primal Algebra Theory. Math Z. 110 
(1969), 180-198. 

5. L. Lovasz, On the Cancellation Law among Finite Relational 
Structures, Periodica Math. Hung. 1 (1971), 145-156. 

6. 0. Zariski, P. Samuel, Commutative Algebra, I. University 
Series in Higher Mathematics, 1958. Van Nostrand, 
Princeton, N.J. 

193 



Proc. Univ. of Houston 
Lattice Theory Conf..Houston 1973 

On the dimensional stability of compact 

zero-dimensional semilattices 

K. H . Hofmann and M . W. Mislove* 

Introduction : Let Z be the category of compact zero-

dimensional semilattice monoids and identity preserving 

homomorphisms. We consider the question when an object 

S e Z_ has the property that each homomorphic image is also 

in Z. Equivalently, for which S c Z_ is S/R e !Z for 

every closed congruence R on S? Lawson [ 2 ] has 

recently considered this question for m^re general 3, and 

he shows that each finite dimensional locally connected 

compact semilattice has no dimension raising homo-

morphisms. However, when applied to objects in Z, this 

result only shows that finite objects in Z are 

dimensionally stable. 

Our results are not comprehensive, indeed, they are 

somewhat scattered. However, they do serve our purpose, 

which is to provide an interesting and informative appli-

cation of the duality theory developed in [1]. 
/N 

Specifically, we assume that for S e Z, S = 

Z(S,2) e S_ (the category of discrete semilattice monoids 

and identity preserving homomorphisms); dually, that for^ 

S e S, S = s(S, 2) £ Z; and that for S e Z or S, S * S. 

Moreover, that for S e Z_, S - (K(S),v), where K(S ) is 

the set of local minima of S, and, that for k-^k^ e K ( S ) , 

k-̂  v k^ : a (tk^ n fk2)j tk^ being the set of points 

s £ S with k.s = k.. i i 
We here wish to record our thanks to A . R. Stralka 

for several stimulating and informative conversations 

during the preparation of this material* 

"Both authors supported by NSF Grant 28655 A - l . 
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Definition: An object S e Z is stable if for each 

closed congruence R on S, S/R e Z. Otherwise, S is 

called instable. 

Probably the most natural example of an instable 

object in Z is C, the Canter set in the unit interval 

I, under min multiplication. Indeed, if p : C I is 

the Caratheodory map, then p is a continuous surmorphism 

of semilattices. 

Moreover, the property of having I as a semilattice 

quotient is decisive for instable objects of Z. Clearly 

the condition is sufficient. Conversely, if S e Z is 

instable, then there is a compact semilattice T with a 

non-degenerate component K and a surmorphism f : S -»• T . 

T is a Lawson semilattice since S is (Z(S,2) separates 

the points of S), and so, if a,b e K, a t b, there is 

a homomorphism g : T I with g(a) i g(b). Assuming 

g(a) < g(b), g(T) 2 [g(a),g(b)H, and, if r:I +[g(a),g(b)] 

is the canonical semilattice retraction, we then have 

r o g o f : S [g(a),g(b)] is the desired surmorphism. 

We have proved: 

Proposition 1: S e Z_ is instable if and only if there is 

a continuous surmorphism f : S + I. 

This is a rather simple characterization of the 

instable objects in Z_; in fact too simple. It sheds 

little light on the structure of instable objects, and it 

utilizes an object outside the category Z_ to charac-

terize this notion. We now explore the possibility for a 

more inherent characterization and we begin by establish-

ing some properties of instable objects. 

Proposition 2: If S e Z is instable, then there is a 

perfect nondegenerate chain C £ S. 

Proof. Let S in Z be instable. Then, by Proposition 

1, there is a surmorphism f : S I. Define f : I S 
~ -1 

by f(s) = Af (s). Clearly f is monotone, (i.e. 

t < t T £ I implies f(t) < f(t')), f o f = l and 

?(f(s)) < s for each s e S. Moreover, if {t } _ c I ' a aeD -
with {t } t £ I, and t £ t for each a £ D, then 

a a£D a ' 
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then {f(t )} + f(t) and f(t ) < f(t) for each a e D . 
a aeD a 

Let C = f ( I ) x . C is a compact chain, and if ~ ° ° 
c e C \ f ( I ) , then c is not isolated in C . If c = 
~ o ~ 1 ° 
f(t) for t > 0, then c = lim f(t—), and so c is 

again not isolated in C Q . Thus 0 = ACq is the only 

possible isolated point of C Q . We let C = C Q if 0 is 

not isolated in C , and C = C \ {0} otherwise. C is 
o o 

clear by the desired chain. 

Corollary: If S e Ẑ  is instable, then there is a sur-
A 

morphism f e S_(S,D) where D is an order dense chain. 

Proof : We let C be the chain guaranteed in Proposition A 2. Then i : C £ S implies i = f : S +> C. Since C 
A 

is a compact perfect chain, C = D in an order dense 

chain. 

The question of whether S e Z_ is instable if and 

only if S contains a compact perfect nondegenerate chain 

is settled in the negative by the following. 

X Lemma : Let X be a set. Then 2 e Z is stable. 
X 

Proof : Let f : 2 I be a homomorphism. Since 

X = lim{F c x : F is finite}, l = l i m { X f : F is finite} 

Thus, if t < 1, there is some finite F £ X with 

t < f ( x F ) . Now, if y e 2 X with f(y) < f(x F>> then 

f ( X F - y ) = f(X F)f(y) = f(y). Therefore f ( X p • 2 X ) = 

f ( 2
x
) n [0,f(x F)] and since F is finite, Xp ' 2

X
 is 

finite. Thus f is not surjective. 

Now, let = {r e (0,1] : r is rational}. Then 

^ 2 e S and = 2 ^ As we have just seen, 2^ is 
0 

stable. However, there is a surmorphism x 2 Q which 

extends the identity map on Q , and so, by duality, 2^ 

contains a compact perfect non-degenerate chaih. 

Note that for S e Z_, if there is a surmorphism 

f : S C, C the Canter semilattice, then S is instable. 

Moreover, by duality, this is equivalent to there being a 

monomorphism f : Q S, i.e. that there is a countable 

order-dense chain C c ( K ( S ) , v ) with 0 e C . It is not o ~ o 
unreasonable to conjecture that this property characterizes 
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the instable objects in Z. 

As we shall see, this is not the case, but we do have 

the following. 

Theorem 1 : Let S e Z_ and suppose S is complete. Then 

the following are equivalent. 

a) S is instable. 

b) There is a surmorphism f e Z_(S,C). Moreover, if 

f : S I is any surmorphism, then there is a surmorphism 

f : S C with p * f = f , p : C I being the Caratheo-

dory m a p . 

Proof : Clearly b) implies a) . Let f : S I be a sur-

morphism. Define f : I -*• S as in Proposition 2. Note 

that, as I is connected, the points of discontinuity of 

f must be dense in I. Let 0 < t < 1 be one such point, 

a n d set s = f ( t ) . A l s o , l e t u = A f ( t , l ] , a n d k = 

v{k' e K(S) : k V < s}, where the supremum is taken in 

K(S). As s = v{k' e K(S) : k' < s}, where this supremum 

is in S, we have s < k. But, s = f(t) = lim f(t') 
t T < t 

implies s £ K(S), whence s < k . 

Note that, for x e S with f(x) > t , f(xs) = 

f(x)f(s) = t , and so s'= f(t) ^ xs < x . Hence, if 

k' e K(S) with f(k') > t , s < k T , so k' > k" for each 

k" e K(S) with k" < s. Therefore k < k f . N o w , f~ 1(t,l] 

is open in S as f is continuous, and so if x e f~^(t,l], 

then x = v(K(S) n Sx) implies there is k' e K(S) with 

k' < x and f(k') > t. Thus k < k', so k < x . There-

fore k < u . 

Let - 1 x 2 ky Ij = {(x,y) : x < t and 

y = 0} and = {(x,y) : t < x and y = 1}. Define 

f : S ^ I, u I 9 by 

Is a continuous surmorphism of S onto u If 

7T : I j u 12 is a projection on the first coordinate, we 

clearly have IT O F = f. 

To finish our proof, we now find points 0 < t^ < t < 

t,. < 1 where f, and hence f are discontinuous, and 

( f ( x ) , 1 ) if k < x 

( f ( x ) , 0 ) if k i x 
Note that 
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split and each into subintervals in analogous 

fashion to what we just did for I. We continue this pro-

cess by induction to obtain a system of intervals whose 

limit is C, the Cantor set. This induces the desired 

factorization. 

To see that the above Theorem is false in general, we 

construct the following example. Let p : C I be the 

Carathdodory map, and let 

S = {(p(x),x) : x e C} £ I x I. 

For each local minimum 0 i k e C , choose a sequence 

{pn } c Ck \ {k} with p, < p, ,, and vp = r k n new - -^kn ^kn+1 ^kn 

v ( Ck \ {k} ) . Finally, let S = S Q u { CpCp k ) ,k) : k e K(C) ,nea)} . 

The local minima are precisely the points ( p ( p k n ) , k ) . 

Moreover, if TT : S I is the projection on the first 

coordinate, there is no factorization of TT through C. 

Indeed, suppose f : S C with p o f = TT . Let C e C 
be a local minimum with c i 0. Then f ^[c,l] is an 

open-closed subsemilattice of S, and so p = Af"~^"[c,l] e 

K(S). Hence p = ( p ( p k n ) , k ) for some k 6 K(C) and n e u). 

If k' = v ( C k \ { k } ) , then p k n < k' and, therefore, 

p ( p k n ) < p(k') = p(k). Thus, TT(p(pkn) ,k)TR(p(k') ,kf ) = 

p ( p k n ) . But tt( p (k ' ) ,k ' ) = p(k') = p (k) = 7r(p(k),k), 

whence f(p(k'),k') = f(p(k),k) or f(p(k),k) e K(C) and 

f(p(k'),k') = v(Cf(p(k),k) \ {f(p(k),k)}). Since 

(p(p ),k) < (p(k),k), we have t = f(p(p. ),k) < 
xn _ jcn 

f(p(k),k). But p ( p k n , k ) = Af ±{t} implies f(p(k
f
),k» 

f(p(k),k) since ( p ( p k n ) , k ) • ( p ( k
f
) , k

f
) t (p'(pk ),k). 

Hence, the only other possibility is f(p(k),k) = t and 

fCp(k'),k') = v ( C t \ { t } ) . But, then 

TT((p(p k n),k)(p(k
f
 ),k*)) = p ( f ( ( p ( p k n ) , k ) ( p ( k ' ) , k ' ) ) ) 

= p(f(p(p k n),k)f(p(k'),k')) = 

= p(f(p(k'),k')) = TT ( p (k ' ) ,k ' ) = p(k') i 

* Tr(p(p k n) ,k)TT(p(k') ,k') , 

contradicting that TT is a morphism. 
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We note that this example does n o t , on the surface, 

show that an instable object in Z_ must have some map onto 

the Cantor semilattice. We feel that this property does 

hold for instable objects, but we are not able to settle 

the question. 
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LAWSON SEMILATTICES DO HAVE A 

PONTRYAGIN DUALITY 

Karl Heinrich Hofmann 

and 

Michael Mislove 

The category L of Lawson semilattices is the cate-

with iden-j 

(where 

gory of all compact topological semilattices S 

tity, whose continuous interval morphisms S I 

I r [0,13 has the min multiplication) separate the points 

and whose morphisms are continuous identity preserving 

semigroup morphisms. 

We say that a category A has a Pontryagin duality 

iff there is a category B which is dual to A in a way 

analogous to the fashion in which discrete abelian groups 

and compact abelian groups are dual. Specifically, there 

are functors 
F 

A 
— < -

B 
op 

U 

G 

Set(-,T) 
Set Set 

op 

Set(-,T) 

' >7 "'VK ! ïh iu'" 7! ? • • : : 
Such that the fdlU'isMttlg'''Conditions are satisfied 

(1) There are natural isomorphisms ri 

and e 

I A + GF 

I B - FG. 

(2) U and V are grounding functors (i.e. faith-

ful functors into the category of sets) and 

VF = A(-,A). UG = B(-,B) with distinguished 
' /piiMi width fi,« 7 ; v j rM;%i.i 7/H" _ 

(if) be U'MiiC- w \i> 4/I7 
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objects A and B such that UA = VB = T. 

(i.e. the functors F and G are given by 

hom-ing into cogenerating objects which are 

based on one and the same set). 

UX (3) There are natural monies y v : FX B and 
VY 

Vy : GY A such that the diagram 
V 

VFX ——> V ( B ^ ) n a t > ( V B ) U X 

UX T 

A(X , A) — S e t (UX , UA) >Set(UX,T) 

(with nat denoting the natural morphism 

V (ÎIYj ) n V Y i ) commutes as well as a similar 

one for v. 

(This says, intuitively, that FX is 

defined on the set Hom(X,A) by inheriting the 
UX 

structure from the product B (which itself 

is based on the function set Set(UX^T)). 

(4) Let e : S Set ( Set ( S , T ) , T ) be the ^function 

defined by evaluation e(s)(f) = f(s). Then 

the diagram 

Un 
ux X UGFX = B ( FX , B ) 

-111.; V.<iliî't '<) 
(rvpruciti 

Set(VFX j VB) 

Set(Set(X,T),T) < S e t ( u T ) Set(A(X,A),T) 

commutes. A similar condition holds for v . 

(This condition expresses, in categorical terms, the 

fact that the isomorphism X identifying an object X in 

i 'ï)tiit| Vvl'iïn K,, ; i ; i », i n /' '8" 
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A with its double-dual GFX is obtained by evaluation 

when everything is viewed in terms of functions and sets.) 

Let us remark here that these conditions, which in 

functorial terms describe the distinguishing features of 

Pontryagin dualities, are by no means artificial. In fact 

one has the following 

F 
PROPOSITION 1. Let A > B°P be a pair of jfunctors : 

between categories with products, such that F -: is_ left 

adj oint to G and that there are obj ects A' :in A and 

B' in B such that X |—» A(A ? ,X) , Y |—> B(B T ,:Y) are 

faithful set functors U , resp. V. Then with front 

adj unction n and back adj unction e, conditions (2), (3), 
a r e satisfied, with A = GB' and B = FA' . 

(See Hofmann and Keimel [2], Section 0.) 

Note that functors U and V which are of this form are 

called representable and that objects with the properties 

of A' and B' always exist if the categories A and B 

have free functors (i.e. left adjoints to the grounding 

functors into Set ). 

We will also say that a duality such as it is des-

cribed in (1) through (4) is a Pontryagin duality. 

The original Pontryagin duality between the category 

A of discrete abelian groups and the category : B of 

compact abelian groups satisfies these conditions with 

FX = character group A(X, IR/ZZ) with the compact topo-

logical group structure inherited from the inclusion 
Ï JY 

A(X, IR/ZZ) + (IR/ZZ ) , with GT = character group 

B(Y, ]R/ZZ) with the group structure inherited from the 
V Y 

inclusion B(Y, ]R/ZZ) ( TR/7L) (where U and V are 

the "underlying,-s^t^rrfiunQtors and where we (ambiguously) 

! denote the discrete'
1
 c'ïrcïe group A , the compact circle 

group B and the underlying set T with the same symbol 

1R/2Z . 

The following further dualities are Pontryagin duali-

ties : 

(a) Stone duality between Boolean algebras and 

compact zero dimensional spaces. 
; , i M 'Uin >-vi.;r i; , ,.• : : : V •:• 

(•'<• l.ii . w - ' I;: <i 
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(b) Gelfand duality between commutative C*-algebras 

with Identity and compact spaces (although this 

is not entirely obvious). 

(c) The duality between discrete and compact semi-

lattices . 

(d) The duality between complete lattices in which 

every element is a meet of primes and arbitrary 

sup-preserving morphisms on one hand and the 

category of spectral spaces on the other 

(Hofmann and Keimel). 

(e) Tannaka duality for compact groups(this again is 

not obvious). 

The duality between the category of all compact topo-

logical semigroups and the category of commutative C*-

bigebras co-semigroups in the symmetric monoidal category 

of commutative C*-algebras with identity introduced by 

Hofmann is not a Pontryagin duality, since neither category 

has a cogenerator. 

The purpose of this note is to point out that the 

category of Lawson semilattices, contrary to the suspi-

cions of people who have worked in the area, does have a 

Pontryagin duality. This duality may not be as useful and 

as applicable as some of the dualities listed above because 

the dual category of L is rather involved; our observa-

tion may still serve a useful purpose since it will avoid 

futile efforts to prove the contrary. In view of the 

Hofmann duality mentioned above it is known that Lawson 

semilattices indeed do have a dual category. Let us 

record this fact in the following 

PROPOSITION 2. The category E* of commutative and 

co-commutative C*~bialgebras Y with identity, idempo-

tent comultiplication c : Y Y Y and co-identity 

u : A -> C (where idempotency of the comultiplication is 

expressed in the commutativity of the diagram 
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Y 0 Y 

together with all C*-bialgebra morphisms is dual to the 

category of all compact topological semilattices with 

identity. If C(I) denotes the dual of the interval semi-
A 

lattice in this c a t e g o r y , then the full subcategory E^ of 

E" generated by C(I) is_ dual to the category L of 

Lawson semilattices. The duality is given by the functors 
C : il E* Ë M S P e c : E* "" ii-

(For more details of the Hofmann duality see Hofmann [ 1 ] , 1 

notably pp. 1 3 6 - 1 3 9 . ) 
i 

The rest of the note is now concerned with a discussion ! 

of ; ! 

A 
THEOREM 3. The duality between E^ and L is a Pontry-

iagin duality. j 

* 

Since E^ does not appear to have a free functor the 

routine proof which works in many of the examples does noti 

apply. H o w e v e r , due to the special property of having a 

g e n e r a t o r , the category E^. has a representable groundings 

functor. The category L even has a free functor hence a 

representable grounding functor. In view of Proposition 3* 

the hypotheses of Proposition 1 are satisfied; ithus 

Theorem 3 is proved. 

Let us see some of the d e t a i l s . Let 2 e ob L be 

the two element semilattice. Then S |—>L(2,S) clearly is 

(equivalent tpi^ptke u"umdeplying set" functor U . The 

grounding functor V of E is given by VY = E (C(I),Y).; i 

Since C(I) generates E , then this functor is faithful 

on Ej , We note VC(2) = E*(CCI),C(2)) = L(2,I) - [ 0 , 1 ] = 

I = UI = U Spec C(I) . j 

T h u s , as is to be expected for a Pontryagin duality the 

; objects which serve as the fixed domains for the hom set 

representation of the duality functors are modelled on one! 
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and the same set, namely the unit interval [0,1]. The 

one in L is I, the unit interval semilattice, the one 

in E-j- is C(2). Note that the underlying C*-algebra of 

C(2) is C x C. The monic : C(S) + C ( 2 ) L ( 2 ' S ) of 

condition (3) is given by y^Cf )(<(>) = f ° (J) ; similarly 

v y : Spec Y + j E " ^ 1 ) ^ ) i s g i v e n by f (vy(i|0 (a) ) = 

= (ip o a)(f) , f e C(I), ip : Y C an element of Spec Y , 

a : C(I) Y. The verification of the commuting of the 

diagrams in (3) and (4) (which we know on the basis of the 

general Proposition 2) is left as an exercise. 

The deviation from the more customary Pontryagin 

duality theories is due to the somewhat unfamiliar 

grounding functor for the category Ej , which is not the 

underlying set functor, nor the unit ball functor (which 

•is the natural underlying set functor for C*-algebras in 

the context of Gelfand duality). This accounts for the 

somewhat curious appearance of the unit interval in the 

guise of C(2) in E^. . 

Let us conclude with the remark, that a similar theory 

:holds for semilattices without identity. In that case the 

generator for the category of Lawson semilattices without 

identity is 1, the one element semilattice, and the cogen-

erator for the dual category is C(l) = C. 
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INTRINSIC LATTICE AND SEMILATTICE TOPOLOGIES 

JImmie D . Lawson 

I* Intrinsic Topology Functors. 

Lattices and semilattices differ from many other alge-

braic structures in that there are several rather natural 

ways to define topologies from the algebraic structure. This 

chapter is devoted to describing several of these construc-

tions and deriving some or their elementary properties. Some 

of the proofs that are quite straightforward are omitted. 

Definition 1.1. A topology ^ on a lattice L is intrinsic 

if i( is preserved by all automorphisms of L , i.e., if 

a 6 Aut (L) and U e K , then a(U) e k . 

Proposition 1.2. The following are equivalent for a topology 

*l{ on a lattice L : 

(1) 1( is intrinsic on L ; 

(2) Each automorphism of L is continuous w.r.t. ty ; 

(3) Each automorphism of L is a homeomorphism w.r.t. *U . 

Proposition 1.3. The intrinsic topologies are a complete 

sublattice containing 0 and 1 of the lattice of topologies 

on L . 

Proof. It is immediate that the discrete and indiscrete 
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topologies are intrinsic, that the intersection of any col-

lection or Intrinsic topologies is again an intrinsic topo-

logy., and that the join of two intrinsic topologies is 

again an intrinsic topology. Hence the proposition follows. 

Definition 1.4. Let j denote the category whose objects 

are lattices and whose morphisms are lattice homomorphisms. 

Let denote the subcategory of consisting of the 

same objects and those morphisms which are isomorphisms. 

Let s£r denote the category whose objects are pairs 

where L is a lattice and t( is a topology on L and whose 

morphisms from (L^ty) to (L 2 J,y) are lattice homomorphisms 

which are continuous. An intrinsic topology for lattices 

is a functor from ^ to which assigns to an L in 

an object (L,^<) in and to a morphism a:Lj L 2 

the morphism defined by a from (L-^ty) to (L 2,r) in 

. Hence isomorphisms in £ must be continuous . 

A non-empty subset A of a lattice or lower semilattice 

lower complete if every non-empty subset B of A has a 

greatest lower bound which is again in A . Upper complete 

subsets are defined dually. A non-empty subset which is 

both upper and lower complete is complete. 

There are several natural definitions of convergence 

in a lattice. 
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Definition 1.5. Convergence in lattices . 

(1) A net {x ) a G p in a lattice L is said to be ascending 

if a < S implies x < x D . An ascending net fx } is 
— a — p ° a 

said to ascend (or converge) to x if x = sup ( x
a ' a

 € D ) . 

The notions of M descending net'' and descend to x'' are 

defined dually. The notation is x t x(x X x ) if fx } 
. a v a ' a 

ascends (descends) to x . 

(2) A net fx 3 ^ in a lattice L is said to order con-
\ ) ^ ^ a^D 

verge to x (denoted x x) if there exists nets 
~~—- a 

{ y a 3 a ® ' f z a 5 a ® s u c h t h a t za ^ x a ^ y a f ° r a 1 1 a 6 D 

and z a f x and y a4- x . 

(3) A net fx ) —-p. is said to order-star converge to x if v i a aejj H— 

every subnet of {x 3 has a subnet of it which order converges 
* 

to x . Order-star convergence is denoted x x . 
a 

(4) For a net a lattice L , by defi-

nition, 

lim inf x = v A x Q , 
a a p > a

 3 

lim sup x = A V x D . 
a
 a !3>a

 P 

A net { x a } is said to lower star converge to x if every 

subnet of fx ) has a subnet of it which has x as its 

lim inf . Upper star convergence is defined dually. 

A non-empty subset A of a lattice or semilattice is 
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lower Dedeklnd complete if every descending net in A de-

scends to some element of A . Upper Dedekind completeness 

and Dedekind completeness are defined in the predictable 

way. 

Proposition 1.6. Let L be a lattice. 

(1) If x t x or x >1 x , then x x . 
a a a 

(2) If x x , then so does any subnet. 
' a 

* 
Hence x x implies x x . 

a a 

(3) If L is complete, then x x if and only if 
a 

x = lim sup x = lim inf x 
a a 

Proof. Parts (1) and (2) are straightforward. See 

[6, p . 244] for part (3). 

There are two basic methods of defining intrinsic 

topology functors. The first of these is declaring a set 

closed if it contains all of its limit points with respect 

to some convergence criterion. If the convergence criterion 

satisfies the condition that any convergent net still con-

verges to the same limit point if the domain of the net is 

restricted to a cofinal subset, then the closed sets defined 

in this way actually form a topology of closed sets. The 

four convergence criteria given in Definition 1.5 all satisfy 

this condition. 
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Definition 1.7. 

(a) The Dedekind topology (D) . 

(b) The order topology (0) . 

(c) The lower star topology (L^) . 

A subset A of a lattice L is closed in the Dedekind 

resp. order resp. lower star topology if whenever {x } is a net 

in A which ascends or descends resp. order converges resp. 

lower star converges to x , then x € A . 

(d) The chain topology (Y ) . A subset A of a lattice L 

is closed in the chain topology if for all chains C in A , 

A also contains sup C and inf C if they exist. 

A second method of defining intrinsic topologies in 

lattices is by declaring a certain collection of sets defined 

in order theoretic terms to be a subbasis for the closed 

(or open) sets. 

First however, we need to introduce certain terminology. 

If A is a subset of a lattice L , 

L(A) = {x € L: x < a for some a € A} 

M(A) = {y e L: a < y for some a € A) . 

The non-empty subset A is a semi-ideal if ,L(A) = A and 

an ideal if it is both a semi-ideal and a sublattice. A 

proper ideal I is completely irreducible if whenever I 
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is the intersection of a collection of ideals, then I is 

in the collection. Equivalently, I is an ideal which is 

maximal with respect to not containing some element x € L , 

x / 0 . 

Definition 1.6 (continued). 

(e) The interval topology (I) . A subbase of closed sets 

are all sets of the form L(x) and M(x) , x e L . 

( f ) The complete topology (K) . A subbase of closed sets 

is defined by taking as a subbase for the closed sets all 

sets w h i c h contain all i n f s and sup 1s which exist of 

its non-empty subsets. In complete lattices, these are pre-

cisely the complete subsets. 

(&) The lower complete topology (LK) . A subbase of closed 

sets is defined by taking all Dedekind closed sets which are 

lower subsemilattices. 

(h) The semi-ideal topology (s) . A subbase for the closed 

sets Is given by all Dedekind closed semi-ideals together 

w i t h sets satisfying the dual condition, i.e., M(A) = A and 

A is Dedekind closed. 

(i) The ideal topology (A) . A subbase for the open sets 

consists of all completely irreducible ideals and sets which 

satisfy the dual conditions. 

Before defining the last intrinsic topologies, we need 
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to define another notion of convergence. 

Definition 1.9. If A is a subset of a lattice L , let 

A A denote the smallest Dedekind closed lower semilattice 

containing A . A v is defined dually. The net f x
a 3 weakly 

order converges to x (denoted x >->x) if 
a 

(I) x e n (Xg-.p > a } A c L(x) and dually 
a p 

(ii) x e n {x > a) V
 c M(x) . 

a P 

The net weakly order star converges to x (denoted 

x if every subnet has a subset which weakly order eon-
a 

verges to x . 

The net {x ) weakly lower star converges to x 

(denoted x r ^ x ) if condition (i) is satisfied for some N a ' ' 

subnet of every subnet of ( x
a ) . Weak upper star convergence 

is defined dually. 

Definition 1.10. 

(j) The weak order topology (WO) . 

The weak lower star topology (WL*) . 

A set A is closed in the weak order resp. weak lower 

star topology if whenever {x ) is a net in A which weak 

order star resp. weak lower star converges to x , then x e A . 

Proposition 1.11. All the topologies (a)-(k) define intrinsic 

topology functors. 
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D e f i n i t i o n 1 . 1 2 . If (L,<) is a lattice, the dual lattice 

Is (L,>) . There Is a factor 6 on ^ w h i c h assigns to 

a lattice the dual lattice and to a morphism the morphism 

between the dual lattices w h i c h as a function is the same as 

the original function. The functor ô restricted to is 

still a functor. A functor ô T corresponding to ô can be 

defined on & by assigning to (L,</^{) the triple (L,>,K) . 

Given an intrinsic topology functor P , one can define a 

i i 
dual functor T by r = ô T r ô . The functor r is self-

t 
dual if r = r 

Proposition 1.13. Let r be an intrinsic topology functor 

w h i c h is self-dual. Then any anti-isomorphism between two 

lattices is continuous. 

P r o o f . Let a: (L, <) -> (L',<) be an anti-isomorphism. Then 

a: (L,>) (L ,<) Is an isomorphism and-hence is continuous. 

Since the topology r assigns to (L,<) and (L,>) are the 

same, a: (L,<) (l',<) is continuous. 

proposition 1.14. Of the intrinsic topologies (a)-(k), only 

L ^ , LK and W L ^ fail to be self-dual. W e denote their 

duals by U ^ , UK and W U ^ resp. 

Definition 1 . 1 5 . The intrinsic topology functor p is finer 

than the intrinsic topology functor A if for each lattice 

L the topology r assigns to L is finer (i.e., has more 

open sets) than the topology A assigns to L . W e write 
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A < F . The relation of f'finer than'' is a partial order 

on any subset of intrinsic topology functors. 

Definition 1.16. An intrinsic topology functor T is linear 

if for any lattice L and any maximal chain M in L , the 

topology which T assigns to L restricted to M is the 

same as the topology generated by taking the open intervals 

of M as a basis. 

proposition 1.17. All topologies (a) - (k) except A are 

linear. If r is a linear intrinsic topology functor, then 

r < x . 

Definition 1.18. A topology n on a lattice L is order com-

patible if it contains the interval topology and is contained 

in the Dedekind topology. An intrinsic topology functor r 

is order compatible if I < r < D . 

proposition 1.19. The intrinsic topology functors (a)-(k) 

are all order compatible except for A and X . 

proposition 1.20. Let L be a lattice, and let (x ) be an — a 

ascending net in L . 

(a) If %( is a topology on L courser than the Dedekind 

topology and if x ^ x , then C x
a î converges to x in 

the topology of t( . 

(b) If ty is a topology on L finer than the interval 

topology and {x } clusters to x in ty , then x f x • 
cc cx 
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Proof. (a) First we show that f x
a ) converges to x in 

the Dedekind topology. Let U be an open set in the Dedekind 

topology which contains x . If ( x
a ) residually in 

tJ , then cofinally it lies in the complement of U . This 

cofinal collection of fx ) also ascends to x , and since 
a 

the complement of U is Dedekind closed, x e L\U , a contra-

diction. Hence fx ) is residually in U . Thus {x } 
a a 

converges to x in the Dedekind topology, and hence in any 

coarser topology. 

(b) Since fy is finer than the interval topology M(x ) 
a 

is closed for each a • If" * £ M(x ) , then the complement 
a 

of M ( x
a ) would be an open set containing x such that 

{ x j is residually not in this open set, an impossibility. 

Hence x < x for all a . Now suppose x < y for all a . 
a — a — 

Since L(y) is closed and x ^ e L(y) for all a , it fol-

lows that x e L(y), i.e., x < y . Thus x is the least 

upper bound, i.e., x
a t

 x • 

Corollary 1.21. Let L be a lattice, f x
a )

 a n ascending 

net in L , x e L , and t{ an order compatible topology 

on L . The following are equivalent. 

( 1 ) X at X 5 

(2) ( x
a 3 converges to x ; 

(3) fx ) clusters to x . 
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Proof. (1) => (2) . Proposition 19(a). 

(2) => (3) . Immediate. 

(3) => (1) . Proposition 19(b). 

Proposition 1.22. The following is a Hasse diagram of the 

intrinsic topology functors considered for arbitrary lattices 

(since L^ is defined for complete lattices, it is omitted). 
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II. Convexity. 

Definition 2.1. The convexity functors c,c',o are functors 

from , the category of lattices with topologies and con-

tinuous homomorphisms, back into . The functors are de-

fined as follows: 

(a) The functor c assigns to an object (L,1() the object 

(L,c(1{)) where is the topology generated by the open, 

convex elements of l( ; 

(b) The functor c« assigns to an object the object 

(L,c(t{)) where c'(t{) is the topology whose closed sets are 

those generated by the closed, convex sets in . 

(c) The functor o assigns to an object the object 

(L, cj(ty)) where is generated by those open sets of M 

which are increasing or decreasing, i.e., those U € %( such 

that M(U) - U or L(U) - U . 

Proposition 2.2. The functor c resp. c' resp. CT is a re-

flection (categorically) from into the full subcategory 

of lattices with a basis of open, convex sets, resp. with 

topology generated by closed, convex sets resp. with topology 

generated by open, increasing and open, decreasing sets. (For 

the functor c this means that the following triangle can 

always be filled in uniquely to be a commutative diagram for 

any morphism into a locally convex lattice (M,y) 
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(L,c(K)) ^ 

( L ^ ) ^ ( M , R ) 

Similar statements hold for c' and a .) 

Definition 2.3. An intrinsic topology functor r is convex 

resp. closed-convex resp. fully convex if r composed with 

c resp. c' resp. a is again r . 

Proposition 2.4. The topology is coarser than c (ty) 

and c'(K) ; furthermore c(o{V)) = c'(&(&)) = . Hence 

if an intrinsic topology functor is fully convex, it is both 

convex and closed-convex. 

Proof. Since increasing and decreasing sets are convex, every 

member of a(l() will be a member of c(ty) . The complements of 

the open increasing or open decreasing sets are closed de-

creasing or closed increasing sets. Hence the closed sets 

are generated by closed convex sets, and hence every element 

of a(U) is one of c ' (*U) . The rest of the proposition fol-

lows easily. 

Proposition 2.5. The intrinsic topology functors I, and 

à are all fully convex, hence convex and closed-convex. 

Proposition 2.6. Let r he an order compatible intrinsic 
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topology l'une tor. If r is convex, then I < T < c(D) . 

If r is fully convex, then I < r < S . 

Proof, If r < D and T is convex, then r = c(T) < c(D) . 

Similarly if r is fully convex, then r < a(D) . By Pro-

position 1.22 z < D ; hence a(D) > a(Z) = t, . On the 

other hand a subbasic closed set in A(D) is an increasing 

or decreasing set which is Dedekind closed, and hence in s 

Thus a ( D ) < S . Hence E - CT(D) and r < Z . 

III. Complete Lattices. 

The main purpose of this paper is to study intrinsic 

topologies in complete lattices and in compact topological 

lattices and semilattices. A basic and non-trivial result 

is the following result of Rennie ([19] or [20]). 

Theorem 3.1. For a complete lattice L , c(x) < 0 . 

(Note: Rennie denotes the topology c(x) by L ; we shall 

call it the convex order topology. Rennie actually proved this 

theorem for conditionally complete lattices.) 

Corollary 3.2. For a complete lattice L , c(0) = c(D) = 

c(X) . 

Proof. Since c is a functor on & , it follows from 

Proposition 1.22 that c(0) < c(D) < c(x) . But since 
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c ( X) < 0 and c is a reflection, c(y) < c(0) . 

Diagram 3.3. The following is a Hasse diagram for the prin-

cipal intrinsic topology functors which we have considered for 

the category of complete lattices. M . Stroble is preparing a 

master's thesis which contains a much more exhaustive account 

of relationships between intrinsic topologies. All dominations 

in the diagram are fairly easy to establish either by straight-

forward arguments or using earlier results. 

Diagram 3.3 

Proposition 3.4. For complete lattices, 

E - <*(x) = a ( £ ) = a(0) = cr(WO) = 

Proof. By Proposition 2.6 we have CT(D) < S 

a reflection and E is fully convex 

= s(c(x)) • 

Since a is 
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x: = A ( s ) < ^ ( 0 ) , a ( W O ) , C T ( W L # ) , a ( c ( x ) ) < ct(D) < S , w h i c h 

shows all equalities except 2 = c(x) • Now 

E - CT(E) < OR(X) - aa(x) < °c(x) < 2 ; hence E = A(x) . 

Because of the extensive collapsing that takes place 

at c(0) and E , these two intrinsic topology functors 

are of special interest. They are the finest linear topologies 

that are convex and fully convex resp. 

We turn now to consideration of the behavior of these 

topologies with respect to subspaces, products, and homomor-

phic images. 

A . Subspaces. Most intrinsic topologies of Diagram 3.3 

are hereditary for complete sublattices. 

Proposition 3.5. Let L be a complete lattice and let M 

be a complete subset of L . Then for the functors 

D, 0, W O , WL^, LK, K, L^, and I the topology assigned 

to M agrees with the one assigned to L restricted to M . 

For s and c(0) the identity function on M is continuous 

from the topology assigned to M to the subspace topology 

and vice-versa for A . 

Proof. All the verifications are quite straight-forward. For 

A note that an ideal P in M maximal with respect to missing 

x• € M can be extended to an ideal in L maximal with respect 
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to missing x whose intersection with M is P . 

Note that a complete sublattice is closed in the K 

topology and hence in any finer topology on L . 

B. Products. Proposition 3.6. Let {L : a € A) be a collection 
a 

of complete lattices. For all intrinsic topology functors of 

Diagram 3.3 the identity function from n with the topology 

assigned to it by the functor to the product topology of the 

topologies assigned to each coordinate is continuous. The 

interval topology I is productive. 

C. Homomorphic images. Continuity in intrinsic topologies 

we are considering is closely related to the preservation of 

limits of increasing and decreasing nets. 

Definition 3.7. Let L and M be complete lattices. An 

order-preserving function f from L into M is linearly 

complete if for any chain C in L f(inf C) = inf f(C) 

and f(sup C) = sup (f(C)) ; f is complete if for any 

x a f x and we have f(x f t) f f(x) and f ( y p ) i f(y) . 

Note that for the case f is a homomorphism, f is complete 

if and only if f preserves arbitrary Joins and meets. 

Proposition 3.8. Let f be an order-preserving function from 

L to M which is continuous from the Dedekind (chain) topology 

on L to the interval topology on M . Then f is complete 
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(linearly complete). 

Proof. Let x T x . By Proposition 1.20(a) {x ) converges 
cc a 

to x in the Dedekind topology. Hence ( f ( x
a ) } converges 

to f'(x) in the interval topology on M . By 1.20(b) 

f ( x a ) f f(x) . Similarly x implies f(x f(x) . 

Hence f is complete. 

The linearly complete case is analogous. 

Proposition 3 . 9 . Let L and M be complete lattices and 

let f be an order-preserving function from L into M . 

The following are equivalent: 

(1) f is continuous from L into M for the intrinsic 

topology r where r = x* c ( x ) = C ( E ) > o r 

E = a(x) - a(D) ; 

(2) f is complete; 

(3) f is linearly complete. 

Proof. Suppose f is continuous for c(D) . Then 

(L,D) (L,c(D)) i (M,c(D)) (M,I) is continuous. Hence 

by 3.8 f is complete. 

Conversely suppose f is complete. Let U be a basic 

convex open set in M which has Dedekind closed complement. 

Then f~"^(u) is convex and it follows easily since f is 

complete L\f~^(U) = f~"~*"(M\U) is Dedekind closed since 
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M\U is. Hence f*~
1
(U) is open in L . Thus f is continuous 

from (L,c(D)) to (M,c(D)) . Hence if r = c(D) , 

(1) is equivalent to (2). 

In a strictly analogous manner (1) is equivalent to (3) 

if r = c(x) . But since for complete lattices, c(x) = c(D) , 

we have (2) is equivalent to (3). 

The proofs that (1) is equivalent to (2) for T = D and 

(1) is equivalent to (3) for T = X and cr(x) = s follow 

the pattern of the previous proofs. 

proposition 3.10. Let L and M be complete lattices and f 

a lower homomorphism (i.e., f(xAy) = f(x)Af(y)) from L into 

M . Then f is complete if and only if f is continuous for 

the intrinsic topology T where r = L^ , W L ^ , or LK . 

Proof. That f is complete if f is continuous for r fol-

lows from 3.8 in a fashion analogous to the use of 3.8 in the 

proof of 3.9. 

Conversely, suppose f is complete. For any non-empty 

subset A of L , let a = inf A . We show f(a) = inf f(A) . 

Now the set { a ^ ... A a
n : n e w , e A for I = 1, 

directed by itself descends down to a . Then the image net 

{f(a 1)A ... Af(a ): n € m 9 a i g A for i = 1,«'.,n) descends 

to f(a) (by completeness) and to inf (f(A)) (by its definition). 

Since f is complete and we have just seen that f pre-

serves arbitrary inf's , it follows easily that f is 

224 



continuous for L ^ since f(v A xftv = v(f(A x f i)) = 
a p>a ' a |3>a p 

= V A f(x ) . 
a 3>a p 

Let B be a lower subsemilattice of Y which is Dede-

-1 

kind closed. Since f is complete f (B) is Dedekind closed 

and since f is a lower homomorphism f - 1 ( B ) is a subsemi-

lattice. Hence f is continuous for LK . 

To show continuity for W L ^ , we first note that the 

inverse image of a point is a Dedekind closed lower subsemi-

lattice and hence contains its inf . Suppose that the 

net { x a ) weakly lower order converges to x , i.e., 

x e n {Xpip > a ) A r: L(x) . 
a 

Let B be a Dedekind closed lower semilattice containing 

residually many of the set {f(x )} . Then f - 1 ( B ) contains 
cc 

residually many of the set and we have just seen that 

f~"l"(B) is a Dedekind closed lower subsemilattice. Hence 

it must be the case x g f~"*"(B) , and hence f(x) € B . 

Thus 

f(x)cn {f(x B):P > a } A . 
a p 

Let A be a Dedekind closed lower semilattice containing 

residually many of {x ) . Since f is a lower homomorphism, 
(X 

f'(A) is a lower semilattice. Let {y } be an ascending 
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resp. descending net in converging to y . Then 

fl A is a Dedekind closed lower semilattice, and 

hence has a least element a . If y < y r , then 
Y Y — Ô 

f ( a
y A a ô ) = f ( a y ) A f ( a ô ) = y y A y ô = y y ; hence 

= a
Y

A a 5 i i.e., a y < a^ . Thus { a y } is an ascending 

resp. descending net in A . Since A is Dedekind closed, 

the limit a of i s i n A • Since f is complete 

y = f(a) € f(A) . Thus f(A) is Dedekind closed. 

Now let b € n {f(x > a ) A . 
a p 

Then for any a 9 f'({x :3 > a ) A ) is a Dedekind closed lower 

subsemilattice of M and hence contains (f(Xp):|3 > a } A
 9 

and in particular contains b . Let t be the least element a 

of f - 1 ( b ) n > a } A . Then {t^} is an increasing net 

and increases to some element t . Since f ^(b) is Dedekind 

closed, t € f (b) . Since {t } is eventually in any set U> 

l> B:p > a ) A * "then t e n {xft:p > a) . Thus t < x . Hence p a p — 

b = f(t) < f(x) . Thus {f(x )} weakly lower order converges 

to f'(x) . From this fact it follows easily that f is con-

tinuous for W L ^ . 

proposition 3.11. Let L be a complete lattice and f a ho-

momorphism from L into M . Then f is complete if and 

only if f is continuous for the intrinsic topology r where 

p = 0 , K , or I . 
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Proof. That f continuous implies f is complete follows 

as in 3.9 and 3.10 . W e saw in 3.10 that a complete lower 

homomorphism preserves arbitrary meets. Hence f preserves 

arbitrary joins and meets. It follows easily that the inverse 

of* a closed set is closed with respect to the order topology; 

hence f is continuous for 0 . 

We also saw in 3.9 that the inverse of a Dedekind closed 

set is Dedekind closed, and since f is a homomorphism, the 

inverse of a lattice is a lattice. Hence f is continuous 

with respect to K . 

If L(y) is a subbasic closed set in M with the inter-

val topology, then f (L(y)) is a Dedekind closed sublattice, 

-1 
and hence has a largest element x . Then f (L(y)) = L(x) 

-1 

and hence is closed. Dually f~ (M(y)) is closed. Thus f 

is continuous. 

Proposition 3.12. Let f,L and M as in 3.11. If f is a 

complete homomorphism, then f Is continuous for the intrinsic 

topology à . 

Proof. Let U in M be a subbasic open set, an ideal maximal 

-1 

with respect to missing y . Then f (U) is an ideal maximal 

with respect to missing x , the least element of f
_ 1
( y ) . 

Hence f is continuous. 

Propositions 3.9 through 3.12 allow one to consider the 
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IV. Complete Semilattices. 

A meet semilattice S Is said to be complete if every 

non-empty subset has a greatest lower bound and if every 

ascending net ascends to some element of S . For complete 

semilattices S if x e S then L(x) is a complete lattice 

(if 0 4 A c L(x) , then sup A = inf {b:a € A implies a < b}). 

Hence if S has a 1 , S is a complete lattice. 

Many of the intrinsic topologies for complete lattices 

together with their properties transfer to complete semilattices. 

As a matter of fact the ones which are not self-dual were 

motivated by the semilattice case. Also the functors c , 

c ! , and a can be defined for the category of complete 

semilattices. 

Proposition 4.1. Let S be a complete semilattice. Then 

c(D) = c ( x ) on S . 

Proof. Since D < x w e ^ a v e C ( D ) < c ( x ) • We show c ( \ ) < D . 

It w i l l then follow that c(x) = c(c(x)) < c(D) , completing the 

proof. 

Let U be a basic convex open set in c(x) . We show 

U is open in D by showing that its complement is closed. 

Suppose {x^} is a net in S\U and x a ^ x where x e U . 

Let A be a maximal descending i.e., downward directed 

family containing the set { x a )
 i n M(x)\U . 
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intrinsic topologies -within a larger framework. They can be 

viewed as functors from the category of complete lattices with 

morphisms complete homomorphisms to the category of complete 

lattices with a topology and morphisms continuous homomor-

phisms. We summarize some of the results of this section. 

Proposition 3.13. Let f be a homomorphism from a complete 

lattice L into a complete lattice M . 

The following are equivalent: 

(1) f is continuous for any intrinsic topology r of* Dia-

gram 3.3 except A ; 

(2) f is complete; 

(3) f is linearly complete; 

(4) the inverse of a point has a least and greatest element. 

Proof. That (1) and (2) are equivalent follows from 3.9, 3.10, 

and 3 . 1 1 . That (2) and (3) are equivalent follows from 3.9. 

From the proof of 3.10 it follows that (2) implies (4). From the 

proof that (2) (1) for the interval topology I , all that 

was needed was that f satisfy (4) . Hence (4) implies (1) 

for r = I . 

Problem 3.14. Given the hypotheses of Proposition 3.13, for 

which intrinsic topologies is f a closed map? 
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We note first that M(A) = A . For if A is descending, 

then M(A) is descending. Also if b > a for some a e A , 

then we have b > a > x . Since a jL U and U is convex, 

we have b fL U . Hence M(A) is a descending family in 

M(x)\U which contains A . Since A is maximal, M(A) = A . 

Secondly we note A is a subsemilattice. For if 

a,b G A , then since A is descending there exists c € A 

such that a > c and b > c . Thus aAb > c . Since 

A = M(A) , aAb € A . 
Thirdly we note that if p e M(x) , then p e A if 

pAa i U for all a e A . For in this case (PAA) U A is a. 

descending set missing U and containing A , and hence 

must be A by maximality of A . 

Now let P be a maximal chain in A , and let p = inf P . 

Since A n U - 0 and U is open in c(x) and hence y , 

we have p £ U . Let a e A . Then by the second note aAP c A . 

Since p = inf P , we have aAp = inf (aAP) . But again since 

U is X open, aAp ^ U . Hence by the third note p € A . 

Hence by the second note if b € A , then bAp € A . But 

bAp U M is then a chain; thus bAp e M by maximality of M 

in A . Thus bAP = p since p = inf M . Hence p = inf A . 

But x = inf f x a ) > inf A = p . Since p € M(x) , x < p . 

Hence x = p . This is impossible since x e U and p fi U . 

Thus if x x , (x ) c S\U , then x € S\U . 
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If x f x where {x ) c S\U , then applying the 
ct ex* 

techniques of the preceding part of the proof to the complete 

lattice L(x) and the open set U n L(x) , we obtain that 

x £ U . Hence U is open in D , which is the needed result 

to complete the proof. 

Diagram k.2. The following is a diagram of" intrinsic topology 

functors for complete semilattices. 

Diagram k.2 

A l l of these topologies were considered for complete 

lattices in section 3 . Analogous results remain valid for 

complete semilattices and the proofs require only minor mo-

dification. The following two propositions are examples. 

proposition 4,3. Let S and T be complete semilattices and let 

f be a homomorphism from S into T . The following are 

equivalent: 

(1) f is complete; 

(2) f is linearly complete;-

(3) f is continuous for the intrinsic topologies r assigns 

to S and T where r is any intrinsic topology of 
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Diagram 4.2 except I 

Proof. The proofs that f being complete is equivalent to 

f being continuous for D , W L ^ , L ^ , LK, c(D) or S 

are the same as in section 3; also the same proof holds to 

show f being linearly complete Is equivalent to f being 

continuous for X or c(x) . Since by 4.1 c(x) = c(D) , we 

have (2) is equivalent to (1). 

proposition 4.4. Let S be a complete semilattice and T 

a complete subsemilattice. Then the topology that the in-

trinsic topology functor T assigns to T agrees with the 

one restricted to T that r assigns to S for 

r - W L ^ , L*, LK, D and X . 

Proof. Straightforward. 

We now define a functor from the category of complete 

semilattices and complete (semilattice) homomorphisms to the 

category of complete distributive lattices and complete 

(lattice) homomorphisms. 

For a complete semilattice S let |a(S) be the set of 

all non-empty semi-ideals that are Dedekind closed ordered 

by inclusion. Since the finite union and arbitrary intersection 

of Dedekind closed semi-ideals is another such, ^(S) is a 

complete distributive lattice. If S and T are complete 
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semilattices and f is a complete homomorphism from S into 

T , define |a(f):^(S) M-(T) by ^(f) (A) - L(f(A) ) . 

proposition 4.5. The |-i defined in the preceding paragraph 

is indeed a functor from the category of complete semilattices 

and complete morphisms to the category of complete distributive 

lattices and complete morphisms. 

Before the proof of the theorem, we first establish 

two lemmas. 

Lemma 1. If A and B are semi-ideals in S , then 

A a B = AflB . 

Proof. Since AAB C A and AAB C B , we have AAB C AFLB . 
Conversely if x E AFIB , then x = XAX e AAB . 

Lemma 2. If A is a Dedekind complete subsemilattice of a 

semilattice S , then L(A) is Dedekind closed. 

Proof. The set L(A) clearly contains limits of descending 

nets. Let f x
a )

 a n ascending net in L(A), x f x . Since 

A is a subsemilattice and Dedekind complete, M ( x
a ) ^ A 

has a least element a a for each a . Then {a a} is an 

ascending net which ascends to a e A , since A is Dedekind 

complete. Then x < a , and hence x € L(A) . 

Proof (of Proposition 4.5). We have seen already that H(S) is 
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is a complete distributive lattice if S is a complete 

semilattice. Let f:S T be a complete homomorphism of 

complete semilattices. Let A be a Dedekind closed semi-

ideal in S . Then f(A) is a subsemilattice of T . Since 

a complete semilattice homomorphism preserves arbitrary meets, 

f(A) is lower complete. Let {y~3 a in f(A), 
\X 

y „ t y • For each a, 3a e A such that f(a ) = v . Since 
CL a a' cl 

A is a semi-ideal the least element b of f~"^(y ) is 
et w 0/ 

also in A . The net ( b
a 3 is increasing, and hence increases 

to b e A . Since f is complete y = f(b) G f(A) . Thus 

f(A) is Dedekind closed (and thus Dedekind complete). Hence 

by Lemma 2 L( f (A) ) is Dedekind closed. Thus |j(f) is 

indeed a function from p(S) to n(T) . 

Let A and B be Dedekind closed ideals in S . Then 

L(f(AUB)) = L(f(A) U f(B)) = L(f(A)) U L(f(B)) 

and using Lemma 1 

L ( f (AflB) ) - L( f (AAB) ) - L(f(A)Af(B)) = L( f (A) ) AL( f (B) ) 

= L( f (A) ) n L( f (B) ) ; hence |~i(f) is a homomorphism. 

Let {A^) be a descending family of Dedekind closed 

semi^ideals. Then A <1 A where A = n A~ . We have easily a a. «y a 
that 

L(f(A)) = L(f(n A )) c L(n f(A j) c n L(f(A a)) 
a a u a 

Conversely let y e n L(f(A )) . For each a , let a 
a a 
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be the least element of A such that y < f(a ) . For 

indices a , 3 , then f(a^Aap) = f(a^)Af(ap) > y . Hence 

since a„Aa R e A AA = A f t H A D , we have a Aa = a = a 
u , p ° l p u ' P a 3 a 3 

Hence [a ) is a constant net a € n A = A . Thus y € L(f(A)) 
a a a 

Now let { A a } be a net increasing to A . Then for 

all a , A c A implies L(f(A ) ) c L(f(A)) . Hence L(f(A)) 
cc oc 

Is an upper bound. Suppose B is a Dedekind closed semi-

ideal In T containing all L(f(A )) . Since f is complete, 

f _ 1 ( B ) is Dedekind closed and a semi-ideal which contains 

A ^ for all a . Thus f _ 1 ( B ) 3 A , and hence B 3 L(r(A) ) . 

Thus L(f(A)) is the join of the set {L(f(A ))} . OC 

Thus p.(f) is a complete homomorphism. The other func-

torial properties for follow easily. 

V . Algebraically Continuous Operations. 

Definition 5.1. Let S be a complete semilattice. Then 

the meet operation is said to be algebraically continuous 

if for any x + x and any y € S , then x Ay t x/\y • in this 
a a 

case S is said to be meet-continuous. 

One has always that if x ^ x , then x Ay J, xAy > or 
(X a 

more generally, if x^J, x and y^i- y , then ^ A y ^ • 

proposition 5.2. The meet operation in a complete semilattice 

S Is algebraically continuous if and only if x t x
 a n c

* 

y p t y implies x^Ay^f • 
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Proof. The second condition easily Implies the first by 

taking the constant net consisting of the element y . Con-

versely, let x f x and y B f y . Then x A y > x Ayft for all 
oc p (X p 

choices of a and 3 . Suppose z > x Ay D for all a * 3 . 
— a P 

If a is fixed, x Ay Ay . Hence z > x Ay for all a . 
a ^ 3 1 a J — a 

But x Ay f x Ay ; hence z > xAy , i.e., xAy is the join 
a. 

or { x a A y p } . 

Proposition 5.3. The meet operation in a complete lattice is 

algebraically continuous if and only if ( x
a î order converges 

to x and {y } order converges to y implies {x Ay 1 
p a p 

order converges to XAy . 

Proof. See [6, p . 248]. 

Proposition 5.4. In a complete semilattice (lattice) S the 

following are equivalent: 

(1) S is meet continuous; 

(2) For y € Y , the function from S into S which sends 

x to XAy is continuous for the intrinsic topology r ; 

(3) The meet operation is continuous from S x S with the 

r topology to S with the r topology for the intrinsic 

topology functor F . 

For the semilattice case T may be chosen to be any 

topology of Diagram 4.2 except I , and for the lattice case 

any topology of Diagram 3.3 except K, I or A . 
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Proof. Since the rune t ion x xAy for a fixed y is a 

semilattice homomorphism and since one has always x 
(X 

implies XgAyJ, XAy , the function is a complete homomorphism 

for every y if and only if S is meet continuous. The 

equivalence of (1) and (2) now follows from Proposition 4.3 

for the semilattice case, and Propositions 3.9 and 3.10 cover 

all the lattice cases except 0 . Proposition 5.3 shows that 

if the lattice S is meet continuous then translation by y 

is a continuous function in the order topology for each y 

(show the inverse of a closed set is closed). If translation 

by y is continuous in the order topology for each y then 

Proposition 3.8 implies each translation is complete, and hence 

that S is meet continuous. 

The meet operation from S x S to S is a semilattice 

homomorphism which satisfies ir (x ,y ),J/(x,y) , then 
oc cc 

x Ay | xAy . Hence by Proposition 5.2 the meet operation is 
a a, 

complete if and only if S Is meet continuous. The proof 

that (1) and (3) are equivalent now parallels the proof that 

(1) and (2) were equivalent. 

Lemma 5.5. Let S be a semilattice endowed with a topology 

y for which the functions x XAy are continuous for 

every y e S . If U e K , then M(U) € %/ . 

Proof. M(U) = u {x:xAy e U) ; each set in the union is 
yeu 

237 



open since translation by y is continuous. 

Proposition 5.6. Let L be a complete lattice which is both 

meet- and join-continuous. Then on L the c(D) and S 

topologies. 

Proof. Let U be open and convex in the c(D) topology. By 

5.4 the translation functions x XAy are continuous for 

the c(D) topology. Hence by Lemma 5.5 and its dual, M(U) 

and L(U) are open in c(D) . Hence since E = a(D) = a(c(D)) , 

L(U) and M(U) are open in £ . Since U is convex, 

U = L(U) n M(U) is open £ . Since continuity always holds 

in the reverse direction, the proposition is established. 

V I . Topological Semilattices and Lattices. 

The central and most difficult results of the paper lie 

in this and the last section. They concern the problem of 

starting with a compact topology on a semilattice or lattice 

and trying to identify it as an intrinsic topology. 

Definition 6.1. Let S be a semilattice endowed with a to-

pology l( . If the function from S into S defined by 

x XAy is continuous for each y e S , then S is a semi-

topological semilattice. If the meet operation from S x S 

with the product topology into S is continuous and S is 

Hausdorff, then S is a topological semilattice. A lattice 
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L endowed with a topology y Is a semltopological (topological) 

lattice if L is a semitopological (topological) semilattice 

with respect to both the meet and the join operations. 

Proposition 6.2. Let (S,t() be a compact Hausdorff semito-

pological semilattice. Then S is complete and %{ is order 

compatible. 

Proof. Let x e S . Then L(x) = SA{x} is compact since S 

is compact and translation is continuous; thus L(x) is closed 

since S Is Hausdorff'. Now M(x) = ( y : y A X = x) is closed 

since {x] is closed and translation by x is continuous. 

Thus we have the identity function from (S,I) is con-

tinuous . 

Now let fx ) be an increasing net in S . Then fx } 
cr L a 

clusters to x for some x e S since S is compact. By 

Proposition 1.20(b), x t x • A similar result holds for 

decreasing nets. Hence S Is Dedekind complete (and hence 

complete) and the net ( x
a } must converge to its least upper 

bound If increasing and greatest lower bound if decreasing. 

This implies (S,D) (SjU) is continuous, i.e., (S,t() is 

order compatible. 

proposition 6.3. Let S be a compact Hausdorff first countable 

semitopological semilattice. If a sequence { x
n 3 n - l clusters 

to x , then there exists a subsequence for which x is the 
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lim ini' or both the subsequence and any subsequence o f the 

s u b s e q u e n c e . 

P r o o f . Let be a countable base at x . Set V Q = W ^ . 

* 
P i c k V ^ , an open set, such that x € V 1 c V ^ c W ^ and 

XAV^ C W ^ . Pick an o p e n set 0 such that XAO C V ^ . P i c k 

y n = € 0 fi V-, . Suppose {V. and {y. = x J 1 N ^ 1 I J I ^ O 2. N ^ J I = L 

have been chosen satisfying for all i = l , * ' ' , k - l : 

(1) V i is open; 

(2) x g V i c V * c W i n V j _ 1 ; 

(3) V . A y , . , c v ^ ; 

(4) y 1 G V . and x/\yi G V ± . 

Then by regularity there exists an open set U such that 
* 

x e U c U c W ^ 0 • Since X A y ^ _ i e V k - 1 5 t h e r e exists 

an open set c U such that x e and V ^ A y ^ ^ c . 

Pick an open set P such that P c and XAP <Z V ^ . 

Pick y ^ = x g P . C o n t i n u i n g the p r o c e s s i n d u c t i v e l y one 
r -oo 

gets a sequence of open sets { V \ j Q and a s u b s e q u e n c e 

of { x n } s a t i s f y i n g ( l ) - ( 4 ) . 

Now for p o s i t i v e integers n and k , 

y n
A y n + l A - • • • A y n + k 6 y n A • • • A y n + k - 2 A ( y n + k - l A V n + k ) 

C y n A ... A y n + k - 2
A V n + k - l 

c y n A ... A V n + k _ 2 

c V n 
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For a fixed n , - y n A ... A y n + k is a decreasing s e q u e n c e . 

Hence by P r o p o s i t i o n 6.2 w e have z ^ ^ ^ z
n
 a n < ^ s e c l u e n c e f z

n 

converges to . Since each z e V w e have 
° n n,k n 
* 00 

z e V c ¥ . If n < m , then z < z (since z = A y . 
n n n — n — m v n . J i 

00 

and z
r a = A y . ) . Hence {z } increases to some z , and 

hence converges to z . Since the sequence is eventually 
* * 

in V for each n , w e have z e n V c n W . Hence ïi 2"1 3T1 

z = x . This shows x is the lim inf o f the subsequence 

{y^} . By techniques analogous to those already e m p l o y e d , 

one shows that any subsequence of (y n3 has lim inf in 

fl¥n ; hence the 11m inf m u s t be x . 

D e f i n i t i o n 6 . 4 . If S is a s e m i l a t t i c e , the graph of the 

p a r t i a l order on S is the set 

G r ( < ) ^ {(x,y) e S x S: x < y ) . 

A b a s i c fact concerning t o p o l o g i c a l semilattices is the 

following w e l l - k n o w n r e s u l t . 

P r o p o s i t i o n 6 . 5 . A t o p o l o g i c a l semilattice has closed g r a p h 

In the p r o d u c t t o p o l o g y . 

P r o o f . Let S b e a t o p o l o g i c a l s e m i l a t t i c e . Then S is 

is H a u s d o r f f ; so the d i a g o n a l A of S x S is a closed 

s e t . D e f i n e a continuous function f:S x S S x S by 
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f ( x , y ) - (x,xAy) ; then G r ( < ) - f (A) and hence is c l o s e d . 

T h e o r e m 6 . 6 . L e t S be a compact H a u s d o r f f s e m i t o p o l o g i c a l 

s e m i l a t t i c e . Then S is a t o p o l o g i c a l s e m i l a t t i c e (and 

hence G r ( < ) c l o s e d ) . 

P r o o f . First w e assume S is in a d d i t i o n m e t r i z a b l e . In 

this case w e w i s h to show that G r ( < ) is c l o s e d . L e t 

{ ( x n , y n ) } ^ _ 1 be a sequence in G r ( < ) w h i c h c o n v e r g e s to (x,y) 

in the p r o d u c t topology of S x S . By P r o p o s i t i o n 6.3 there 

exists a subsequence ( x
n > ) such that 

x = v A x 
i J>i n j 

For the s u b s e q u e n c e of the ( y n ) c o r r e s p o n d i n g to the one chosen 

for {x } ,• there exists by 6.3 again a s u b s e q u e n c e of this 

subsequence w i t h y as the lim inf . D e n o t e this sub-sub-

sequence by ( y n ) and the c o r r e s p o n d i n g one for ( x
n 3 by 

(
x

n ) (
b
y 6.3 the latter still has x as its lim i n f ) . Then 

x = v A
 x ' < v A y' - y . 

n m > n n m > n 

Thus (x,y) e G r ( < ) . Now by P r o p o s i t i o n 7 A o f [16] a compact 

H a u s d o r f f s e m i t o p o l o g i c a l s e m i l a t t i c e w i t h closed g r a p h is a 

t o p o l o g i c a l s e m i l a t t i c e . This concludes the p r o o f for the 

case S Is m e t r i z a b l e . 
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The n o n - m e t r i z a b l e case follows from a reduction to the 

m e t r i c c a s e . The reduction is analogous to that given in Theorem 

5.1 of [16]. I am currently p r e p a r i n g for future p u b l i c a t i o n 

a g e n e r a l r e d u c t i o n technique w h i c h w i l l include b o t h c a s e s . 

P r o p o s i t i o n 6 . 7 . Let S be a complete semilattice (lattice). 

T h e n the g r a p h of the p a r t i a l order is closed in the topology 

r assigns to S x S for T = D , W L ^ , and 

L K ( T - X , D , 0 , W O , L ^ , W L * , and LK) . 

P r o o f . M o s t of the p r o o f s follow easily from the definition 

o f the t o p o l o g y . A s s u m e {(x ,y )) is a n e t in Gr(<) w h i c h 
cx oc 

w e a k l y lower converges to (x,y) . Then 

x e H {x : 3 > a } A c: n L({y :(3 > a ) A ) ; the latter containment 

A A A 
holds b e c a u s e L({y^: 3 > a) ) is lower complete and D e d e k i n d 

c l o s e d (as w e saw in L e m m a 2 of Proposition 4.5) and contains 

[ x n : 3 > a) . L e t z„ be the least element of fy : (3 > a } A 

L (3 — J a 3 

w h i c h is larger than x . Then {z } is an increasing net w h i c h 
a 

is e v e n t u a l l y In each 3 > 0c]A \ thus if z e S is the 

p o i n t such that z f z , then 

x < z e n {y : 3 > a ) A c L ( y ) . 
a

 p 

Hence x < y . The case for w e a k lower star c o n v e r g e n c e 

follows from the above by taking s u b n e t s . 

Note that G r ( < ) is lower c o m p l e t e , and hence closed in 
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the LK t o p o l o g y . 

If G r ( < ) is c l o s e d , then G r ( > ) is closed for an 

intrinsic topology since the coordinate r e v e r s i n g function 

is an a u t o m o r p h i s m . Hence A = G r ( < ) H G r ( > ) is c l o s e d . 

If the intrinsic topology is also p r o d u c t i v e , then of 

n e c e s s i t y it m u s t be H a u s d o r f f . S i n c e E . E. F l o y d [8] 

has g i v e n an example of a n o n - H a u s d o r f f c o m p l e t e lattice 

w i t h respect to every l i n e a r t o p o l o g y , it follows that any 

lattice topology in P r o p o s i t i o n 6.7 is not p r o d u c t i v e for 

this lattice (that the order is p r o d u c t i v e is i n c o r r e c t l y 

stated in [9]). 

The next p r o p o s i t i o n is a k e y t o o l in i d e n t i f y i n g a 

topology as an intrinsic t o p o l o g y . F i r s t , h o w e v e r , w e Intro 

duce some a d d i t i o n a l n o t a t i o n . If A is a subset o f a 

complete s e m i l a t t i c e S , then 

A + = {x: there is a n e t f x l in A w i t h x * 
G a

 1 

and A~ is defined d u a l l y . 

P r o p o s i t i o n 6 . 8 . L e t S be a compact t o p o l o g i c a l semi-

lattice and let T be a s u b s e m i l a t t i c e o f S . Then 

T* = T " + _ + . If T is a s e m i - i d e a l then T* = T + + . 
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P r o o f . Since T is c l o s e d , it is D e d e k i n d closed by Propo-

( i 
s i t i o n 6 . 2 . Hence T 3 T . 

* 

C o n v e r s e l y , let x e T . Choose by continuity o f 

m u l t i p l i c a t i o n a sequence f w
n

: n e satisfying for a l l n 

(i) X e W ^ , W n = W* 

(ii) W n A M n C w ^ . 
Choose for each n an element x n € W ^ H T . By techniques 

00 
a n a l o g o u s to those in 6.3 w e have z = A x . € w . Hence 

n . i n 
i=n 

z = v z = v A x is in n W . Since T is a subsemi-

n n
 n m > n n _ n e ^ n 

l a t t i c e , w e have z n e T~ . Hence z e T~ . Thus 

( T " + ) n ( n w ) 4 0 . 
negu 

—+ i 

Now T is a s u b s e m i l a t t i c e since a L a , b X b im-

p l i e s a ^ A b^J, aAb (always) and a f a and b a f b implies 

a A b 1s aAb (by joint c o n t i n u i t y ) . A l s o by condition (ii) QC »» 
H W R is a compact s e m i l a t t i c e . Hence w , the m e e t of 

new 

(T"+) n ( n W ) ^ 0 is the limit o f a descending net in 
-+ n € a ) -+-

T (and hence is in T ) and is in n W . 
neuu 

¥ e show that w , the m e e t of (T""+) H ( n M ) , is 

neu) n 

less than or equal to x . If n o t , by closed g r a p h , there 

exists an open set A c o n t a i n i n g w and an open set B con 

t a i n i n g x such that if a € A and b e B , then a / b , 
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H o w e v e r , w h e n one w a s choosing all the { W n ) in the earlier 

p a r t of the p r o o f , they could have b e e n chosen so that W n c B 

for a l l n . If z w a s again the lim inf of f x n ) , each 

x n e W n , then z e B and z e T ~ + . Hence w < z , a 

c o n t r a d i c t i o n . 

Now let D be the set of a l l sequences { W n : n g uj} 

s a t i s f y i n g (i) and (ii). If {V } e D , w e define 

{ W n } > {V^} if ¥ n c V n for all n . It is s t r a i g h t f o r w a r d 

to v e r i f y that (D,<) is a d i r e c t e d s e t . For each » 

i_ 
c h o o s e w , the m e e t of (T ) n ( H W ) . This defines 

new n 

an a s c e n d i n g net w i t h all elements in the n e t below x . Since 

any c l o s e d n e i g h b o r h o o d of x can be chosen as a W ^ for 

some sequence in the n e t , and the w chosen for this sequence 

w i l l be in W ^ > then eventually the net is in any o p e n set 
l—f-

a r o u n d x . Thus it a s c e n d s to x . Hence x e T . Thus 

* - + - + 

T = T . 

If T is a s e m i - i d e a l , then T~ = T . To f i n i s h the 

p r o o f , w e show T = T . W e a c t u a l l y show T is a semi-

i d e a l . Let a e T and let x < a . T h e n there exists an 

a s c e n d i n g net { a } in T such that a t a , By c o n t i n u i t y 

o f the m e e t o p e r a t i o n s a ^ t &AX = x . Since T is a semi-
a 

i d e a l , a AX e T for a l l a . Hence x € T + . This concludes 
a 

the p r o o f . 

T h e o r e m 6 . 9 . Let (S,t() bo a compact t o p o l o g i c a l s e m i l a t t i c e 
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I f fx } converges to x in fy , then {x } w e a k l y lower 
cx oc 

c o n v e r g e s to x . Conversely if C x
a 3 w e a k l y lower star 

c o n v e r g e s to x , then {x ) converges to x in y . Hence 
a 

the topology U is the W L ^ t o p o l o g y . 

P r o o f . S u p p o s e {x 3 converges to x in ty . By P r o p o s i t i o n 

6.8 for any a , the set {x^: (3 ' > a } A is closed in k 

(since it is a D e d e k i n d closed s e m i l a t t i c e ) . Hence 

x e n (x : '3 > a } A . 
a p 

S u p p o s e y e n { x B : p > a ) A . If' y K x , then there 
a p 

exist by c l o s e d g r a p h open sets A and B such that y G A , 

x e B and if a G A , b G B , then a ^ b . There exists an 

i n d e x Y such that if a > y , then x € V , . w h e r e 

x G V° D V c B . Then P = {x : a > Y } c B . Now P is a 

c l o s e d , hence c o m p a c t . Then L ( P ) is closed [17, p . 

and hence D e d e k i n d c l o s e d . L(P) is also a s u b s e m i l a t t i c e . 

If t G L ( P ) , then there exists b e B such that t < b . 

Hence t £ A . Thus n {x f t: 3 > a ) A
 c { x . p > y } A

 c L ( p ) # a P P 

B u t y £ L ( P ) , a c o n t r a d i c t i o n . Thus n { x R : p > a } A c L ( x ) . 
a p 

Hence fx } w e a k l y lower converges to x . 

C o n v e r s e l y , let f x
a } w e a k l y lower star converge to x . 

I f {x 3 fails to converge to x , then there exists y G S , 
a 

y £ x such that fx } clusters to y . T h e n a subnet of the 
a 

{x ) converges to x . Since {x ) w e a k l y lower star con-

247 



v e r g e s to x , a subnet of this subnet w e a k l y lower c o n v e r g e s 

to x . But this s u b - s u b n e t still converges to y , a n d 

hence by the f irst p a r t of the p r o o f w e a k l y lower c o n v e r g e s 

to y . Since a n e t can w e a k l y lower converge to a m o s t 

one p o i n t , x = y , a c o n t r a d i c t i o n . Thus {x } c o n v e r g e s 
cc 

to x . 

T h e o r e m 6 . 1 0 . L e t b e a compact t o p o l o g i c a l l a t t i c e . 

Then {x } converges to x in ty if and only if {x ) w e a k l y 
& a 

order converges to x . The c (0), W O , W L ^ , and £ t o p o l o -

g i e s agree and are e q u a l to l( . 

P r o o f . If C x
a 3 converges to x , t h e n by T h e o r e m 6.9 a n d 

its d u a l it w e a k l y lower converges and w e a k l y u p p e r c o n v e r g e s 

to x . Hence {x } w e a k l y order converges to x . 

Conversely let {x } w e a k l y order converge to x . Then 
CC 

if { x
a 3 fails to c o n v e r g e to x , some subnet converges to 

y 4 x . T h e n the subnet w e a k l y order converges to y b y 

the first p a r t of the p r o o f . Hence 

y e n {x : p. > a.}A c n {x : p > a.}A c L ( x ) ; 
a. Pi J a . p J 

J 3 

similarly y e M ( x ) . Thus y = x , a c o n t r a d i c t i o n . 

It now follows immediately that l{ = WO . By Theorem 6.9, 

l( = W L ^ . By D i a g r a m 3 . 3 , (L,W0) -> (L,Z) is c o n t i n u o u s . 

By Proposition 5.6, s = c(0) . By [17, p. 48], since L has 
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c l o s e d g r a p h , the closed semi-ideals of L and the c l o s e d 

d u a l semi-ideals form a subbase for the closed sets. Hence 

(L, £) (L,t() is c o n t i n u o u s , i . e . , they a g r e e . 

A n a l t e r n a t e p r o o f that %{ = c(0) may be found in [15]. 

P r o b l e m 6 . 1 1 . M u s t 1{ in 6.10 also be the 0-topology? 

The c h a r a c t e r i z a t i o n s in this section are quite u s e f u l in 

the study of t o p o l o g i c a l semilattices and l a t t i c e s . T h e y 

r e d u c e the study to certain algebraic categories w i t h continuous 

h o m o m o r p h i s m s c o r r e s p o n d i n g to complete h o m o m o r p h i s m s . 

V I I . S m a l l S e m i l a t t i c e s and L a t t i c e s . 

A n important class of t o p o l o g i c a l semilattices (lattices) 

are those w h i c h p o s s e s s a b a s i s of n e i g h b o r h o o d s at each p o i n t 

w h i c h are s u b s e m i l a t t i c e s ( s u b l a t t i c e s ) . W e say such semi-

l a t t i c e s (lattices) have s m a l l semilattices (lattices). Some 

o f the b a s i c p r o p e r t i e s of semilattices w i t h small semilattices 

m a y b e found in [ 1 3 ] . 

p r o p o s i t i o n 7 . 1 . Let (S,?^) be a compact t o p o l o g i c a l semi-

l a t t i c e w i t h s m a l l s e m i l a t t i c e s . Then the L^* a n d LK 

t o p o l o g i e s agree and are a l l equal to U , F u r t h e r m o r e a net 

[x ) converges to x in K if and only if {x ) lower 
a a 

star c o n v e r g e s to x . 
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P r o o f . W e begin w i t h the last a s s e r t i o n f i r s t . Let fx } 
a 

c o n v e r g e to x in ty . T h e n for any fixed a , let 

Y „ = A X Since [(y , x Q ) : |3 > a } is a subset of G r ( < ) a |3>a P a P -
for any fixed a and G r ( < ) is c l o s e d , w e have y < x 

~ cx — 
for a l l a . Given any n e i g h b o r h o o d N of x , there exists 

•x-
a n e i g h b o r h o o d M o f x such that M c N and M is a 

s u b s e m i l a t t i c e . There exists an index y such that x e M 
a 

for a > Y . Since M is a s u b s e m i l a t t i c e a l l finite m e e t s 

of the set {x : a > Y 3 are again in M ; hence y c e M cx p 
for p > Y T h e n {y 3 i s eventually in any open set a r o u n d 

—" a 

x , a n d so m u s t a s c e n d to x . Thus x is the lim inf of 

the n e t * 

C o n v e r s e l y , let f x
a 3 lower star converge to x . I f 

{x 1 clusters to y , then there is a subnet w h i c h c o n v e r g e s . 

By the first or this p r o o f any subnet or this subnet m u s t have 

y for its lim i n f . Hence y = x , and thus ( x
a 3 converges 

to x . 

It follows easily from what we have just shown that 

V = L*- • By 6.9 K = WL* . 

W e show t( = L K by showing L K is H a u s d o r f f ; this w i l l 

be s u f f i c i e n t since is compact and (S,V) = ( S , L # ) (S, 

is continuous (Diagram 4 . 2 ) . 

L e t x , y e S , x / y . W e may assume x £ y . Since 

S has small s e m i l a t t i c e s , there exists z < x , z e S\L(y) , 
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such that x e M(z)° . Then M ( z ) and (S\M(z))* are 

lower complete s e t s . Their complements are open sets in LK 

separating x and y . 

P r o p o s i t i o n 7 . 2 . Let be a compact topological lattice 

such that each p o i n t has a basis of* neighborhoods w h i c h are sub-

l a t t i c e s . Then f x
a 3 converges to x in y if and only if 

f x ! order converges to x . Furthermore y = 0 = I and all 
a ^ 

topologies in b e t w e e n 0 and I in Diagram 3 . 3 . 

P r o o f . If {x ] converges to x in y , then by the first a 

p a r t of the p r o o f of 7 . 1 and its dual, order converges 

to x . 

Conversely suppose ( x
a 3 order converges to x . Then 

{x 3 converges to x in the order topology and hence con-
a 

v e r g e s to x in the W O topology (Diagram 3.3) w h i c h is the 

y topology (6.10). Hence it follows that y is the order 

t o p o l o g y . 

A g a i n w e complete the p r o o f by showing I is H a u s d o r f f . 

Suppose f x
a ) I s a L . Then since L is compact 

H a u s d o r f f , some subnet converges to some x , and hence by 

the first p a r t of the p r o o f order converges to x . By a 

result of K . A t s u m i Theorem 3] L w i t h the interval 

topology is H a u s d o r f f . 
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W e now turn our a t t e n t i o n to the converse p r o b l e m . W e 

w i s h to p o s t u l a t e algebraic c o n d i t i o n s w h i c h w i l l be suffi-

cient to insure t h a t a semilattice a d m i t s a topology w i t h 

s m a l l s e m i l a t t i c e s . F i r s t , h o w e v e r , w e give a p r e l i m i n a r y 

result concerning c o m p a c t n e s s . This g e n e r a l i z e s results o f 

F r i n k , w h o showed the i n t e r v a l t o p o l o g y w a s compact In a 

complete lattice [9]* and I n s e l , w h o showed the complete 

t o p o l o g y w a s compact in a complete lattice [ 1 1 ] . 

P r o p o s i t i o n 7 . 3 . L e t S be a complete s e m i l a t t i c e . T h e n 

S w i t h the LK topology Is c o m p a c t . 

P r o o f . Let [A ) be a c o l l e c t i o n o f D e d e k i n d closed lower 
a 

s u b s e m i l a t t i c e s of S w i t h the finite i n t e r s e c t i o n p r o p e r t y . 

For each finite subset {A ) p i c k the least element o f 

n 1 «n 

Q A . W i t h the finite subsets o r d e r e d by i n c l u s i o n , these 
cx 

least elements form an a s c e n d i n g n e t and hence a s c e n d to some 

element a . Since each A is D e d e k i n d c l o s e d , a e n A 
a a a 

Since the D e d e k i n d closed lower s u b s e m i l a t t i c e s form a 

subbase for the c l o s e d sets o f S , by A l e x a n d e r ' s l e m m a , 

L is c o m p a c t . 

W e are now ready for a converse to P r o p o s i t i o n 7 . 1 . 

P r o p o s i t i o n 7 A . L e t S be a complete s e m i l a t t i c e in w h i c h 

the meet o p e r a t i o n is a l g e b r a i c a l l y c o n t i n u o u s and the 
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L K topology i s H a u s d o r f f . Then S w i t h the LK topology is 

a compact t o p o l o g i c a l semilattice w i t h small s e m i l a t t i c e s . 

P r o o f . By 7.3 S is c o m p a c t . By the meet operation 

is separately continuous for LK . Hence by 6.6 S is a 

t o p o l o g i c a l s e m i l a t t i c e . 

W e show now that S has small s e m i l a t t i c e s . W e first 

consider the case that S has a largest element 1 , and 

show S has small semilattices at 1 . L e t U be an open 

set, 1 € U . Since G r ( < ) is c l o s e d , by a result of 

N a c h b i n [ 1 7 ] , there Is a convex open set V w i t h 1 G V c U . 

T h e n A = S\V Is compact and d e c r e a s i n g . 

Since the LK topology is H a u s d o r f f , for each a € A , 

there exist basic open sets P a and Qa in the LK topology 

w i t h a g P0 , 1 e Q , and PQ n = 0 . P„ is the com-
ci d ci cl a 

p l e m e n t of finitely m a n y complete s u b s e m i l a t t i c e s . Finitely many 

n 
o f the {P •a e A ) cover A , say A c U P . . Let 

1 
Q = n Q i . For each P ± , let S\P± = S ^ U ... U be 

the r e p r e s e n t a t i o n of the complement of P ^ in terms of com-

p l e t e s u b s e m i l a t t i c e s . Consider all p o s s i b l e sets of the form 

S-, . fl ... OS w h e r e 1 < j. < m . for each ' i . E a c h 

such i n t e r s e c t i o n is a subset o f V and the u n i o n o f a l l such 

i n t e r s e c t i o n s c o n t a i n Q . Since there are only finitely m a n y 
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such intersections and each such is c l o s e d , some such inter-

s e c t i o n , c a l l it T , m u s t have an i n t e r i o r . Since T is 

a complete s u b s e m i l a t t i c e T has a least element t . 

By c o n t i n u i t y of the m e e t o p e r a t i o n , M(T°) is an open 

set c o n t a i n i n g 1 . Note that M ( t ) r> M(T°); hence M ( t ) is 

a n e i g h b o r h o o d o f 1 . Since A is d e c r e a s i n g , M ( t ) c V . 

Since M ( t ) is a s u b s e m i l a t t i c e , S has s m a l l s e m i l a t t i c e s 

at 1 . 

Now let x e S . It follows easily that the LK topology 

r e s t r i c t e d to L ( x ) agrees w i t h the LK topology on L ( x ) . 

Since x is the largest element o f L ( x ) , it follows from 

the first p a r t that L ( x ) has small s e m i l a t t i c e s at x . 

By [13] this implies S has small s e m i l a t t i c e s at x . 

p r o p o s i t i o n 7 . 5 . L e t L be a complete lattice in w h i c h the 

m e e t and join operations are a l g e b r a i c a l l y c o n t i n u o u s and the 

complete t o p o l o g y K is H a u s d o r f f . Then L e q u i p p e d w i t h 

the complete topology is a compact t o p o l o g i c a l lattice w i t h a 

basis of s u b l a t t i c e s . 

P r o o f . Since LK is c o m p a c t , K is H a u s d o r f f , and 

(L,LK) (L,K) is c o n t i n u o u s , the K and LK t o p o l o g i e s 

a g r e e . Hence by 7.4 and its d u a l L is a c o m p a c t t o p o l o g i c a l 

lattice w i t h a b a s i s of s u b s e m i l a t t i c e s w i t h r e s p e c t to each 

o p e r a t i o n . 
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L e t x € L , and U an open n e i g h b o r h o o d of x . Let V be an 

o p e n , convex set such that x e V c= U . Then there exists a 

lower s u b s e m i l a t t i c e T such that x e T° c: T c T* <= V - . 

T h e n T w i l l be a compact lower subsemilattice and hence 

have a least element t . Let P be an u p p e r subsemilattice 

O * ° 
such that x € P c p c T . Let p be the greatest element 

•X* o o 

of P . Then x e p = P n T° c L(p) n M(t) - [t,p] c V , 

the last inclusion holding since V is c o n v e x . Then [t,p] 

is a s u b l a t t i c e , a n e i g h b o r h o o d of x , and a subset of U . 

Hence L has a b a s i s of s u b l a t t i c e s . 

P r o p o s i t i o n s 7 A and 7.5 w o u l d be significantly improved 

if it w e r e p o s s i b l e to find a ''reasonable' 1 algebraic condition 

to r e p l a c e the h y p o t h e s i s that LK or K be H a u s d o r f f . 

V I I I . Comments - H i s t o r i c a l and Otherwise 

Intrinsic topologies in lattices first a p p e a r e d w i t h 

G . B i r k h o f f ' s d e f i n i t i o n of the order topology in the late 

1 9 3 0 ' s [ 5 ] . S h o r t l y t h e r e a f t e r 0 . Frink [9] i n t r o d u c e d the 

i n t e r v a l t o p o l o g y and studied b a s i c p r o p e r t i e s of the order 

a n d i n t e r v a l t o p o l o g i e s . 

I n t e r e s t r e v i v e d in intrinsic topologies in the m i d d l e 

50's w i t h the w o r k of B . C . R e n n i e [19, 20], Frink's intro-

d u c t i o n of the i d e a l topology [10], the w o r k of A . J . W a r d [23] 
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and E. E. Floyd's examples of lattices w i t h p a t h o l o g i c a l in-

t r i n s i c topologies [ 8 ] . R e n n i e ' s w o r k contains germs of 

s e v e r a l of the developments p u r s u e d h e r e . 

A b o u t this time A . D . W a l l a c e i n i t i a t e d interest in to-

p o l o g i c a l lattices [22] and early i n v e s t i g a t i o n s in this a r e a , 

w e r e carried out by L . W . A n d e r s o n [1, 2 , 3] in the late 5 0 ' s . 

D u r i n g this same p e r i o d E . S . W o l k i n t r o d u c e d the concept of 

o r d e r compatible t o p o l o g i e s [24], and T . N a i t o gave a n e c e s s a r y 

and sufficient condition for all s u c h topologies to be i d e n t i c a l 

in a complete lattice [ 1 8 ] . 

In the 60's A . J . I n s e l introduced and studied the com-

p l e t e t o p o l o g y [11, 1 2 ] . D . S t r a u s s [21] appears to be the 

first to investigate intrinsic topologies in compact t o p o l o g i c a l 

l a t t i c e s . Some a d d i t i o n s w e r e g i v e n by T . H . Choe in [ 7 ] . 

R e c e n t l y I had shown that any compact t o p o l o g i c a l l a t t i c e 

has the c(0) topology [ 1 5 ] . A n i m p l i c i t algebraic charac-

t e r i z a t i o n of the topology o f a compact t o p o l o g i c a l s e m i l a t t i c e 

Is also i n c l u d e d . 

A p r o b l e m o f r e c u r r i n g interest in intrinsic t o p o l o g i e s 

relates to the H a u s d o r f f n e s s of c e r t a i n t o p o l o g i e s , in p a r -

t i c u l a r the i n t e r v a l t o p o l o g y . W a r d [23] and K . A t s u m i [4] 

for instance treat this latter p r o b l e m . Floyd's example [8] 

shows that the order t o p o l o g y may fail to be H a u s d o r f f . 

I n s e l [12] gave n e c e s s a r y and s u f f i c i e n t c o n d i t i o n s for the 
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c o m p l e t e t o p o l o g y to be H a u s d o r f f . Strauss [21] c h a r a c t e r i z e d 

those compact t o p o l o g i c a l lattices in w h i c h the interval 

t o p o l o g y is H a u s d o r f f . propositions 7.2 and 7.5 are essentially 

her r e s u l t s . R e c e n t l y I p u b l i s h e d an example of a compact 

d i s t r i b u t i v e t o p o l o g i c a l lattice in w h i c h the interval t o p o l o g y 

is n o t H a u s d o r f f [ 1 4 ] . 

The p r e c e d i n g is by no m e a n s an exhaustive account of 

the w o r k in i n t r i n s i c t o p o l o g i e s , but rather should be con-

s i d e r e d as a b a c k g r o u n d out o f w h i c h this p a p e r g r e w . 

There are s e v e r a l directions for future i n v e s t i g a t i o n . 

The Hasse d i a g r a m o f the r e l a t i o n between the v a r i o u s intrin-

sic t o p o l o g i e s n e e d s to be r i g o r o u s l y v e r i f i e d for the following 

c l a s s e s ; complete lattices and s e m i l a t t i c e s , complete alge-

b r a i c a l l y c o n t i n u o u s lattices and semilattices and compact 

t o p o l o g i c a l semilattices and l a t t i c e s . A complete list o f 

c o u n t e r - e x a m p l e s even for D i a g r a m 3.3 to show it is the b e s t 

p o s s i b l e is n o t k n o w n . Other interesting classes in w h i c h to 

study i n t r i n s i c t o p o l o g i e s m i g h t be v e c t o r lattices and equa-

t i o n a l l y c o m p a c t semilattices and l a t t i c e s . A complete semi-

l a t t i c e S inherits m a n y topologies as a subspace of the com-

p l e t e lattice |a(S) (see S e c t i o n 4 ) . How do these relate 

to the t o p o l o g i e s already given to S directly? 

The i d e a l t o p o l o g y has been frequently i g n o r e d in the 

c o n s i d e r a t i o n s of this p a p e r . In p a r t i c u l a r , w h a t can be said 
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about it in compact t o p o l o g i c a l lattices? 

The c o n s i d e r a t i o n s of this paper m a y be g e n e r a l i z e d to 

a r b i t r a r y lattices in a v a r i e t y of w a y s . M a n y o f the functors 

c o n s i d e r e d are already d e f i n e d for a l l l a t t i c e s . A n o t h e r 

m e t h o d o f e x t e n s i o n o f an intrinsic topology functor d e f i n e d on 

c o m p l e t e lattices is to take the c o m p l e t i o n by cuts of an 

a r b i t r a r y lattice and give the lattice the subspace t o p o l o g y . 

A l t e r n a t e l y , one may declare a set open If and only if its 

i n t e r s e c t i o n w i t h each complete sublattice is open w i t h r e s p e c t 

to some intrinsic topology functor F » M o s t of even the 

b a s i c p r o p e r t i e s of these extensions r e m a i n u n e x p l o r e d . 

F i n a l l y , the d e f i n i t i o n of I n t r i n s i c topology g i v e n here 

(automorphisms are c o n t i n u o u s ) is somewhat a r t i f i c i a l . A pre-

cise d e f i n i t i o n of intrinsic t o p o l o g i e s In terms of g e n e r a t i n g 

a t o p o l o g y from the a l g e b r a needs to be g i v e n in logic and set 

l a n g u a g e and b a s i c p r o p e r t i e s of such t o p o l o g i e s e x p l o r e d . 
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ON THE DUALITY OF S E M I L A T T I C E S A N D ITS A P P L I C A T I O N S 

TO LATTICE T H E O R Y 

K a r l H e i n r i c h H o f m a n n , M i c h a e l M i s l o v e a n d A l b e r t Stralka 

This a r t i c l e r e p o r t s on a m o n o g r a p h in w h i c h the 

a u t h o r s discuss the d u a l i t y b e t w e e n the c a t e g o r y S_ of 

semilattices w i t h identity and identity p r e s e r v i n g m o r -

p h i s m s on one hand and the c a t e g o r y of c o m p a c t zero 

d i m e n s i o n a l t o p o l o g i c a l s e m i l a t t i c e s w i t h identity and 

identity p r e s e r v i n g c o n t i n u o u s m o r p h i s m s . 

In i t s e l f , this d u a l i t y t h e o r y is n o t n e w . Various 

a u t h o r s discovered the d u a l i t y on o b j e c t s some time ago 

and the full d u a l i t y theory itself together w i t h v a r i o u s 

r a m i f i c a t i o n s was d e s c r i b e d in the c o n t e x t of other d u a l i t y 

t h e o r i e s by H o f m a n n . The d u a l i t y t h e o r y for d i s c r e t e and 

c o m p a c t a b e l i a n groups was introduced by P o n t r y a g i n w i t h 

the express p u r p o s e of immediate a p p l i c a t i o n s to a l g e b r a i c 

t o p o l o g y . It was soon applied in group t h e o r y , t o p o l o g y 

and a n a l y s i s . Thus it became fruitful by p r o d u c i n g results 

in either of two d i r e c t i o n s : from the d i s c r e t e theory to 

the t o p o l o g i c a l one and indeed also vice v e r s a . By con-

t r a s t , the d u a l i t y of s e m i l a t t i c e s has not been noticed as 

a v e h i c l e for a p p l i c a t i o n s a t a l l . We hope to d e m o n s t r a t e 

that i t , too can have u s e f u l a p p l i c a t i o n s to d i s c r e t e a n d 

t o p o l o g i c a l l a t t i c e theory and to the theory of c o m p a c t 

semilattices as a part of c o m p a c t a b e l i a n semigroup theory. 

I. A s a first step we set a p a r t a c h a p t e r d e s c r i b i n g 

basic f u n c t o r i a l p r o p e r t i e s of the c a t e g o r i e s !3 and Z_ 

such as their c o m p l e t e n e s s , c o c o m p l e t e n e s s , their having 

b i p r o d u c t s , and the e x i s t e n c e of free f u n c t o r s (i.e. left 

a d j o i n t s for the o b v i o u s g r o u n d i n g f u n c t o r s into the 
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category Set of sets). We then give a proof of the 

duality theory which is based on a fairly general, yet 

useful functorial device which e . g . has been applied 

recently by Roeder to give a new proof of the self duality 

of locally compact abelian groups. This proof is based on 

some generalities on functorial density and continuous 

(i.e. limit or colimit preserving functors) which we 

describe in a preliminary c h a p t e r , preceding Chapter I, 

which in itself does not refer to semilattices. The proof 

of the duality theorem then proceeds as follows: We show 

that the category F of finite semilattices is co-dense 

in S_ and dense In Z_. It is very elementary to show that 

F is naturally dual to itself. Then we push the button 

and the functorial machinery yields the desired d u a l i t y . 

The advantage is that this method allows generalizations 

beyond the application we have in m i n d . Alternative proofs 

of the duality are available in the literature. 

I I . In the second chapter we view the duality theory 

as an instance of a character t h e o r y , thereby exhibiting 

its closeness to Pontryagin duality theory for abelian 

groups. This requires that we first give a description of 

the category Z_ from the view point of compact topological 

semigroups. We record a characterization theorem for zero 

d i m e n s i o n a l compact semilattices known to semigroupers for 

some t i m e , in which the existence of small semilattices, 

the existence of sufficiently many u l t r a - p s e u d o m e t r i c s , and 

the separation of points by characters (and some other 

p r o p e r t i e s ) are used to characterize the objects of Z. We 

introduce the concept of a local minimum m e S and give 

d i f f e r e n t semigroup theoretical characterizations: Indeed 

m is a local minimum iff {m} is isolated in Sm Iff 

im (the set {s e S | sm = m } ) is o p e n . Further m e S 

is called a strong local maximum iff there is a local mini-

mum n e S such that m is maximal in the ideal S \ in. 

We observe that the set of local minima is dense in S and 

in fact even in every principal ideal Ss, and that the 

set of strong local maxima is d e n s e . 

In the second part of the chapter we correlate the 
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concepts of characters and filters; a_ character of S is 

a morphism S 2 (in IS, respectively Z) , a filter 

F £ S is a subsemilattice such that s e F implies ts e F . 

Since a function f : S 2 for a discrete S is a 
-1 

character iff f (1) is a f i l t e r , we have the f o l l o w i n g . 

PROPOSITION. The character semilattice S of a discrete 

semilattice S is_ naturally isomorphic to the filter semi-

lattice ^ ( S ) under intersection as o p e r a t i o n . 

The search for a concrete realization of the character 

semilattice of a T e ob Z_ is a bit more i n v o l v e d . Firstly 

we observe that the underlying semilattice of T is in 

fact a complete l a t t i c e . We then prove the following 

P R O P O S I T I O N . Let k e T , where T is_ a compact zero 

dimensional semilattice. Then the following statements are 

equivalent : 

( 1 ) k is_ a local minimum of the topological semilat-

tice T . 

( 2 ) k is_ a compact element of the underlying 

complete l a t t i c e . 

We denote the sup-semilattice of all compact elements 

of a semilattice T by K(T)j recall that an element k 

of a semilattice T is compact iff k < sup X for some 

X c T implies the existence of a finite subset F c X 

with k < sup F. For each k e K(T) there is precisely 

one T-character f : T -> 2 w i t h k = min f~ (1), and 

each T-character is so d e f i n e d . 

PROPOSITION. The character semilattice T of a compact 

zero dimensional semilattice T i_s naturally isomorphic 

with the (sup) semilattice K(T) of compact elements of 

the underlying lattice of T . 

By our earlier observation we know that for T e ob 

the set of local m i n i m a , hence K(T) is dense in every 

principal ideal Tt of T . This rather directly implies 

that the underlying lattice of T is a l g e b r a i c , i . e . is a 

complete lattice in which every element is a sup of the 

elements in K(T) which it d o m i n a t e s . We p r o v e , con-

v e r s e l y , that every algebraic lattice has a unique compact 
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zero dimensional semilattice topology relative to which 

K(T) is the set of local m i n i m a . Since it is not hard to 

see that a semilattice morphism T ->- T ' between algebraic 

lattices is continuous relative to these topologies iff it 

is an order continuous lattice m o r p h i s m , i.e. iff arbitrary 

infs and sups of upward directed sets are p r e s e r v e d , we 

have the following 

T H E O R E M . The category Z_ of compact zero dimensional 

semilattices and continuous identity preserving semilat-

tice morphisms is isomorphic to the category of algebraic 

lattices and order continuous semilattice morphisms (and 

this latter category is then dual to the category S of 

discrete semilattices and identity preserving semilattice 

m o r p h i s m s ) . 

If we call a lattice T arithmetic if it is algebraic 

and if in addition K(T) is a sublattice, we have the 

C O R O L L A R Y . The category of lattices with identity and 

identity preserving semilattice morphisms is dual to the 

category of arithmetic lattices and order continuous semi-

lattice m o r p h i s m s . 

III. The third chapter contains various applications 

of the duality theory to lattice theory. We begin with a 

preliminary section in which we record simple consequences 

of the d u a l i t y , such as e . g . the following: If f e S u Z, 
/N 

then f is injective iff f is surjective. A family 

S S. of morphisms is a product diagram in one of the two 

categories iff the family S^ S is a coproduct diagram 

in the o t h e r . (In fact this holds for arbitrarily limits 

and c o l i m i t s ) . Quotients are dual concepts for subobjects. 

We proceed to discuss concepts which are of key 

importance in lattice theory. 

A fundamental role is played by the prime elements in 

a s e m i l a t t i c e . We say that p e S is prime iff ab < p 

implies a < p or b < p , and we call the set of primes 

Prime S. We say that S is primally generated iff Prime S 

generates S (in either £ or Z_; note that T e ob 

is generated by A £ T iff T is the smallest closed sub-

semilattice of T containing A ) . A morphism f : S ->• T 

between semilattices will not automatically preserve 
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primes; if indeed we have f(Prime S) c Prime T, then we 

call f a prime-morphism. A prime-morphism into 2 is a 

prime-character. A prime filter is a prime element in the 

filter semilattice. 

In a semilattice finite sups need not exist. Neverthe-

less, various concepts of distributivity are possible. We 

say that a semilattice is distributive iff -f"a(-t"b 0 T c ) = 

tab n fac for all a , b, c, We say that a morphism f: 

S + T is a sup-morphism iff f (Q) is a prime filter in S 

for every prime filter Q of T, These morphisms do pre-

serve existing sups if the prime filters of T separate the 

points. Thus all sun-characters of S ' (i.e. sup-morphisms 

S 4- 2) preserve existing sups. The duality theory sheds light 

on the mutual relation of these concepts: 

THEOREM, A morphism f ^ S u Z i_s a prime morphism iff its ^ —. — — 

dual f is a sup-morphism. If S e ob S and T e ob Z is 

its dual then the following statements equivalent : 

(1) S is a distributive semilattice. (2) The sup-cha-

racters of S separate the points. (3) S is a subsemilat-

tice of a distributive lattice (such that the inclusion pre-

serves sups). (4) T is primally generated, (5) T is a 

distributive lattice » (6) T is a Brouwerian lattice. 

Further, the following statements are equivalent : 

(i) S is primally generated. (ii) T is a topological 

distributive lattice, (iii) The lattice characters of T se-

parate the points. (iv) K(T) is primally generated. 

Finally, the following are equivalent : 

S i_s a distributive lattice. (II) T is an arith-

metic distributive lattice, 

At this point we can easily tie in results of other dua-

lity theories which are exemplified by recent results of 

Keimel and Hofmann (Memoir of the Amer, M a t h , Soc. 122 (1972)), 

We exemplify the amalgamation of these two theories by the 

following 
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T H E O R E M . The subcategory in Z of distributive lattices 

and lattice morphisms is dual to the category of continuous 

maps between topological spaces X having the following 

properties : 

(a) X is_ a T Q - s p a c e in which every irreducible set 

is a singleton closure. (A set Z is irreduci-

ble in X if it is closed and not contained in 

the union of two closed subsets unless at least 

one of the two contains Z.) 

(b ) X has a basis of quasicompact open sets (i.e. 

every open set is the union of the quasi-compact 

open subsets which it contains). 

Thus the category of these spaces is equivalent to the 

category of distributive semilattices and prime m o r p h i s m s . 

R e m a r k . The spaces described in (a) and (b) have been 

called spectral spaces since they o c c u r , e.g., as the 

spectra of commutative r i n g s . 

In a subsequent section we proceed to discuss Boolean 

lattices in S_ and in Z_ (a Boolean lattice in Z_ is a 

Boolean topological lattice and as such is equivalent to a 

compact topological Boolean a l g e b r a ) . Recall that a semi-

lattice in S is free (over Set) iff it is the u -

semilattice of all finite subsets of some set X. We 
X 

denote such a semilattice by 2 (since indeed it is the 

coproduct of X copies of 2) . The category Z_ has a 

free functor from the category ZComp of compact zero 

d i m e n s i o n a l spaces (which is left adjoint to the forgetful 

f u n c t o r ) . It associates with a space X e ZComp the u -

semilattice C(X) of all closed subsets of X with the 

Hausdorff t o p o l o g y . We say that such a semilattice is free 

over Z C o m p . We have the 

T H E O R E M . Let S e ob S and T e ob Z its d u a l . Then 

(a) S is_ a Boolean lattice iff T i_s free over 

ZComp 

(b) S is free over Set iff T is_ a Boolean topo-

logical l a t t i c e . 

In p a r t i c u l a r , the compact topological Boolean lat-
. X 

tices are precisely the 2 for some set X . 

A m o r p h i s m f e S_ u Z_ between Boolean objects in 



HOFMANN, MISLOVE AND STRALKA 

either category is a_ Boolean morphism (i.e. preserves 

complements) iff its dual f i_s co-atomic (i.e. maps all 

co-atoms in its domain into the set of co-atoms of the 

co-domain.) (A co-atom a is an element which is maximal 

relative to the property a < 1.). 

In a further section we complement the work of Kimura 

and Horn about the injectives and projectives in S. 

The results are as follows: 

T H E O R E M . Let S £ ob S_ and T £ ob Z be its d u a l . Then 

the following are e q u i v a l e n t . 

( 1 ) S _is pro j ective in _5 ( 2 ) S is_ a retract of some 2 

( 3 ) S is_ a distributive lattice with t s finite for all 

s e S (4) S is_ primally generated and tp is_ finite for 

all p e Prime S (5) T is_ inj ective in Z (B) T is a 
X 

retract of some 2 ( 7 ) T i_s a distributive arithmetic 

lattice such that Tk is_ finite for all k e K(T) (8) T 

is a distributive arithmetic and topological lattice such 

that Tk is finite for all k £ K(T). 

F u r t h e r m o r e , the following conditions are equivalent: 

(i) S is inj ective in S. (ii) S is a retract of a 

complete Boolean l a t t i c e . (iii) S is a complete 

Brouwerian l a t t i c e . (iv) T i_s pro j ective in Z. (v) T 

is a retract of some free obj ect (over Set) . (vi) T is_ 

a retract of some C(E) w i t h an extremally disconnected 

space E . 

IV. In a final chapter we discuss application of 

duality theory to the theory of compact semilattices. 

A portion of this is presented in another contribution 

(K. H. Hofmann and M . M i s l o v e , Stability in compact zero 

dimensional semilattices). As an example of material not 

presented at this conference which will be discussed in 

detail in the monograph let us mention the following 

r e s u l t s . If X is a topological space we may associate 

with it two c a r d i n a l s , its weight w ( X ) = min {a | there 

is a basis for the topology of X of cardinality a} and 

its density character d(X) = min {a | there is a dense 

subset of X of cardinality a } . These cardinals in a 
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sense describe the size of the space X. We then have the 

following 

T H E O R E M . Let T _be a compact zero dimensional semilattice 

and S its dual semilattice. Then w(T) = card S < 2 d ( T ) . 

In fact if, for a cardinal a w e let log a denote the 

smallest cardinal b with a < , then d(T) = log card S . 

We also use duality to characterize extremally discon-

nected objects in Z: 

T H E O R E M . Let T be a zero dimensional compact semilattice. 

T h e n the following are equivalent statements. 

1) T is_ extremally disconnected. 

2) Every converging sequence is finally c o n s t a n t . 

3) T satisfies the ascending chain condition and for 

each t the set of minimal elements in ft \ {t} 

is f i n i t e . 

T jLs f i n i t e . 

A n account of the history of the subject and detailed 

references are to follow in the complete presentation of 

the m a t e r i a l indicated in this r e p o r t . 
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It is our purpose to discuss some recent developments in the theory of 

distributive topological lattices. As is usual in such discussions the 

topics most interesting to the author are those in which he has made some 

contributions. We shall carry forward that hallowed tradition. L . W . Anderson, 

to whom this paper is dedicated, gave a survey of the theory of topological 

lattices in 1961 [1]. We shall take that survey as a foundation for our 

subsequent remarks. 

We begin with some results about lattices of (semilattice) ideals of 

compact semilattices. Aside from the intrinsic value of such lattices we begin 

our discussion here because such lattices provide us with examples and counter-

examples needed in later sections. We then construct representations for 

compact, distributive lattices of finite breadth. This topic leads naturally 

to questions involving compactification of lattices which will be discussed in 

section 3. We conclude with some remarks about the congruence extension 

property for compact lattices. 
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Let ( P be the category of Hausdorff topological spaces equipped with closed 

partial orders. The morphisms of will be continuous order-preserving maps. 

For (S,^) in and x , Y e S, x v y = l.u.b. {x,y} and x A y = g.l.b. {x,y} 

where they exist. ( j f i s the subcategory of consisting of those objects S 

for which x A y exists for all x,y e S and the map AjS X S ^ S is 

continuous. The morphisms of J 

will be those (P- morphisms which in addition 

preserve A. ^^ will be that subcategory of consisting of those objects 

L for which x v y exists for all x,y e L and the map V:L x L- L is 

continuous. The morphisms of 

will be those -morphisms which also pre-

serve v. 'will be the full subcategory of distributive lattices in J C l 

By ^e shall mean the full subcategory of compact semilattices, and 

are defined accordingly. For a lattice L,J(L) will be the set of 

join-irreducible elements of L and M(L) will be the set of meet-irreducible 

elements of L . The lattice of ideals of a compact semilattice. Suppose that S is an object of We define 

to be the set 

of all closed (semilattice) ideals of S i.e. closed subsets A of S such 

that if a e A , s e S and s < a then s e A . When ^ J ( S ) is ordered by 

set-theoretic inclusion and endowed with the Vietoris topology it becomes a 

compact, distributive topological lattice. There is a natural imbedding 

P s:S defined by p g ( s ) = s A s. (cf. [7]). For f : S — T a 

morphism in € < / w e define ) ^ ( T ) b y ^ | ( f ) ( A ) = f(A) A T . 

,7// is a covariant functor of ay to 
The following results appear in 

[13] and [10] or can be derived from results therein. 
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(1) P s ( S ) is the set of join—irreducible elements of S. 

(2) The set of meet-irreducible elements of is the set of 

closed prime ideals of S. 

(3) If I is the closed real interval from 0 to 1 with its 

natural order then //?((!,a)) is isomorphic with (I,A,v). 

(4) The following are equivalent 

(a) J(S ,I) separates points. 

,1) separates points. 

(c) Every point of J^j(S) is a meet of members of 

(d) [6] S is a Lawson semilattice (i.e. the topology of S 

has a neighborhood base of subsemilattices of S). 

(e) The topology of has a neighborhood base of lattices. 

We define y j ^ ^ ^ ) to be the full subcategory of objects K of 

such that the topology of K has a neighborhood base of v-semilattices 

(lattices). 

(5) If L then L is the lattice of ideals of an object of 

C J if and only if (a) L (b) J(L) e t> ̂ f and (c) every 

element of L is a join of a subset of J(L). In this case L 

is isomorphic wi th/?\(J(L)). 

(6) Let L Define J : ^ { ( ( L , a ) ) (L,A,v) by J ( A ) = v A 

(i.e. the sup of A when A is considered as a subset of 

if L e 

It was pointed out to the author by J.D. Lawson and J.W. Stepp that from 

(6) and [6] we have ^ 

(7) and are adjunctions where U 

in each case is the suitable restriction of the functor ^ 

— ^ which forgets the v-operation and & is 

the category of compact Lawson semilattices. 
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2. Compact distributive lattices of finite breadth. 

A lattice L has breadth n (n a positive integer) if (1) given 

any finite subset A of L there is B £ A such that card B < n and AB = AA 

and (2) there is A L with card A = n and for B _C A with B 4 A,AB 4 A A . 

The main result of this section is a representation theorem obtained by the 

author and Kirby Baker in [2]. The steps of this theorem are of some independent 

interest. 

(2.1) If L is a complete lattice of finite breadth n and the operations 

of L are continuous with respect to order convergence then every element of 

L is the meet of a subset A of M(L) with card A ^ n . Also each element 

of L is a join of a subset B of J(L) with card B ^ n . 

(2.2) If L satisfies the hypotheses of (2.1) and is distributive 

then by applying the Dilworth coding theorem [4] and Z o r ^ s lemma J(L) = 

KI U . . . U K where each K. is a maximal chain in J(L). When endowed with 1 n i 

the interval topology each becomes a compact chain. 

(2.3) If L satisfies the hypotheses of (2.2) the maps >•* K^ 

defined by (x) = v{k e K^;k < x} are continuous lattice homomorphisms. 

(2.4) If L satisfies the hypotheses of (2.2) then L is a member 

of with either the interval on order topology (which coincide). More-

over the map o^ x ... x a^rL ^ K^x ... x K ^ is an imbedding of L into 

a product of n compact chains. 

A . C. Dempster by a very different method had obtained the representation 

theorem for lattices of breadth two at about the same time [3]. 

and the class of all closed sublattices of products of n compact chains coincide. 

From (2.4) the class of those objects B (L) < n 
n 
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A result similar to (2.3) was obtained by the author and E . D . Shirley in 

[9]. 

(2.5) Let L and M be locally compact, connected topological lattices 

of finite breadth and let M be distributive. If (fi : L — M is a A and v 

preserving map of L onto M then is continuous. 

We will now give some examples to show what happens to these results when 

some of the hypotheses are dropped. 

(2.6) J . D . Lawson in [7] gave an example of a metric, connected, one-

dimensional object of ïfj^ which we denote by Law, with the property that 

c ^ [ L a w , I ) is trivial. Then £ 7 ^ É ^ ( L a w ) ,I) is also trivial. Hence not every 

element of JjT((Law) is the meet of meet-irreducibles. In fact, if / J ^ ( L a w ) 

does not already have this property, it is possible to create an object L 

with B^(L) = » such that M(L) = {l}. Since f?{JiLaw) is a lattice of ideals 

every element of /p/^(Law) is a join of join-irreducibles. f/J^ (Law)° P0^j(Law) 

with order reversed) has the opposite properties. 

(2.7) Let T = {1 - ~ ; n = 1,2,...} \ J {1} < I. With the inherited 

order from I T is a compact chain. Form S = T x i/^ ^ {q}' (The Rees 

quotient of T x i by T x {0} i.e. T x {0} is shrunk to a point). Then 

T e Let be the unique chain from 0 g to l g . Define (fi:S—>- I q 

by (s) = v{u e u ^ s}. Then V-7 is a A-preserving map of S onto 

I but is not continuous because If (S\I Q) = 0 . (f induces a lattice homomorphism 

^ (i Q) = i Q defined by J (A) = v { p s ( u ) e p s ( I o ) ; p s ( u ) < A } . P S ( I Q ) 

is a maximal chain in and the map J î i î ^ S ) — > • • I q satisfies all 

of the hypotheses of (2.5) except for finite breadth. However ^ cannot 

be continuous because restricted to Pg(S) is the same as ty* :S — 
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Thus (2.3) and (2.5) do not hold without finite breadth. This example 

is found in [9]. 

3. Locally convex lattice 

A subset A of a lattice L is called convex if whenever x,y e A and 

x < y then [x,y] <=_ A . A topological lattice is called locally convex if its 

topology has a neighborhood base of convex sets. To see that many lattice are 

locally convex we have: 

(3.1) The following classes of lattices are locally convex 

(a) Compact lattices (Nachbin [8]) 

(b) Locally compact and connected lattices (L.W. Anderson [1]). 

(c) Discrete lattices 

(d) Sublattices of locally convex lattices. 

To see that some lattices are not locally convex we have: 

1 1 

(3.2) In the plane let L = {(l»"2n)>
 n = 1» 2,... }u{ (0, -^j^) ;n = 1,2,...} 

U { ( 1 , 0 ) } . An order < is defined on L by setting ~ a n c* 

only if y^ ^ y^. With the topology L inherits from the plane it becomes a 

topological lattice, in fact a chain. However L is not locally convex. 

From [11] we have 

(3.3) Let L be an object of J } ^ which is locally convex and is of 

finite breadth n . Then L can be imbedded in a member of Hence from 

(2.4) L can be imbedded in a product of n compact chains. 

(3.3) characterizes all sublattices of finite products of compact chains 

in the same way that (2.3) characterizes all closed sublattices of finite 

products of compact chains. 

For infinite breadth we have more difficulty. First we note that 7 / i S L a w ) 

is an object of which cannot be imbedded in any product of compact chains, 
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(3.4) Let L be a locally compact and connected distributive topological 

lattice then L can be imbedded in a compact lattice [14]. 

(3.5) Let L be the product of countably many copies of the two point 

lattice. When L is given the discrete topology it cannot be imbedded (as a 

topological lattice) in any compact lattice [14]. 

4. Congruence extension property for (ûhJj, 

It is well-known that the congruence extension property characterizes 

distributive lattices (cf. [5]). We make the obvious modification of this 

property to as follows : L e has the congruence extension property 

(c.e.p.) if given A a closed sublattice of L and y?:A B an 

-morphism on A there is an C^y-morphism ^ : L •— •— M such that the following 

diagram commutes 

where i the inclusion map of A into L and j is an imbedding of B into 

M . 

For L e ^ X ^ l e t ^ (L) be the lattice of closed congruence on L . From 

[12] we have the following results: 

(4.1) If L and Br(L) < 00 then ^ (L) is a distributive lattice. 

(4.2) If L and Br(L) < 00 then L has c.l.p. It seems likely 

that the following conjecture should hold 

(C) If L e and dim L = 0 then £T(L) is a distributive 
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lattice. 

However the general question remains 

(Q) If L e / ( ^ f ) is £ ( L ) distributive? 

(4.3) Let X be a countable product of copies of the two point lattice 

endowed with the Cartesian product topology. (as such X e j ^ y ^ ) . 

Then X can have no dimension-raising, continuous A-preserving 

maps. 

Then because the usual chain lattice C in the Cantor set can be imbedded 

in X and C has dimension-raising lattice homomorphisms it follows that 

(4.4) X does not have c.e.p. 
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REPRESENTATIONS OF LATTICE-ORDERED RINGS 

Klaus Keimel 

In this paper we present two typical representation 

theorems for archimedean lattice-ordered rings with identi-

ty, a classical one by means of continuous extended real 

valued functions and a less classical one by means of con-

tinuous sections in sheaves. 

0. Introduction. 

The oldest question in the theory of lattice-ordered 

rings, groups, and vector spaces probably is the question 

of representations by real valued functions. In the forties 

F. MAEDA and T.OGASAWARA [17], H. NAKANO C193, T. OGASAWARA 

C2o] and K. YOSIDA [23] and probably others established 

such representation theorems by continuous functions for 

vector lattices, M.H. STONE [22] and H. NAKANO [18] for 

lattice-ordered real algebras. (See also R.V. KADISON [ 13 1 ) 

In the sixties, this question has been taken up in a more 
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general and modern presentation e.g. by S.J. BERNAU [1], M. 

HENRIKSEN and D.G. JOHNSON [9], D.G. JOHNSON [11], D.G. 

JOHNSON and J. KIST [12], J. KIST [15]. 

Our first theorem has been proved in various ways and 

various generality in almost all of the papers listed above. 

Our proof might contain some new aspects: It is a self-con-

tained proof not using any ideal theory, based on a notion 

of characters like GELFAND's representation theorem for 

commutative C -algebras. In the case of lattice-ordered 

groups this idea is implicitely used by D.A. CHAMBLESS [4], 

in the case of Banach lattices it is explicitely used by 

H.H. SCHAEFER [24]. 

Our second representation theorem as well as its proof 

is inspired by GROTHENDIECK's construction of the affine 

scheme of a commutative ring with the one exception that 

to some extent the lattice operations are used instead of 

the ring operations. The sheaf associated with a lattice-

ordered ring also reminds the sheaf of germs of continuous 

functions, although this second theorem applies to a much 

bigger class of lattice-ordered rings than that represen-

table by extended real valued functions. As references for 

theorem 2 we give [7], [14], [15]. 
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1. Representation by continuous extended real 

valued functions. 

In this paper, rings are always supposed to have an 

identity e ; but commutativity is not required (although 

archimedean f-rings turn our to be commutative). 

DEFINITION 1. A lattice-ordered ring is a ring A endowed 

with a lattice order ^ in such a way that a+b > 0 and 

ab > 0 for all elements a > 0 and b > 0 in A . We de-

note by A + = {a e A I a > 0} the positive cone of A , and 

by v and A the lattice operations. 

If A and A' are lattice-ordered rings, a function 

f:A A f is called an ^-homomorphism, if f is a ring and 

a lattice homomorphism (preserving the identity). 

Unfortunately, only few things can be said about lat-

tice-ordered rings in general. Usually one considers a more 

special class of lattice-ordered rings: 

DEFINITION 2. A lattice-ordered ring A is called an 

abstract function ring (shortly f-ring) if A is a subdi-

rect product of totally ordered rings. 

BIRKHOFF and PIERCE C3] have shown that a lattice-

ordered ring A is an f-ring if and only if one has: 

a A b = 0 implies a A b c = 0 = a A c b for all c e A + . 
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In a fist approach we call concrete function ring every 

^-subring (i.e. subring and sublattice) of the f-ring C(X) 

of all continuous real valued functions on some topological 

space X . The answer to the question, whether every ab-

stract function ring is isomorphic to a concrete function 

ring is obviously negative; for a non-archimedean field can-

not be represented in this way. 

DEFINITION 3. A lattice-ordered ring A is called archi-

medean, if for every pair of elements a,b in A with 

a f 0 there is an integer n such that na £ b . 

BIRKHOFF and PIERCE C3 D have shown that an archimedean 

lattice-ordered ring is an f-ring if and only if the iden-

tity e is a weak order unit, i.e. e A x > 0 for every 

x > 0 . 

Every archimedean abstract function ring can be repre-

sented as a concrete function ring, if one generalises 

slightly the notion of concreteness: Let X be a topologi-

cal space. Denote by E(X) the set of all continuous func-

tions 1R , where U^ is any open dense subset of 

X . We identify two such functions f:U f Jl , g:U -> TR , 
S 

if f and g agree on U^ n U^ . (Note that the inter-

section of two open dense subsets is open and dense.) Then 

E(X) is an f-ring. 

A more formal construction of E(X) goes as follows: 

Let U be the collection of all open dense subsets of X . 
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For each U e U consider C(U) , the £-ring of all con-

tinuous real valued functions defined on U . If U,V e U 

and V c U , define the ^-homomorphism p^:C(U) ^ C(V) to 

be the restriction map £ f IV . Then 

E (X) = ljm C(U) . 

UeU 

With the exception of some rather special classes of spaces 

X , the f-ring E(X) cannot be represented in any C(Y) , 

as one may conclude from some results of CHAMBLESS C5l. 

If we call concrete function ring every £-subring of 

some E(X) , we can state: 

THEOREM 1. Every archimedean f-ring with identity can be 

represented as a concrete function ring. 

One can prove something more precise by using the ex-

tended real line 

Ë = -R U { -00 , +œ } , 

endowed with the usual order and topology; we also use the 

usual conventions for addition and multiplication with 

too , as far as reasonable. 

A continuous function f:X -> IR is called an almost 

finite extended real valued function, if the open set U£ = 

= {x e X | f(x) f too } is dense in X . The set D(X) of 

all these functions can be naturally embedded in E(X) by 

the assignment f »-> f|U^ . This allows us to consider D(X) 

as a subset of E(X) . D(X) always is a sublattiçe of E(X), 

/ 
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but it need not be a subring. Every ^-subring of E(X) con-

tained in D(X) will be called an f-ring of continuous 

extended almost finite real valued functions. Now we state: 

Theorem 1'. Every archimedean f-ring (with identity e) is 

isomorphic to a lattice-ordered ring of continuous extended 

almost finite real valued functions defined on some compact 

Hausdorff space. 

The proof is carried out in several steps. In a sense, 

the whole proof is based on the following result credited to 

PICKERT [22] by FUCHS [6], but probably known for quite 

some time: 

(a) THEOREM (apxiyeSncr ( 1 ) ? ). If A is an archimedean 

totally ordered ring with identity, then there is a unique 

order preserving isomorphism from A onto some subring of TR. 

(b) Let A be any f-ring with identity e . A function 

oj:A IR is called a character of A , if it satisfies: 

(1) u(e) = 1 ; 

(2) w(avb) = w(a) v w(b) , w(aAb) = w(a) A a(b) 

(3) w(a+b) = 6J(a) + w(b) , w(ab) = aj(a)w(b) , when-

ever the right hand side is defined in IR. 

Let X denote the set of all characters of A . Note that 

— A — A 
X is a subset of IR . Endow IR with the product topolo-
-| 

( ) Archimedes, Greek mathematician (287? to 212 b.c.) 
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gy which is compact Hausdorff. It is easily checked that X 

rrA 

is a closed subset of IK . Consequently, X is a compact 

Hausdorff space, called the character space of A . 

(c) For every a in A define a function â : X -> 1R by 

â(>) = a) for all œ e X . As â is the a-th projection 

—A — 
TR -»• 1R restricted to X , it is a continuous function. 

(d) For all a,b in A we have: 

(a v b ) â v b and (a A b)" = â A b. 

For all œ e X on has indeed (â v b) O ) = â(w) v Ê(<d) = 

= oj(a) v <d(b) = w(a v b) = (a v b)^(oj) , and likewise for 

A, 
â A b . In the same way one shows that 

(a + b ) ~ 0 ) = (â + b)(w) and ( a b ^ O ) = 

whenever â(oj) + 6(>) and â(oj)6(oj) , respectively, are 

well defined in 1R . 

(e) PROPOSITION. Let B be the f-subring of all bounded 

elements of A , i.e. B is the set of all a e A such 

that -ne < a < ne for some n e IN . Then the assignment 

a H- â gives an I-homomorphism from B into C(X) the ker-

nel of which is the set of all a such that na < e for 

all integers n . In particular, if A is archimedean, this 

£-homomorphism is injective. 

Indeed, if a e B , then â(w) = w(a) € TR for every 

character w . By (c) and (d), a â is then an £-homomor-

phism from B into C(X) . The assertion about the kernel 
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follows from the following lemma: 

(f) LEMMA. If a is an element of A such that na £ e 

for some integer n , then there is a character w of A 

such that w ( a ) f 0 . 

Proof. Let na £ e . As A is a subdirect product of 

totally ordered rings, there is an ^-homomorphism a from 

A onto some totally ordered ring A such that a(na) > a( 

Denote x = a(x) for all x . Now let B be the ring of 

all bounded elements of A and I the set of all x with 

nx < ê for all integers n . Then I is a convex ideal of 

B and B/I is an archimedean totally ordered ring with 

identity. Using (a) we can find an order preserving homomor 

phism w:B R such that w(e) = 1 , whence w(a) f 0 . By 

defining _ _ r+°° if x < ne for all n > 0 , 
O J ( X ) = < 

-00 if x > ne for all n > 0 , 

we have extended œ to a character of A . Then u = œ°a 

is a character of A such that w(a) ^ 0 . 

In order to achieve the proof of theorem 1' we need 

two more lemmas. As in the preceding lemmas, we are working 

an an f-ring with identity, not necessarily archimedean. 

(g) LEMMA. The sets of the form 

V(f) = U e X I ? ( » = w(f) > 0} , 0 < f < e , f € A , 

constitute a basis of the topology on X . 
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Proof. We first note that, by the definition of the product 

A ~ 
topology on R , the sets V(f,q) = {toe X I <u(f) > q } 

and V(f,q) = (w eX I cj(f) < q } with f e A and q = ^ e <& 

form a subbasis of the topology on X . As w(f) > H iff 

oj(mf) > n = w(ne) iff w(mf - n) > 0 , we conclude that 

V(f,q) = V(mf-ne,0) = V(mf-ne) ; likewise V(f,q) =V(ne-mf). 

Thus, the V(f) , f e A , already form a subbasis. They 

even form a basis, as V(f) n V(g) = V(f A g) . A s V(f) = 

V((fvO)Ae) , we may restrict our attention to elements f 

with 0 < f < e . 

(h) LEMMA. If A is archimedean, one has a = \/(a A ne) 
nelN 

for all a e A + . 

Proof. By the way of contradiction, we suppose that 

there is an element b in A such that a A ne ^ b < a 

for all n e IN . As 0 < a-b and as e is a weak order 

unit, e A (a-b) > 0 . The element d = e A (a-b) satis-

fies 0 < d < e and d < a . Under the hypothesis that 

(n-1)d < a , we can conclude that (n-1)d ^ (n-1)e A a ^ b , 

which together with d s a-b implies nd ^ a . Thus, we 

have shown by induction that nd ^ a for all n e IN which 

is incompatible with the archimedean hypothesis. 

(j) Now we are ready to achieve the proof of theorem 1': We 

first show that â = S implies a = b . As a = (avO)-(-avO) , 

it suffices to consider the case where a,b > 0 . If Â = S , 
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then â A n*1 = Ê A n*1 for all n e IN , whence (a A ne) A = 

(b A ne) A for all n e IN by (d) . A s a A ne and b A ne 

are bounded, we conclude that a A ne = b A ne for all 

n e IN by (e) . Hence, a = b by (h) . Now we prove that 

â e D(X): If U is an open subset of X such that, for 

exemple, â(oj) = +00 for all oj e U , then by (g) we may 

suppose that U = V(f) for some f in A with 0 < f < e, 

and we conclude that â = (a+f)~ . Consequently, f = 0 by 

the preceding, i.e. U = V(f) = 0 . Finally, (d) shows that 

a h* â is an ^-homomorphism. 

REMARKS. 1. Using property (g), one can show easily 

that = V > whenever \ / a^ exists in A . 
ie I ie I ieI 

The same holds for arbitrary meets. 

2. Every archimedean f-ring without nilpotent elements 

can be embedded in an f-ring with identity which is archime-

dean, too. Consequently, all archimedean f-rings with iden-

tity have representations as concrete function rings. 

3. Let \P:Y X be a continuous map of topological 

-1 

spaces such that 1jj (U) is dense in Y for every dense 

open subset U of X . For every f e E(X) the function 

fo\p belongs to E(X) . Thus, we obtain an ^-homomorphism 

E O ) : E ( X ) + E ( Y ) ; moreover, D(X) is mapped into D ( Y ) . 

If, in addition, the image \{J(Y) is dense in X , then 

E(ijj) is injective. This gives the idea, how to obtain 
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representations of A on other spaces Y from the above 

representation on the character space X . We list two cases: 

Let TT:P X be the projective cover of the character 

space X of the archimedean f-ring A (cf.GLEASON [8]). 

Then IT is surjective and has the property required above. 

Moreover, P is extremally disconnected, compact and Haus-

dorff. Thus, we obtain a representation of A in E(P) 

for some extremally disconnected compact Hausdorff space P. 

One can show that this representation of A is just the 

representation of BERNAU C1H. 

In a similar way one can obtain JOHNSON ' S [10] and 

KIST's [15] representation theorems from theorem 1'; for 

the character space X is homeomorphic with the "space of 

maximal £-ideals"; further there is a continuous map from 

the space of all "prime ^-ideals" of A onto X which has 

all the required properties. 

2.Representation by continuous sections in sheaves. 

This section is not as self-contained as the first. 

But the proofs are complete. We refer to [14] and [15] for 

further information. 

Let A be an arbitrary f-ring (with identity e ). A 

subset I of A is called an l-ideal, if I is a ring 

ideal and a convex sublattice. For an £-ideal I , the 
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the quotient ring A/I becomes an f-ring by defining 

a+i < b+I if there is an xel with a ^ b + x . For every 

subset C of A , we define C 1 = (xeA I I x M c l = 0 ^/ceC}. 

Then C 1 is an &-ideal, called polar Ideal. 

DEFINITION 4. The f-ring A is called quasi-local, if A 

has a unique maximal £-ideal. 

DEFINITION 5. A sheaf of [quasi-local3 f-rings is a triple 

F = (E,n,X) , where E and X are topological spaces and 

n:E X is a local homeomorphism; moreover, every stalk 
_ -j 

E = n (x) , xeX , has to bear the structure of a [quasi-

local] f-ring in such a way that the functions 

(x,y) h- x+y , (x,y) h» xy , (x,y) h> xAy 

from 
u (E x E ) into E are continuous, where 
xeX x x 

U (E X E ) C E X E is endowed with the topology induced 
XX X 

from the product space E x E . 

DEFINITION 6. Let F = (E,n,X) be a sheaf of [quasi-local] 

f-rings. Call section of F every continuous function 

<j:X ^ E such that a(x) e E for all xeX . Denote by TF 

the set of all sections of F . By defining on rF addition, 

multiplication and order pointwise, rF becomes an f-ring, 

in fact , an ^-subring of the direct product of the stalks. 

Now we are ready to state: 
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THEOREM 2. For every f-ring A (with identity e) there is a 

sheaf F = (E ,n ,X) o_f quasi-local f-rings over a compact 

Hausdorff space X such that A is_ isomorphic to the f-ring 

TF of al1 (continuous global) sections of F 

The proof is carried out in several steps. Let B be 

the f-ring of all bounded elements of A . We use the charac-

ter space X of A and the representation a H- â:B + C(X) 

established in Proposition (e) of section 1. 

(a) For every weX , let I be the union of all the polars 

a 1 , where a runs through all elements of A such that 

<u(a) > 0 . Then I is an £-ideal. Let A = A/I v J Ù) OJ U) 

(b) CONSTRUCTION. Let E be the disjoint union of the quo-

tient rings A^ X . For every aeA , define 

a : X -»• E by a fw) = a+I e A , . ÙJ Ù) 

It is easily shown that the sets of the form a(U) with 

aeA and U C X open, form a basis of a topology on E such 

that the triple F =(E,n,X) is a sheaf of f-rings, where 

n :E X is the obvious projection which maps A^ onto <u . 

The stalks of F are the f-rings A^ . Moreover, every a 

is a section of F and the assignment a a:A + TF is an 

L~homomorphism. 

(c) LEMMA. Let U be an open neighborhood of O)q e X . There 

is an element p in A^ such that pfw ) = efoj ) and 
+ r v o o 

p(w) = 0 for all <4u . 
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Proof. By lemma (g) in section 1, there is an element 

f in A^ such that <u e V(f) c U . Then w (f) > 0 and 
+ o o 

oj(f) = 0 for all . After replacing f by nfAe for 

a suitably large n , we may suppose that w
0 ( f )

 = 1 • Now 

let g = 3f-e and h = 2f-e. We use the notation x + = xvO 

and x_ = -xvO and note that x +
A x _ = 0 . Let 

P = g +
1 and Q = . 

We have w ( h i = (2oj (f) - cj (e)) v 0 = 1 , whence 
o + o o 

Q = h +
± c I . For every o^U , one has - w(e-3f)vO 

o 

= O ( e ) - 3w(f)) v 0 = 1 , Hence, P 1 c g_1 c 'I . The 

£-ideal P X + Q contains g + + h_ = (3f-e)vO + (e-2£)vo , and 

this element is not contained in any proper £-ideal of A , 

as its image in every non zero totally ordered ring is easi-

ly seen to be strictly positive. Consequently, P X + Q = A . 

Thus, there are positive elements peP 1 and qeQ such that 

p+q = e . This means that p+Q = e+Q and consequently 

p+X = e + I and pel for all w^U : thus, p has the 
* 6J 0) r 0) J r 

O 0 required properties. 

(d) LEMMA. A^ is a quasi-local f-ring for every weX . 

Proof. We first note that I is contained in ker œ. 
Ù) 

From (c) it follows that I i ker a* for every u' f œ . 

Let M be the greatest £-ideal of A contained in ker w, 
Ù) 

i.e. M is the sum of all ^-ideals contained in ker a . 
Ù) 

Then M is a maximal £-ideal o£ A . It is the unique 
Ù) 

maximal £-ideal containing I ; indeed, every maximal (a) 
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£-ideal is easily seen to be contained in the kernel of 

some character. 

(e) LEMMA. O I = {0> . 
we X " 

Proof. Suppose that b e l for all weX . Then 

b e a 1 for some element a satisfying co(a ) > 0 . After 
U) U) '

 0 v 6U 

replacing a^ by na^ for a suitable n , we may suppose 

that w ( a j > 1 . The sets W(a ) = (w» I > 1} are 

open in X and cover X . Hence, there is a finite subset 

F in X such that X = ( J W(a ) . Let a = V a . Then weF weF 

6u(a) > 1 for all weX ,whence a > e ; further IblAa = 0 

as b e a ^ 1 for all w . As e and consequently a is a 

weak order unit, this implies b = 0 . 

(f) The proof of theorem2 will be achieved, if we show that 

the assignment a H- a : A -> rF is bijective. The injectivi-

ty is a straightforward consequence of lemma (e). For the 

surjectivity let o be an arbitrary section of F . We want 

to find an element a in A such that a = a . A s 

a = (avO) + (QAO) , we may restrict ourselves to the case 

a > 0 . By the construction of the sheaf F , for every weX 

rv» 
there is an element a e A^ such that a fw) = CT(oj) . If 

Ù) + 0) v J K J 

two sections of a sheaf coincide in a point, they agree in a 

whole neighborhood; hence, there is a neighborhood U^ of o> 

such that a|U = a IU . B y lemma. By lemma (c), there is CO OJ CJ 7 J V ^ » 

an element p e AJ such that p O ) = e(W) and p (OJ') = 0 
6̂1) + c

 0)
 r

 0) 
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for all w'iU . One may suppose p <e. Let b =a p : then T ÙJ ^ 0) CJ OJ^CJ 9 

•NJ 

b^(w)=a(6j) and b^<cr. Let V^ be an open neighborhood of oj 

such that b |V =a|V . The V , weX, form an open covering Ù) 1 0) 1 ù) 6J c & 

of X . As X is compact, we may find a finite subset FcX 

such that the V^ with weF already form a covering of X . 

Let a= V b . Then a=a . 
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MODULAR CENTERS OF ADDITIVE LATTICES 

Mary Katherine Bennett 

The modular center of a lattice L(.3j£L)) is defined to be 

{x|x e L andïïlTL(a,x) for all a e L ) where the symbol®L(a,x) 

means that a and x form a modular pair. A lattice L is said 

to be additive iff whenever p is an atom of L such that 

p < x v y, then there exists atoms x^ and y^ in L with 

x^ < x and y^ < y such that p < x^ v y . The lattice L of 

convex subsets of a vector space V over an ordered division ring 

is additive, and in this case^JJ^L) is the affine subsets of V . 

If L is atomistic and additive, then is a complete 

lattice in its own right, with the meet operation being 

the meet operation in L . 

We present conditions in L which guarantee that U87CL)(p,1) 

is a projective geometry whenever p is an atom of L , and then 

give conditions on L which imply that JJKL) is the affine sub-

sets of a vector space V over a decision ring R . In the latter 

case we show further that the R is ordered and that L is the 

lattice of the convex subsets of V . 

Department of Mathematics 
University of Massachusetts 
Amherst, Massachusetts, 01002 
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Structure of Archimedean Lattices 

by Jorge Martinez 

Abstract An archimedean lattice is a complete algebraic lattice L with 

the property that for each compact element c £ L, the meet of the maximal elements 

in the interval [0, c] is 0. L is hyper-archimcdean if it is archimedean, and for 

each x e L, [x, 1] is archimedean. The structure of these lattices is analysed 

from the point of view of their meet Irreducible elements. If the lattices are 

also Brouwer, then the existence of complements for the compact elements charac-

terizes a particular class of hyper-archimedean lattices. 

The lattice of ^-ideals of an archimedean lattice ordered group is archi-

medean, and that of a hyper-archimedean lattice ordered group is hyper-archi-

medean, In the hyper-archimedean case those arising as lattices of £-ideals are 

fully characterized. 

Finally, we examine the role played by these lattices in representations 

by lattices of open sets of some topological space. We point out a duality be-

tween algebraic, Brouwer lattices and certain T 0-spaces with bases of compact 

open sets. 

Notation and terminology Our set theoretic notation is as follows: if 

A and B are subsets of a set X then ( A C B) B denotes (proper) containment 

of A in B; A \ B is the complement of B in A . 

Our lattice theoretic and topological terminology is standard, except 

where expressly noted that it Is not. The terminology from the theory of lattice 

ordered groups is for the most part that of Conrad [5]. 

295 



1. Structure of archimedean and hyper-archimedean lattices We will be 

dealing exclusively with algebraic lattices: complete lattices generated by 

compact elements. We call an algebraic lattice archimedean if for each c e c(L), 

the semilattice of compact elements, the Interval [0, c] has the property that 

the meet of its maximal elements is 0. The motivation for this notion comes 

from the theory of 2,-groups (abbreviation for lattice ordered groups): among 

the abelian Jl-groups the archimedean it-groups are characterized precisely by the 

condition that the lattice of its £-ideals be archimedean as defined above. 
G 

(Recall: an A-group^is archimedean if for each pair 0 £ a, b c G na £ b , for 

some natural number n.) This observation concerning the lattice of il-ideals of 

an archimedean £-group first appeared in [3], and is due to Roger Bleier. 

Let us call an algebraic lattice L hyper-archimedean if it is archimedean 

and for each x e L [x, 1] is archimedean. Again, here we are motivated by the 

theory of ^-groups: an £-group G is hyper-archimedean if it is archimedean, and 

each Jl-homomorphic image of G Is archimedean. It is immediate then that G is hyper-

archimedean if and only its lattice of £-ideals is hyper-archimedean. 

We shall call an element t of a lattice L meet-irreducible if t« x X 

implies that t » for some JJ e A. The notion of finite meet irreducibility is 

defined in the obvious manner. 

Below, let L be an algebraic lattice; the first three lemmas are well known. 

See [Z] or [7]. 

Lemma: If x < 1 in L then x is the meet of meet-irreducible elements. 

1.2 Lemma: The meet of all the meet-irreducible elements of L is 0. 
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1.3 Lemma: L is a Brouwer lattice if and only if L is distributive. 

(Note: A complete lattice B is Brouwer if and only if the following dis-

tributive law holds in B: a A (V^b^) = V-^ (a A b^) .) 

Now the first structure theorem on archimedean lattices! 

1.4 Proposition : Let L be an archimedean lattice, and 0 < c < d £ c(L). 

Then c and d have a value in common. Conversely, if L is a modular algebraic 

lattice, and any two comparable compact elements have a value in common, then 

L is archimedean. 

(Remark: p e L Is a value of c e c(L) if p is maximal with respect to not 

exceeding c. If p is a value of some compact element then p is meet-irreducible, 

and conversely. 

We shall provide a converse to show that we cannot dispense with modulari-

ty in the converse of 1.4 .) 

Proof: Suppose L is archimedean and 0 < c < d £ c(L). There is a maximal 

element m of [0, d] such that c jf m. Using Zorn's lemma pick y < m so that it 

is a value of c; one can easily show then that y is a value of d as well. 

Conversely, suppose L is modular, and c, d e c(L) with 0 < c < d. If p is 

a value of both c and d, then by modularity d A p is maximal in [0, d] and 

c £ d A p. This suffices to show L is archimedean. 

1.5 Theorem: Suppose L is a hyper-archimedean lattice; then the subset 

of meet-irreducibles is trivially ordered. Conversely, if L is modular and the 

set of meet-irreducibles is trivially ordered, then L is hyper-archimedean. 
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Proof: Suppose first that L is hyper-archimedean. A meet-irreducible 

element t (in any complete lattice) always has a cover t: namely, the meet of 

all the eleeents that exceed t properly. Here we show that t = 1 for each meet-

irreducible element t. [t, 1] is an archimedean lattice in which t is the unique 

atom; if t < 1, one can show that a compact element d of [t, 1] exceeds t. This 

contradicts the fact that [t, 1] is archimedean. 

Conversely, suppose L is modular and the set { t^ J X e A } is the tri-

vially ordered set of meet-irreducibles. Then each one is maximal and their meet 

is 0 bv lemma 1.2, so if c £ c(L) and c > 0 then some t fails to exceed c. By 

in M 

modularity c A t is maximal^[0, c] for each such t^, and the intersection of all 

these c A t^ is 0. This proves L is archimedean. 

If one observes that for each x < 1 { t^ | t^ ^ x } is the complete set 

of meet-irreducibles of [x, 1] the argument of the preceding paragraph shows 

[x, 1] is archimedean, and hence that L is hyper-archimedean. 

Examples : a) If E is any vector space, the lattice V(E) of subsoaces 
a-

of E is a hyper-archimedean, modular lattice. In fact, if R is any semisimple, 

Artinian ring and M is a left R-module then the lattice of submodules of M is 

hyper-archimedean. The author will explore this matter further elsewhere. 

b) Examples can be found of non-modular archimedean and hyper-archimedean 

lattices; see [ rj ]. 

c) Below we exhibit a lattice satisfying the condition of proposition 1.4 

which is not modular and not archimedean. 
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Notice also that this lattice satisfies the condition of theorem 1.6, but is not 

hyper-archimedean. 

We now direct our attention to archimedean, Brouwer lattice. Recall that 

in a complete Brouwer lattice it is true that for each pair of elements x and y 

the set { z j x A z y } has a unique largest element. In particular if y = 0, 

there is a largest element x 1 such that x A x* = 0. It is well known that this 

"complementation" is an auto-Galois connection on the Brouwer lattice. The set 

of all elements with the property that x = x" form a Boolean algebra in which 

the meet operation agrees with that of the underlying lattice. We shall refer 

to it as the Boolean algebra of polars and to its elements as polars. 

1.7 Proposition: Let L be an algebraic, Brouwer lattice. Then L is 

archimedean if and only if c' « A { all values of c }, for each c £ c(L). 

Proof: Suppose L is archimedean, and 0 < c £ c(L) and let { p^ | X £ A } 

be the set of values of c; since c A c' » 0 and p^ is prime, p^ > c', for each 

A e A . If c' < A p^ there is a compact element d < A p^ so that d £ c', ie. 

d A c > 0. Since L is archimedean there is an m maximal below c such that 

d A c £ m. Let y be the largest element of L such that y A c « m; then y is a 

value of c, and so y » p^, for some y £ A . But then d £ y and hence d A c y A c 

• m, a contradiction. Thus c' » A p^. 

Using the same notation of the preceding paragraph, let us assume the 

indicated condition holds. It is not hard to see that the elements c A p^ are 

precisely the maximal elements of [0, c]. Now A ^ (c A p^) « c A (A^ p^) -

c A c' - 0 , and so L is archimedean. 
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If L(G) is the lattice of Jt-ideals of a hyper-archiraedcan &-group G then 
a. 

the set of prime elements of L(G) is trivially ordered; see [6]. As we shall see 

this is not true of any hyper-archimedean, Brouwer lattice. Also L(G) (for any 'V/ 

abelian 2,-group G) has the property that the meet of two compact elements is 

compact; once again this is not true in general in the abstract lattice setting. 

The above considerations may serve to motivate the following definitions. If 

L is an algebraic, Brouwer lattice we say it has the finite intersection property 

(FTP) if the meet of any two compact elements is compact. L has the compact 

splitting property (CSP) if each compact element of L is complemented, ie. if 

c V c 1 « 1, for each c e c(L). 

Our next theorem ties things together properly. 

1.8 Theorem: Let L be an algebraic,Brouwer lattice; the following are 

equivalent : 

(a) L has the CSP. 

(b) L has the FIP, and the set of primes of L is trivially ordered. 

In particular, with either of these conditions L is hyper-archimedean. 

Proof: (a) -*» (b) Suppose c, d e c(L) and c A d = xi* w i i e r e • t* i e x i a r e 

upward directed. 1 « d V d', so c « (c A d) V (c A d'), and hence c « Y i e l ^ i ^ 

(c A d 1 ) ) . But then c • x ^ o V (c A d') for a suitable index i c ; this Implies 

that c A d • This suffices to show c A d is compact. 

If p < 

q are both prime, there is a c £ c(L) with c q yet c p. Since 

c A c ' - 0, c' £ p , and so 1 a c V c' 3 q V p = q, a contradiction. 

The converse of theorem 1.8 requires a technical lemma which we shall not 

prove; its proof may be found in [ f ] . 
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L e m m a : S u p p o s e L h a s the F I P ; t h e r e is a o n e to o n e c o r r e s p o n d e n c e 

b e t w e e n m i n i m a l p r i m e s of L and u l t r a f i l t e r s of c ( L ) . T T h i s c o r r e s p o n d e n c e is 

g i v e n as f o l l o w s : if p is a m i n i m a l p r i m e , let N ( p ) = { c £ c(L) j c £ p }; its 

i n v e r s e a s s i g n s to an u l t r a f i l t e r M of c ( L ) the e l e m e n t V { c 1 j c £ M }. 

(t F i l t e r h e r e m e a n s p r o p e r f i l t e r ; an u l t r a f i l t e r is a m a x i m a l f i l t e r . ) 

1 . 9 . 1 C o r o l l a r y : If L h a s the F I P , then p £ L is a m i n i m a l p r i m e if a n d 

o n l y if p = V { c ' | c £ p , c £ c ( L ) }. If p is a m i n i m a l p r i m e and p > d e c ( L ) , 

then p £ d ' . 

N o w let us p r o v e that (b) i m p l i e s (a) in t h e o r e m 1.8: s u p p o s e c £ c ( L ) y e t 

c V c* < 1 . L e t p b e a m e e t i r r e d u c i b l e so that p > c V c'; b y a s s u m p t i o n p is a 

m i n i m a l p r i m e , and so b y 1 . 9 . 1 p ^ c + p ^ c ' , a c o n t r a d i c t i o n . T h i s c o m p l e t e s 

the p r o o f of t h e o r e m 1 . 8 . 

W e s h o u l d c h e c k that the p a i r of c o n d i t i o n s c o n t a i n e d in (b) of 1 . 8 a r e 

i r r e d u n d a n t . So c o n s i d e r an i n f i n i t e set X w i t h the f i n i t e c o m p l e m e n t t o p o l o g y , 

and let L « 0 ( X ) , the l a t t i c e of o p e n sets of X ; this is a h y p e r - a r c h i m e d e a n , 

B r o u w e r l a t t i c e ( i n t e r p r e t i n g I n f i n i t e m e e t s as i n t e r i o r s of i n t e r s e c t i o n s o f 

o p e n s e t s . ) H o w e v e r , L h a s the FIP (each x £ L is c o m p a c t ) w h i l e 0 is p r i m e . 

O n the o t h e r h a n d let X « { x-^, x^> y , z } , and X* = X \ { y , z } . A n y 

s u b s e t of X ' s h a l l b e o p e n , a n d the o p e n n e i g h b o u r h o o d s of y ( r e s p . z) are the 

sets w i t h a f i n i t e c o m p l e m e n t in X ' . A g a i n l e t L = 0 ( X ) ; L is a h y p e r - a r c h i m e d e a n , 

B r o u w e r l a t t i c e in w h i c h e v e r y p r i m e is m a x i m a l , y e t if U » X \ { y } and V » X \ { z } , 

t h e n U a n d V a r e c o m p a c t w h e r e a s X ' » U fl V is n o t . T h e a u t h o r o w e s t h i s e x a m p l e 

to Jed K e e s l i n g . 
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W e c l o s e this s e c t i o n w i t h a r a t h e r s t r i k i n g a n a l o g u e of a w e l l k n o w n 

r e s u l t a b o u t a r c h i m e d e a n ^ - g r o u p s . For its proof w e refer the r e a d e r to [ f ]. 

1.10 T h e o r e m : S u p p o s e L is an a r c h i m e d e a n , B r o u w e r l a t t i c e and x £ L is 

a p o l a r . T h e n [x, 1] is a r c h i m e d e a n . 

2 . R e a l i z a t i o n s of h y p e r - a r c h i m e d e a n , Brouwer l a t t i c e s as l a t t i c e s of 

il-ideals W e w e r e m o t i v a t e d to s t u d y this c o n c e p t of an a r c h i m e d e a n l a t t i c e 

in o r d e r to d i s c o v e r w h i c h l a t t i c e s a r i s e as the l a t t i c e L ( G ) of Jl-ideals of 

an a r c h i m e d e a n il-group G . A l t h o u g h some n e c e s s a r y c o n d i t i o n s b e c o m e o b v i o u s 

r a t h e r e a r l y in the g a m e , (such as: the l a t t i c e must b e an a r c h i m e d e a n , B r o u w e r 

l a t t i c e w i t h the FIP p l u s a good d e a l m o r e ) , the p r o b l e m is in g e n e r a l q u i t e 

h a r d . In the c a s e of h y p e r - a r c h i m e d e a n ^ - g r o u p s the m a t t e r as a lot s i m p l e r ; 

w e can fully c h a r a c t e r i z e t h o s e l a t t i c e s a r i s i n g as t h e l a t t i c e of £ - i d e a l s 

of a h y p e r - a r c h i m e d e a n £ - g r o u p . 

2.1 T h e o r e m : A h y p e r - a r c h i m e d e a n , B r o u w e r l a t t i c e L a r i s e s as the l a t t i c e 

o f i d e a l s of an Jt-group if and o n l y if L h a s the C S P . 

P r o o f : T h e n e c e s s i t y is w e l l k n o w n (see [£]), so w e pass to a s k e t c h of 

the p r o o f of the s u f f i c i e n c y ; f u r t h e r d e t a i l s m a y b e found in [ f J. L e t { p ^ | 

A £ A } b e t h e f a m i l y of p r i m e s of L , and G* b e the £ - g r o u p of i n t e g e r - v a l u e d 

f u n c t i o n s o n A w i t h f i n i t e r a n g e ; a l t e r n a t i v e l y , the it-group of i n t e g r a l s t e p 

f u n c t i o n s o n A . W e d e f i n e a m a p p i n g a: c ( L ) G* by: ca-^ = 1 , if c £ p ^ , and 0 

if c < p-^. It is e a s y to v e r i f y that a is a l a t t i c e e m b e d d i n g . 

L e t G b e the ^ - s u b g r o u p of G* g e n e r a t e d by^'Lya, and P ( G ) d e n o t e its l a t t i c e 

of p r i n c i p a l i - i d e a l s ; t h e s e a r e the c o m p a c t e l e m e n t s of L ( G ) . D e f i n e a m a p p i n g 
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T: C ( L ) -> P (G) by l e t t i n g cT » G ( c a ) - the 5,-ideal g e n e r a t e d b y c O in G . O n c e 
'V. 

again it is e a s i l y v e r i f i e d that T is a l a t t i c e e m b e d d i n g , so o n e is o n l y left 

with p r o v i n g that T is o n t o . O n c e this is d o n e c ( L ) and P ( G ) a r e i s o m o r p h i c 

l a t t i c e s , and h e n c e so a r e L and L ( G ) . It is h e r e that one u s e s t h e full f o r c e 

of the C S P , in the f o l l o w i n g w a y : if 0 ^ g e G e x p r e s s i b l e b y g 3 m-^(c^a) + ... 

+ m ^ C c ^ a ) , then t h i s e x p r e s s i o n c a n b e r e w r i t t e n so that the c o m p a c t e l e m e n t s of 

L that a p p e a r are p a i r w i s e d i s j o i n t . 

2 . 1 . 1 C o r o l l a r y : If G is a h y p e r - a r c h i m e d e a n & - ç r o u p t h e n o n e c a n n o t t e l l 

from the l a t t i c e of £ - i d e a l s w h e t h e r G is e m b e d d a b l e as an ^ - s u b g r o u p of a g r o u p 

of real valued step functions. 

3. T o p o l o g i c a l r e a l i z a t i o n s of a l g e b r a i c , B r o u w e r l a t t i c e s and d u a l i t i e s 

For f u r t h e r a m p l i f i c a t i o n on the m a t e r i a l in this s e c t i o n the r e a d e r is u r g e d to 

c o n s u l t B r u n s [4], H o f m a n n & K e i m e l [ £ ] » M a r t i n e z [ lo] and S c h m i d t [12.], p l u s 

p r o b a b l y m a n y , m a n y o t h e r s . 

If L is an a l g e b r a i c , B r o u w e r l a t t i c e , let I ( L ) d e n o t e t h e set of m e e t -

i r r e d u c i b l e s , and P ( L ) d e n o t e the set of p r i m e s of L . T o p o l o g i z e P ( L ) b y t a k i n g 

for its o p e n sets the sets P ( x ) ° { p e P ( L ) I p > x } , for a l l x £ L ; t o p o l o g i z e 

I ( L ) w i t h t h e s u b s p a c e t o p o l o g y . T h e n P ( L ) is a T ^ - s p a c e w i t h a b a s e of c o m p a c t , % ^ u 

o p e n s e t s , (it is s p e c t r a l in t h e t e r m i n o l o g y of [ H ],) and I ( L ) also h a s a b a s e 

of c o m p a c t , o p e n sets and is t^: e v e r y p o i n t is i s o l a t e d in its closure* B r u n s 

[4] first d e a l t w i t h this s e p a r a t i o n a x i o m and c a l l e d it ^ x / 2 ' M o r e o v e r , L is 

i s o m o r p h i c w i t h t h e l a t t i c e o f o p e n sets of b o t h P ( L ) and I ( L ) . 

L e t us s a y t h a t a t o p o l o g i c a l s p a c e X c o o r d i n a t i z e s L if L - 0 ( X ) , the 
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l a t t i c e s of o p e n sets of X . B r u n s [4J s h o w e d that if X is a T - c o o r d i n a t i z a t i o n 
o 

of L then X is h o m e o m o r p h i c to a set B , w i t h I(L) Ç z B C P ( L ) , h a v i n g the s u b s p a c e 
% % 'V a» 

t o p o l o g y of P ( L ) . It can e a s i l y b e s h o w n that I(L) is (up to h o m e o m o r p h i s m ) the 
% 'X/ 

o n l y t-.-coordinatization, and l i k e w i s e P ( L ) the o n l y s p e c t r a l o n e . T h e a u t h o r 

w i l l t a k e up c o o r d i n a t i z a t i o n s of n o n - a l g e b r a i c l a t t i c e s e l s e w h e r e . 

C o o r d i n a t i z a t i o n s by P ( L ) g i v e s r i s e to a d u a l i t y b e t w e e n the c a t e g o r y of 

a l g e b r a i c , B r o u w e r l a t t i c e s and l a t t i c e h o m o m o r p h i s m s p r e s e r v i n g a l l j o i n s , and 

the c a t e g o r y o f s p e c t r a l s p a c e s w i t h b a s e s of c o m p a c t , o p e n s e t s , t o g e t h e r w i t h 

all c o n t i n u o u s m a p p i n g s , see [ J ]. C o o r d i n a t i z a t i o n b y I(L) a l s o g i v e s rise to 

a d u a l i t y ; qua o b j e c t s , a o n e to o n e c o r r e s p o n d e n c e b e t w e e n a l g e b r a i c , B r o u w e r 

l a t t i c e s a n d t-^-spaces w i t h b a s e s of c o m p a c t , o p e n s e t s . T h e m o r p h i s m - c l a s s e s 

p e r t i n e n t to this d u a l i t y are so r e s t r i c t e d so as not to m e r i t d i s c u s s i o n h e r e . 

P r e s u m a b l y , any " c a n o n i c a l " a s s o c i a t i o n of a set B , w i t h I(L) Ç" B Çi P ( L ) , w i t h L 

w i l l p r o d u c e a n e w d u a l i t y , and it is a r e a s o n a b l e q u e s t i o n w h e t h e r every d u a l i t y 

a r i s e s in this m a n n e r . 

T h e t h e o r e m b e l o w i n t e r p r e t s in terms of the I ( L ) - d u a l i t y w h a t t o p o l o g i c a l 

c o n d i t i o n s go w i t h s o m e o f the l a t t i c e - t h e o r e t i c n o t i o n d i s c u s s e d in this p a p e r . 

T h e o r e m : Let L b e an a l g e b r a i c , B r o u w e r l a t t i c e . 

i) L is a r c h i m e d e a n if and o n l y if each b a s i c c o m p a c t , o p e n set of I ( L ) 

h a s in the s u b s p a c e t o p o l o g y a d e n s e set of p o i n t s w h o s e c l o s u r e s a r e s i n g l e t o n s . 

ii) L is h y p e r - a r c h i m e d e a n if and o n l y if I ( L ) is T-, . 

i i i ) L s a t i s f i e s the CSP if and o n l y if I ( L ) is H a u s d o r f f . 
a. 

iv) I ( L ) is d i s c r e t e if and o n l y if L is Boolean. 

For p r o o f s of t h e s e c o n s u l t [/#]. 
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Abstract. Necessary and sufficient conditions are derived 

for a given semilattice to be embeddable in a free semilattice. 

Introduction 

I'd like to talk today about a circle of ideas concerning 

free semilattices. The problems involved are fairly concrete, 

and yet in them you will see echoes of several higher-level con-

cepts dealt with in other papers at this conference. 

As you well know, the very structure of free lattices and 

free modular lattices presents some very difficult questions. 

The basic structure of free distributive lattices is somewhat 

more transparent, and yet still eludes even a simple count of 

elements in the finite case. 
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In contrast, the structure of free semilattices seems 

utterly trivial — so much so, in fact, that it is hard at first 

to imagine how a free semilattice could give rise to any inter-

esting questions at all. 

Specifically, let us consider join-semilattices (S, V), 

not necessarily with a 0-element or a 1-element. An example of 

such a semilattice is Fin(X), the semilattice of nonempty finite 

subsets of an arbitrary nonempty set X, with set-union being 

the operation. Our basic fact is that, for any nonempty set X 

of generators, the free semilattice FSL(X) on X is isomorphic 

to Fin(X). The isomorphism is the obvious one: For any 

e X, the element x n V ... V x of FSL(X) corre-
V 3 n 7 1 n v 7 

sponds to } e Fin(X). 

§1. Horn's Problem 

A. Horn posed the following tempting "lunch-table problem." 

Problem 1. Clearly, FSL(X) and its subsemilattices obey 

the condition 

(*) every principal ideal is finite. 

Is (*) also a sufficient condition for a semilattice S to be 

isomorphically embeddable in a free semilattice? 
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One indication pointing in the direction of an affirmative 

answer is that every semilattice can "be isomorphically realized 

as a semilattice of subsets of itself; therefore the answer is 

always positive for finite semilattices. In a sense,, then, the 

problem asks whether local embeddability is sufficient for 

global embeddability. 

The answer, interestingly, is no. A counterexample is the 

"ladder" R depicted in Figure la. 

As a ladder, R has certain deficiencies, but as a semi-

lattice, R will be a useful example throughout this talk. 
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To show that H is a genuine counterexample, let us suppose, 

on the contrary, that R could be embedded in FSL(X) for some 

X. Then there would be a corresponding subsemilattice of 

Fin(X), consisting of finite subsets of X with the inclusion 

relations indicated by Figure lb. For each n, A Q U B^ = A , 

so that B can differ from A by at most a few elements of 
n n ^ 

A„, a fixed finite set. Thus, if we watch A„ H B as n 
Cr ' O n 

varies, we must arrive at i and j (i < j) such that 

A a fl B. = A a fl B.. In other words, to go from A. to B. we O i O j ^ o 1 1 

lose the same elements as in going from A . to B.. Since 
«] J 

A. c A . , we conclude that B. C B . , in contradiction to Figure 1
 3 i - 3 

lb. 

This proof settles Problem 1, but it simultaneously raises 

another question, to be known, out of turn, as 

Problem 3• Characterize those semilattices which can be 

embedded in a free semilattice. 

An equivalent problem, of course, is to characterize those 

semilattices which can be isomorphically represented by finite 

subsets of some set, under the union operation. A logical 

setting for an attack on this problem is therefore the general 

theory of representations of semilattices by sets. 
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§2. Representations of semilattices 

Let us review this theory. Many of the basic ideas are 

simply semilattice adaptations of the early distributive-lattice 

set-representations invented by Birkhoff and turned into a 

pretty, topological duality theory by Stone. Birkhoff and Frink 

[̂ 3] discussed meet-representations of arbitrary lattices, by 

ideals, which extend naturally to the semilattice case. Bruns 

developed and surveyed these ideas further, placing them 

in their most natural context. Recently, such ideas have been 

studied in terms of category theory and duality and there further 

developed. Several speakers at this conference have followed 

this approach, although the specific categories used have 

differed, in varying degrees, from the ones I'll be using im-

plicitly now. 

Let S be a join-semilattice and let X be a set. Al-

though our ultimate interest is representations by finite sub-

sets, we must work now with Pow(X), the set of all subsets 

[power set] of X. We regard Pow(X) as a semilattice under IJ-

Definition 2.1. A representation of S on X is a semi-

lattice homomorphism a : S -» Pow(X) such that 
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(i) the sets cr(s) distinguish points of X, i.e. no 

two distinct elements of X are contained in exactly 

the same subsets cr(s), s e S; and 

(ii) the sets o-(s) cover X, i.e., U _ cr(s) = X. 
S SO 

If a is one-to-one, i.e., an isomorphism, let us call cr 

"faithful." 

Bruns [5,6] does not initially require conditions (i) 

and (ii), but they will be convenient for our purposes and are 

not really restrictive. For example, if S can be embedded in 

a free semilattice on a set Y of generators, then, as we noted, 

S is isomorphic to a semilattice of finite subsets of Y; if Y 

is "reduced" to a smaller set X by deleting elements not used 

and by identifying elements not distinguished by the finite sub-

sets used, then we get a genuine faithful representation of S 

by finite subsets of X. 

For a given semilattice S, there are three "famous rep-

resentations" of S, all faithful: 

1. The "regular" representation, c . Here X = S and 

°reg ( s ) = f t £ S : S ^ t 3 ' 

2. The "ideal representation," Here X = Id(S), the 

set of ideals of S (including fi), and 
crid(s) = fl e Id(S) : s { i} . 
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3. The "CMI" representation, or ^ Here X = CMl(ld(S)), 

the set of nonempty, completely meet-irreducible (c.m.i.) 

ideals of S, and again °"cmi(s) = {i e CMl(ld(S)) : s j. i}. 

(An element m < 1 of a complete lattice L is said to be 

completely (or strictly) meet-irreducible if m is not the meet 

of any set of strictly larger elements [2, p. 19^]. Equiv-

alently, there is a least element c > m in L. Notice that c 

covers m. Id(S) is an algebraic lattice, so has many c.m.i. 

elements; in fact, every element of an algebraic lattice is a 

meet of c.m.i. elements. If S has a 0-element, then $ is 

a legitimate c.m.i. element of Id(S), but for technical 

reasons we'll always explicitly exclude f) in discussion of 

c.m.i. ideals.) 

Each of the representations (l), (2), (3), has its own 

virtues : 

(1) is the simplest, most natural representation. (The 

dual version of (l) is even more natural: Each element of a 

meet-semilattice is represented by the principal ideal it 

generates.) 

(2) is the ultimate parent representation, in that any 

representation of S is equivalent to a "subrepresentation" of 

cr , obtained by restricting attention to some subset of Id(S). 

312 



(I'll clarify this terminology in a moment.) For example, <r 
reg 

corresponds to the set of principal ideals, and of course ^ ^ 

corresponds to the set of c.m.i. ideals. The association of 

each representation with a subset of Id(S) also provides a 

handy way of comparing the "size" of representations : Informally, 

we can write "CR C T" when the associated subsets of Id(S) are 

so related. 

(3) is an especially economical, efficient representation, 

as Birkhoff and Frink point out in the case of semilattice rep-

resentation of lattices . 

Before considering an example, let's clarify the terminology 

just used: Two representations S on sets 

are said to be equivalent if there is a one-to-one correspondence 

between X^ and X^ which makes s ) correspond to s ) 

for each s e S. For a representation a of S on X, a 

subrepresentation of <R is any representation T of S ob-

tained by taking a subset Y of X and setting T (S) = cr(S) H Y. 

To be more graphic, we can say that "T is the intersection of 

cr with Y . " Of course, even for faithful cr, it is possible 

to "lose faith" in passing from cr to T, if we strip away 

too many elements of X in forming Y. An obvious necessary and 

sufficient condition for T to be faithful is that cr be faith-

ful and that of any two representing sets cr(s-,) ̂  cr(sp), there 
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be an element of Y in one and not the other. If cr = o\ ,, 
id 

this condition is fulfilled if Y is the set of principal 

ideals or the set of nonempty c.m.i. ideals. 

If cr is a representation of S on a set X, the equiv-

alent subrepresentation of a\ is easily constructed: each 

element x e X corresponds to the ideal I = {t e S : x jt cr(t)} 

e Id(S), and Y is the set of such ideals. This same corre-

spondence shows up as the basis of categorical duality theory, 

where ideals may appear as characters and Id(S) as the dual 

space of S. 

Let's look at all three standard representations in one 

particular setting. 

Example 2.2. Let S be Fin(X) itself, for some set X, 

and let cr : S -* Pow(X) be simply the inclusion map. Thus, the 

elements of S are finite subsets of X; the ideals of S 

correspond naturally to arbitrary subsets of X. The subset A 

of X corresponds to the ideal I = {F e Fin(X) : F c A} of 

Fin(X). For each element of S, i.e., for each nonempty finite 

subset F of X, cr (p) consists of all finite subsets of X reg ' 

which do not contain F; consists of ideals corresponding 

to all subsets of X which do not contain F; and it is not hard 

to determine that c r
c mi(

F) consists of ideals corresponding to 

those "cosingleton" subsets X - {x} for which x e F. Of the 
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three, only the CMI representation has finite representing sub-

sets even when X is infinite, so its pretense to economy is 

borne out In this instance. 

By the way, one feature of this example, namely, that ideals 

of S are "represented" by subsets of the same set X, leads to 

a generalization, in which Id(S) is regarded as a semilattice: 

Observation 2.3. If cr is a representation of a semi-

lattice S on a set X, then cr* is a representation of Id(S) 

on X, where or (I) = U x °"(s) for each I e Id(S). Even if 
S0-L * 

cr is faithful, though, cr may not be, as can be seen by rep-

resenting Pow(X) on X by the identity map, for an infinite 

set X. 
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§3• Economy of representation. 

We have now reviewed the three basic representations of a 

semilattice S. To judge from the example of the preceding 

section, the CMI representation, with its economy, will be the 

most useful for studying representations by finite subsets. In 

this connection, we have left one question as yet unanswered: 

Problem 2. In what sense is the CMI representation the 

most economical? 

Once this problem is settled, we'll be in a stronger posi-

tion to investigate embeddings in free semilattices. 

A natural conjecture in answer to Problem 2 would be that 

"cr . e cr" for all faithful representations cr of S. A glance 

at the example of the preceding section shows the falsity of this 

conjecture, however: For an infinite set X and S = Fin(X), 

cr . <t cr , even though cr . ( s ) is always finite. 
cmi c reg' cmiv 7 ° 

Here's another try. The topological analogue of a finite 

set is a compact set, and, happily, compact subsets form a semi-

lattice under union, in any topological space. (The intersection 

of two compact sets may not be compact.) Topological representa-

tion theories, on the other hand, most naturally represent struc-

tures having a join operation by open subsets. Stone early 
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showed the advantage of performing a marriage of these two 

properties by considering open compact subsets; among spaces 

with many such subsets, the prime example - in fact the ideal 

example - is the Stone representation space of a Boolean algebra 

[£0,21]. The Stone space is Hausdorff; for semilattices, T Q 

spaces constitute a natural setting. 

An investigation provides the following solution to Problem 

2, with a few added frills. 

Theorem 3.1. Let cr : S -» Pow(X) be a faithful represent-

ation of a semilattice S on a set X. Then the following con-

ditions on cr are equivalent : 

(1) V . c cr" ; v J cmi — 

(2) under some topology on X, every set cr(s) is compact and 

open ; 

(3) cr* is a faithful representation of Id(S) \ {,03 on X; 

(1+) each (nonempty) c.m.i. ideal I of S has the form I 

for some x e X, where I = {t e S : x / cr(t)}. 

[A proof of Theorem 3»1 is supplied in the Appendix.] 

Thus the CMI representation is the smallest faithful 

representation by open compact subsets. 
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In particular, every semilattice has a faithful representa-

tion by open compact subsets. 

The theorem immediately gives a fact, reminiscent of 

Example 2.2 (S = Fin(X)), which is exactly what we need: 

Corollary 3.2. For a semilattice S, the following are 

equivalent. 

(1) S can be embedded in some free semilattice; 

(l 1) S has a faithful representation by finite subsets of some 

set X; 

(2) the CMI representation of S is itself a representation 

by finite subsets. 

The only implication needing proof is (2). All we 

have to do for this proof is to give X of (l') the discrete 

topology and quote (2) (l) of Theorem 3.1. 

The theorem 3.1 gives us useful information even in the 

case where S is finite. For such an S, all nonempty ideals 

are principal and so correspond to elements. The nonempty CMI 

ideals correspond to the "uniquely covered" elements - elements 

covered by exactly one other element. For convenience, let 

NUC(S) denote the Number of Uniquely Covered elements of S. 

In the CMI representation, then, < J
c mi('

t) consists of ideals 

corresponding to uniquely covered elements not > t. It follows 
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that l ( J
c m i(

t)l = NUC(S) - NUC[t, 1], where 1 is the top 

element of S, [t,l] denotes the closed interval 

{s e S : t < s < l], and |A| denotes the cardinality of a 

set A. Thus we obtain the following fact. 

Corollary 3.3. Let cr faithfully represent a finite 

semilattice S on a set X. then for each t e S, 

I<r(t)[ > mjc(s) - mjc[t, i ] . 

Proof. Again we put the discrete topology on X and 

quote (2)=» (1) of Theorem 3 . 1 . X is necessarily finite. 

Here we have implicitly observed that for finite semi-

lattices, the CMI representation really is "contained" in any 

faithful representation. Of course, the CMI representation 

for finite semilattices is really nothing more than a dualized 

version of the familiar expression of lattice elements as joins 

of join-irreducibles. A direct proof of Corollary 3-3 would not 

be difficult. 

• The Characterization. 

Recall that our goal has been a solution of 

Problem 3. Characterize those semilattices which can be embedded 

in a free semilattice. 

319 



Actually, Corollary 3-2 deserves to be called an answer, in 

that it gives a criterion which is "intrinsic" to S (namely, 

that the CMI representation of S is itself a representation 

by finite subsets). By rephrasing this criterion, we obtain 

Solution 1. A semilattice S can be embedded in a free 

semilattice if and only if each element of S is contained in 

all except finitely many completely meet-irreducible ideals of S. 

In most situations, this criterion would b^ cumbersome. It 

does apply nicely, though, to our original "ladder" semilattice 

R of Figure la. There the principal ideal generated by each 

b^ is plainly c.m.i., and none of these ideals contains a Q . 

Thus, the condition of Solution 1 fails, and R is not em-

beddable in a free semilattice. (Actually, Solution 1 was 

developed first and R was invented to conform to a failure of 

that criterion.) 

One ingredient Is missing from Solution 1: The requirement 

that all principal ideals be finite. This property is especially 

useful, because Corollary 3.3 gives us potentially relevant in-

formation about faithful representations of such a finite ideal, 

if not the whole semilattice. The following conjecture is nat-

ural: For each element t e S, look at representations of the 

various principal ideals containing t, regarded as semilattices 
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in their own right. (For each principal ideal, choose the most 

economical faithful representation possible.) If the size of 

subsets representing t remains bounded as the principal ideals 

get larger and larger, then S should have a faithful repre-

sentation which represents t by a finite set. If not, t 

should not be so representable. 

Let us incorporate this conjecture, for all t e S, into 

a proposed solution, using the estimate of Corollary 3-3- The 

principal ideal generated by an element s can be denoted by 

(s] . 

Solution 2. A semilattice S can be embedded in a free 

semilattice if and only if the following two conditions are met: 

(a) Every principal ideal of S is finite, and 

(b) for each t e S, NUC(s] - NUC[t,s] is bounded as s 

runs through {s : s > t}. 

This conjectured solution is true. Half of the proof, at 

least, is immediate: Suppose S can be embedded in a free 

semilattice. Then S has a representation cr by finite subsets 

of a set X. For any t e S and s > t, cr restricted to (s] 

is an isomorphism of (s] into Pow(X). This restriction might 

not meet our technical requirements for being a representation, 

but by discarding some elements of X and identifying others, 
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l s ) 

as discussed in Section 2, we get a genuine representation cr } 

of (s] on a "smaller" set X Q . By Corollary 3.3, 

NUC(s] - MJC[t,s] < which is at most |cr(t)|, a 

"bound not depending on s . 

For the other half of the proof, I'd like to describe a 

method which is simple and pretty, if a knowledge of ultra-

products is presupposed: Suppose S satisfies (a) and (b) 
(s) 

(and is not itself finite). For each s e S, let cr J be a 

(s) (s) 

representation of the ideal (s] on a set X , with cr J 

being equivalent to the CMI representation of (s]. S can be 

embedded in an ultraproduct of its principal ideals by taking a 

suitable ultrafliter U on S (one among whose members are all 

principal dual ideals of S [10, Corollary, p. 27]) ; thus 

S eu Fi (s]/ll. The corresponding ultraproduct of the representa-
S 

tion is a faithful representation cr of II (s]/ll on the 

s 

set X = n x ( S V u . "Restricted" to S, cr becomes a faithful 

(s) representation, with cr(t) being essentially H y(t)/U. 

Since |c/ s\t)| = NUC(s] - NUC[t,s], which is bounded as s 

runs through {s : s > t}, the ultraproduct expression for 

cr(t) yields a finite set. 

(Does there exist an alternate proof which constructs the 

representation of S explicitly, while avoiding any form of the 

axiom of choice?) 
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§5. Applications. 

Let's apply Solution # ? in several cases. 

Example 5.1. Let S be the "ladder" semilattice R of 

Figure la. For t = a^, s runs through the a . 

NUC(a 1 - NUC[a^,a 1 = 2n - n = n, which is unbounded. Therefore v n O n 

R is not embeddable, as we know. 

Example 5.2. Let S be the semilattice depicted in Figure 

2. S is really a modular lattice consisting of N x N 

(N = {0,1,2,...}) with additional elements c. adjoined. 

(0,0) 

( M ) 

/ 

F i g u r e 2 
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For t = (m,n) and s = (m ,,n ,) J we get NUC(s] - NUC[t,s] = 

(m1 + n' + [a certain number of cj:]) - ( [m' - m] + [n' - n] + 

[a certain number of o i] ) = m + n + : c^ < (m'^n'), 

c. ^ (m,n)} | < m + n + | {c. : c. (m,n)} | = m + n + max(m,n). 
i — l l 

The computations where s and/or t is among the c^ differ by 

at most 1 from the same answer, for suitable m = n or 

m' = n'. Thus NUC(s] - NUC[t,s] is bounded, for each t, and 

the semilattice of Figure 2 is_ embeddable in a free semilattice. 

Example 5-3- Let V be an infinite-dimensional vector 

space over a finite field GF(q), and let S be its (semi-) 

lattice of finite-dimensional subspaces. Because (s] (i..e, 

[0,s]) is relatively complemented, the only uniquely covered 

elements are its "coatoms." Since [0,s] is self-dual, we can 

count its atoms (one-dimensional subspaces) instead; if s is a 

space of dimension n, this count is (qn-l)/(q-1), the number 

of nonzero vectors divided by the number of vectors in a one-

dimensional subspace. If t is k-dimensional, [t,s] is iso-

morphic to the subspace lattice of an (n-k)-dimensional vector 

space, so that the same kind of calculation applies. Thus 

WUC(s] - NUC[t,s] = [(qn-l)/(q-l)] - [(q n" k-l)/(q-l)] 

= q11 k( qk-l)/( q-1), which is unbounded for fixed k as n -» °°. 

Therefore S cannot be embedded in a free semilattice, even 

though its principal ideals are finite. 
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Further examples, for which the calculations are interesting 

but will not be carried out here, are these : 

Example Let T be an infinite set, and let S be 

the (semi-) lattice consisting of those partitions of T which 

have only finitely many nontrivial classes. In other words, S 

is the semilattice of compact elements of the full partition 

lattice of T. 

Example 5•5• Again let T be an infinite set and let S 

be the dual of the meet-semilattice of "cocompact" partitions of 

T; i.e., the partitions of T into finitely many pieces.. 

Finally, let us consider this case: 

Example ^.6. Let S be any distributive lattice in which 

all principal ideals are finite. In a finite distributive lattice 

D, the number of meet-irreducible elements equals the length 

i(D); therefore NUC(s] - NUC[t,s] - ^([0,s]) - i([t,s]) = 

£( [0,t] ), a fixed,, hence bounded, quantity as s varies. Thus 

such a lattice, regarded as a semilattice, can always be embedded 

in a free semilattice. (Horn and Kimura [12] have shown that 

any distributive lattice of this type is projective as a semi-

lattice, from which the embeddability is also immediate.) 
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Appendix : Proof of Theorem 3 . 1 . 

Let's follow the order {1) ( 3) ==> ( 2) ( k) ( 1) . 

(1)=> (3) : By assumption, cr is equivalent to the inter-

section of cr with some subset Y of Id(S) such that 

CMl( Id( S) ) c Y. Then a* is equivalent to H Y." (o"id* 

is nothing more than the regular representation of Id(S).) 

Since each nonempty ideal I of S is an intersection of non-

empty c.m.i. ideals and so is uniquely identifiable by which 

* 
c.m.i. ideals do or do not contain I, o\, fl Y, and hence 7 id 7 

cr , is one-to-one on Id(S) \ [ft] . 

(3)=> (2): Let X be given the topology for which the 

sets o~(s) themselves form a subbase for the open sets. Since 

cr is a complete join -isomorphism, taking joins in 

Id(S) \ {fi} to unions in Pow(X) \ the fact that the 

principal ideals (s] are compact elements of S [TOj Lemma 

2, p. 21] translates into the statement that any covering of 

one of the chosen subbasic sets by other subbasic sets has a 

finite subcover. Alexander's Subbase Theorem [1/3, p. 139] 

then asserts that each subbasic set cr(s) is compact in the 

generated topology adopted for X. 
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(2)=^ (J+): Without loss of generality, we may assume that 

S consists of open compact subsets of the topological space X; 

the members of S cover X. Let I be a nonempty c.m.i. 

ideal of S. We must find an x e X such that 1 = 1 , where 
x 

I = {s : x / s]. Let I + be the unique smallest ideal pro-

perly containing I, and let s Q be an element of I + not in 

I. The members of I do not cover s Q ; if they did, the union 

of the members of some (nonempty) finite subcover would contain 

Sq and would also be in I, forcing e L contrary to 

assumption. Let x, then, be a point of s Q not covered by any 

member of I. By definition, I 3 I. To prove I = 1 , let us 
X X 

consider s / I and show s ^ i.e., x e s : The join of 

I and the principal ideal (s], I V (s], properly contains I, 

+ + 

so I c I v (s]. s Q e I implies that s Q e I V (s], in other 

words, that s^ c t U s for some t e S. Since x e s^ and 

x f. t, we must have x e s, as desired. 

(1)- It suffices to consider the case where 

X c Id(S) and cr = cr fl X. But in this case, for each x, 

the ideal I coincides with x itself. Thus the condition 
x 

of (l), that X include all c.m.i. ideals, reduces to (J+). 
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Remark. Our choice of conventions regarding 0 as an 

ideal, etc., become relevant in the proof just concluded. To 

-X-

have cr be an isomorphism on all of Id(S) in (3) of Theorem 

3.1, for instance, we could either (a) include f> as a c.m.i. 

ideal, or (b) exclude ft as an ideal. If (a), then repre-

senting sets cr(s) cannot be allowed to be empty, or else (l) 

fails; furthermore, c.m.i. ideals no longer correspond only 

to uniquely covered elements in the case of a finite lattice, so 

that the "NUC" calculations must be altered. If (b), then 

no longer contains all representations, unless the repre-

senting sets o(s), s e S, are required to have empty inter-

section - a condition with other side effects. Of course, the 

conventions adopted do, unhappily, give Id(S) one more element 

than S when S is a finite lattice. 
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Proc. Univ. of Houston 
Lattice Theory Conf..Houston 1973 

ON FREE M O D U L A R LATTICES OVER PARTIAL LATTICES WITH 

FOUR GENERATORS 

by Giinter S a u e r , W o l f g a n g S e i b e r t , and Rudolf Wille 

1. Main Results : This paper is a continuation of D A Y , 

H E R R M A N N , WILLE [2 ]. It also wants to give some contri-

bution to the word p r o b l e m for the free modular lattice 

with four generators by examining free modular lattices 

over partial lattices with four g e n e r a t o r s . By a p a r t i a l 

lattice we u n d e r s t a n d a relative sublattice of any lat-

t i c e , that is a subset together with the restrictions 

of the operations A and v to this subset (e.g. GRÂT-

ZER [ 3 ; Definition 5.12]). The p r i n c i p a l results p r o v e d 

in this paper are the following t h e o r e m s . 

4 

T h e o r e m 1 : Let J be a partial lattice 

({0,g 1 ,g 2 ,g 3,g 4,1 ) ; A , v) with g i v 1 = 1 and g ^ g ^ O for 

i + j ( 1 < i , j < 4 ) . T h e n every modular lattice which has J^ 

as generating relative sublattice is freely generated 
4 4 

by J if and only if J is described by one of the 

following diagrams: 
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M 4 : J 
1 ' 

J 

(an angle of the form means that the join of the 

connected elements is deleted from the lattice M ^ ) . 

By FM(J ), we denote the free modular lattice over the 

p a r t i a l lattice J , 

freely generated by j' 

that is a certain modular lattice 

. In D A Y , H E R R M A N N , WILLE [ 2 ] 

the free modular lattice FM(J^) is extensively e x a m i n e d ; 

4 

e s p e c i a l l y , it is shown that FM(J^) is an i n f i n i t e , sub-

directly irreducible lattice with one n o n - t r i v i a l congru-

ence relation 0 ( F M ( / 0 = M ^ ) . For the formulation of 

T h e o r e m 2 we still need some notations: 

Z is the set of all integers; 

N is the set of all positive integers ( N Q : = N U { 0 } ) ; 

G is the free abelian group with countably many 
generators ; 

(e^lieZ) and (f^lieN) are some basis of G; 

S^ is the lattice of all subgroups of G . 
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4 4 
T h e o r e m 2 : The free modular lattices FMCJ.,), F M ( J 1 1 ) , 4 4 4 1 1 » 1 

F M ( J ? ) , FM(J-) and FM(J.) are isomorphic to subdirect ^ 4 4 

powers of FM(J^) and sublattices of S^; generators of 

the subdirect powers and s u b l a t t i c e s , r e s p e c t i v e l y , are 

described by the following list: 

n 
generators 

in F M ( n 
generators in S^ 

FM(j|) 

1 a 

b 

c 

d 

<e~ . IieZ> 
2i 

< e 2 i + e 2 i + 1
l i £ Z > 

< e 2 i - 1 + e 2 i l i £ Z > 

< e 2 i - 1 l i E Z > 

F M f J ^ ) 

2 (a, c) 

(d,b) 

(b,d) 

(c,a) 

< e 4 i ' e 4 i - 1 + e 4 i + 1
l i E Z > 

< e 4 i + 2 ' e 4 i + 1
+ e 4 i + 3

l i e Z > 

< e 4 i + 3 > e 4 i - 2 + e 4 i l i e Z > 

< e 4 i + 1 ' e 4 i + e 4 i + 2
l i e Z > 

FM(J^) 

2 (a ,b) 

(b,c) 

(c,d) 

(d,a) 

< f 2 - I i e N > 

< £ 2 i + f 2 i + 1
| i E N > 

< f 2 i - 1 + f 2 i l i E N > 

< f 2 i . 1 l i e N > 

FM(J^) 

3 (d,a,b) 

(a,b ,c) 

(b , c , d) 

(c,d,a) 

<e~ . I ieZ> 
21 

< e 2 i + e 2 i + 1 ' e 2 j - 1 + e 2 j | i > 0 ^ > 

< e 2 i - 1 + e 2 i ' e 2 j + e 2 j + 1 l i > 0 > J > 

< e 2 i _ 1 l i £ Z > 

FM(J^) 

4 (a ,b , c , d) 

(b , c , d , a) 

(c,d,a,b) 

(d,a,b,c) 

< e 2 i ' e2j-1 1 i > 0 £ j > 
< e 2 i + e 2 i + 1

| i e Z > 

< e 2 i - 1 + e 2 i | i e Z > 

< e 2 i . 1 ( e 2 j | i > 0 > j > 
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T h e o r e m 3: The congruence lattice of F M ( j j ) , FM(jj ^ ) , 

F M C J ^ ) , FM(J^) and F M ( J ^ ) , r e s p e c t i v e l y , is a 2 n - e l e m e n t 

Boolean lattice with a new greatest element where n is 

the n u m b e r of u n d e f i n e d joins in the generating p a r t i a l 

l a t t i c e . 

Proof of T h e o r e m 1 : Let M be a modular lattice freely 

4 4 

g e n e r a t e d by J , where J as relative sublattice of M 

is described by one of the listed d i a g r a m m s . There is a 4 

h o m o m o r p h i s m ijj from FM(J ) onto M whose restriction 

4 to J is the i d e n t i t y . By T h e o r e m 3, has to be in-
4 

jective (otherwise, there are more joins in ipJ than 

4 4 
in J ). T h u s , M is freely generated by J . For the 

c o n v e r s e , we recall that every projective plane II over 

a prime field is generated by four points a ^ , a ^ , a ^ , a^ 

no three on a line. O b v i o u s l y , the elements 0 , a ^ , a ^ , 

4 

a ^ , a^ and 1 form a relative sublattice J^ of II in 

w h i c h a f v a j n o t defined for i=j= j ( 1 <i , j <4) . Since 

p r o j e c t i v e planes over different prime fields are not 4 
i s o m o r p h i c , no such plane is freely generated by J^ . 

This argument can simiarly be applied to the remaining 

3 1 3 1 
p a r t i a l lattices J^ ' (3 u n d e f i n e d j o i n s ) , J^'-j (4 un-

4 ' 
d e f i n e d joins) and J^ (5 u n d e f i n e d j o i n s ) . F i r s t , we 

take a line g in II which does not contain a^ , a^ 

3 1 

and a^. T h e n , the relative sublattice J ^ ' consisting 

of the elements 0 , a ^ , a 2 , a ^ , g and 1 generates n , 
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because a ^ , a ^ , (a^va^)Ag and ( a 2
v a 3 ) A g are four points 

no three on a line. represented in IIpXFM(J^) 

by ( ( 0 , 0 ) , ( a 1 , d ) , ( a 2 , a ) , ( a 3 , b ) , ( g , c ) , ( 1 , 1 ) } , and J^ 

is represented in II xll by 
F P P 7 

{ ( 0 , 0 ) , ( a 1 , g ) , ( a 2 , a 3 ) , ( a 3 , a 2 ) , ( g , a 1 ) , ( 1 , 1 ) } . By the 

above a r g u m e n t , no of the d e s c r i b e d subsets freely gene-

rates its generated s u b l a t t i c e . T h u s , there are no more 

p a r t i a l lattices J ^ with the desired p r o p e r t i e s . 

Proof of T h e o r e m 2 : It can be easily seen that the gene-

rators together with the smallest and the greatest e l e m e n t 

of F M ( a n d S G , r e s p . , form a relative sublattice iso-

4 
morphic to the c o r r e s p o n d i n g partial lattice J . Thus , by 

T h e o r e m 1, the sublattice generated by the d e s c r i b e d ele-

4 
ments is isomorphic to FM(J ). 

Proof of T h e o r e m 3: This p r o o f will cover the rest of 

4 
the p a p e r . In section 2 the a s s e r t i o n is p r o v e d for F M ( J 2 ) 

4 
by solving the w o r d p r o b l e m for F M ( J 2 ) . Using these re-

4 

s u i t s , the congruence lattice of FM(J^) is d e t e r m i n e d in 

section 3. This result immediately gives us the c o n g r u e n c e 

lattices of the remaining l a t t i c e s . 
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4 
2. FM(J^): The goal of this section is to solve the w o r d 

4 

p r o b l e m for FM(J2) in a similar manner as the w o r d p r o b l e m 

is solved for FM(j'j) in D A Y , H E R R M A N N , WILLE C 2 ]. The 4 

elements of F M C ^ ) w i l l be represented by quadruples of 

n a t u r a l numbers and 00 . By Proposition 19, meets and joins 

are described in terms of these q u a d r u p l e s . As consequence 

of Proposition 19 and [2 ; T h e o r e m 4 and Theorem 5 ] , we 

get T h e o r e m 3 for J^ . It should be mentioned that the 

lattice FM(J^) appears first in BIRKHOFF C1 ;p.703 w h e r e 

the generators in S^ are described as in Theorem 2. 

As in D A Y , H E R R M A N N , WILLE [ 2 ], the method which makes 

computations p r a c t i c a b l e is to introduce suitable endo-

morphisms of FMCJ^) . An detailed study of these endo-

morphisms by several lemmata prepares the proof of Pro-

p o s i t i o n 19. Since it does not make any c o n f u s i o n , we 

4 
choose the same notation for the elements of J^ a s f°r 

4 
the elements of J 1 : 

1 
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Lemma 4 : There are e n d o m o r p h i s m s 

such that 

(1) yO = 0 (2) 

y a = b 

yb = a A ( b v c ) 

yc = d A ( b v c ) 

y d = c 

y1 = b v c 

y and v of F M C J * ) 

vO = 0 

va = d A ( a v b ) 

vb = c A ( a v b ) 

vc = b 

vd = a 

v1 = avb 

Proof: By m o d u l a r i t y , it can be e a s i l y seen that (1) and 

(2) define h o m o m o r p h i s m s from J ^ into FMCJ^)• Since 

4 4 

F M C ^ ) is freely g e n e r a t e d by J^ , those h o m o m o r p h i s m s 

can be (uniquely) e x t e n d e d to e n d o m o r p h i s m s y and v 

of FM(J ̂ ) . 

Lemma 5 : yv = vy 

Proof: yva = y ( D A ( a v b ) )= C A ( b V ( A A ( b v c ) ) ) = C A ( a v b ) = v b = v y a , 

yvb = y (C A ( a v b ) ) = ( d A ( b v c ) ) a ( b v ( a A ( b v c ) ) ) = d A ( b v c ) a ( a v b ) 

= d A ( a v b )A ( ( C A ( a v b ) ) v b ) = v ( a A ( b v c ) ) = v y b , 

yvc = vyc (analogous to y v a = v y a ) , 

yvd = ya = b = vc = vyd . 

L e m m a 6 : y n x < y m x and v n x < v m x for x e J ^ if n = m (mod 2) and n > m . 

2 
Proof: The a s s e r t i o n is an i m m e d i a t e c o n s e q u e n c e of y x<x and 

2 v x < x . 

338 



Lemma 7: Let neN 
o 

(1) avy 2 nd = a v y 2 n + 1 d (2) c w 2 n d = c w 2 n + 1 d 

(3) d v p 2 n
a = d V | J

2 n + 1
a (4) d w 2 n c = d w 2 n + , c 

Proof: (1): a v u 2 n d = a v , i
2 n a v M

2 l V a v l i
2 n ( a v d ) = a v M

2 n ( a v c ) = 

w 2n ,, 2n 2n 2n+1 , „ 
avy a v y c=avy c = avy d; the proofs of (2), (3) and 

(4) are a n a l o g o u s . 

Lemma 8 : Let x e J ^ , and let neN 
Z ' 0 

(1) 
. 2n 1 X A y 1 = 2n y x (2) X A V 2 n i = 

,2n 
V X 

(3) a A y 2 n + 1 1 2n+ 2 
= y a (4) C A V 2 n + 1 1 = V 2 n + 2 

(5) d A y 2 n + l 1 2n+2 , 
= y d (6) d A V 2 n + 1 1 = V 2 n + 2 

(7) b A y 2 n + 1 1 2n, 
= y b (8) b A V 2 n + 1 1 = v 2 n b 

(9) 
2n+1 1 C A y 1 2n 

= y c (10) a A v 2 n + 1 1 II 

Proof: (1): Let x'ej^ w i t h x v x ' = 1 . Then X A y 2 n 1 = x A ( y 2 n
x v y 2 n

x ' ) = 

2n f 2n 2n ~ 2n , 
y x v ( X a y x')=y X v O = y x. (2): analogous to (1). 

( 3 ) : a A y 2 n + 1 l = a A y 2 n + 1 ( b v d ) = a A ( y 2 n + 2 a v y 2 n + 1 d ) = y 2 n + 2 a v ( a A y 2 n + 1 d ) = 

y 2 n + 2 a ; (4), (5), (6): analogous to (3). 

( 7 ) : b A y 2 n + l 1 = b A y 2 n + 1
( a v d ) = b A ( y 2 n b v y 2 n + 1 d ) = y 2 n b v ( b A y 2 n + 1 d ) = y 2 n b ; 

(8), (9), (10): analogous to (7). 

Lemma 9 : Let neN 
— o 

( 1 ) v y n a = y n d A v 1 (2) 

(3) v y n b = y n c A v 1 (4) 

(5) vy c - y bA V 1 (6) 

n n, . 
yv a = v b A y 1 

n u n 1 
yv b = v aAyl 

n n -, i 
yv c = v dAyl 
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(7) vjjnd = y n a A v 1 

(9) v jjn 1 = y n l A v 1 

(8) y v n d = v n
C A y 1 

(10) y v n 1 = v n l A y 1 

P r o o f : (1): The case n=0 is p r o v e d by v a = d A ( a v b ) = d A V l . 

By i n d u c t i o n h y p o t h e s i s , we get for n > 0 : v y n a = y v y n " ^ a = 

y ( y n ^ d A v l ) = y
n
d A y v 1 = y

n
d A ( a v b ) a ( b v c ) = y

n
d A v 1 A y 1 = y n d A v 1 . 

The o t h e r a s s e r t i o n s a n a l o g o u s l y f o l l o w . 

L e m m a 10: Let n , i , j e N Q . 

(1) v 2 n ( y l a v y j d ) = v 2 n 1 A ( y 1 a v y j d ) (2) y 2 n ( v 1 c w ^ d ) = y 2 n 1 A ( v 1 c v v 

(3) v 2 n + 1 ( y l a v y j d ) = v 2 n + 1 l A ( y l d v y j a ) 

r , -, 2 n + 1 r i j j, 2n+1., r i , i 
(4) y (V c v v J d ) = y 1A ( V d v v J c ) 

P r o o f : (1): The case n=0 is t r i v i a l . The case n=1 is p r o v e d 

b y v 2 ( y l a v y ^ d ) = v ( v y " ' " a v v y ^ d ) = v ( ( y ^ d A v 1 ) v ( y - ' a A v 1 ) ) = 

v ( ( y l d A v 1 ) v y ^ a ) = v ( v l A ( y l d v y ^ a ) ) = v 2 l A v l A ( y l a v y ^ d ) = 

2 i i v 1 A (y a v y J d ) . By i n d u c t i o n h y p o t h e s i s , w e get for n > 1 : 

2n r i j 2 n - 2 . 2 1 , i j J U 2 n 1 2 n - 2 1 f i j , . 
v (y a v y

J
d ) = v (v LA(y a v y

J
d ) ) = v 1AV LA(y a v y

J
d ) = 

v 2 n 1 A ( y x a v y ^ d ) . The o t h e r a s s e r t i o n s s i m i l a r l y f o l l o w . 

L e m m a 11: y
2 n

x v v
2 m

x = x for x e j î and n , m e N 
^ 2 o 

P r o o f : The cases n = 0 or m = 0 are i m m e d i a t e c o n s e q u e n c e s of 

L e m m a 6. The case n = 1 , m=1 can be e a s i l y c h e c k e d by L e m m a 4 . 

By i n d u c t i o n h y p o t h e s i s , we get for n + m > 2 ( w . 1 . o . g . m > 1 ) : 
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2n w 2m 2n 2m 2n 2m-2 2n 2 m - 2 r 2 2n . 
y xvv x=y xvv xvy v x = y xvv (v xvy x) = 

2n 2m-2 
y xvv x = x . 

L e m m a 12: Let n . m e N w i t h m<n . 
' o 

f 1 >. 2m w 2n+1 . r 2m 2n.j>. 2m 2n+1 . 2m 2n 
(1) y avy a=v1A(y avy d) (2) v cvv c = y l A ( v cvv d) 

P r o o f : (1): The case n = m = 0 is p r o v e d by a v y a = a v b = v 1 = v 1A ( a v d ) 

1 Tl 1 

By i n d u c t i o n h y p o t h e s i s , w e get for n > m = 0 : avy a= 

a v y 2 a v y 2 n + 1 a = a v y 2 ( a v y 2 n " 1 a ) = a v y 2 ( v 1 A ( a v y 2 n _ 2 d ) ) = 

a v ( y 2 v 1 A ( y 2 a v y 2 n d ) ) = a v ( y 2 1 A V 1 A ( y 2 a v y 2 n d ) ) = v 1 A ( a v y 2 a v y 2 n d ) = 

v l A ( a v y 2 n d ) . F u r t h e r m o r e it follows for n > m > 0 : y 2 m a v y 2 n + ^ a = 
2 m , w 2 n + 1 - 2 m . 2 m r w 2n-2m,.s 2m . f 2m 

y (avy a)=y (vlA(avy d))=y vlA(y avy d)= 

2 m . 1 r 2m , 2n,s ! r 2m 2n,x 
y 1 av1 a (y avy d)=v1 a(y avy d) . 

L e m m a 13: Let neN . 
o 

(1) d v p 2 n + 1 d = d v u 2 n a (2) d w 2 n + 1 d = d w 2 n c 

P r o o f : (1): The case n = 0 is p r o v e d by d v y d = d v c = d v a . 

9 "n 1 

By i n d u c t i o n h y p o t h e s i s we get for n>0: dvy d= 

d v y
2
d v y

2 n + l
d = d v y

2
( d v y

2 n
"

1
d ) = d v y

2
( d v y

2 n
~

2
a ) = d v y

2
d v y

2 n
a = 

d v y
2 n
a . (2): a n a l o g o u s to (1). 

L e m m a 14: Let neN . 
o 

(1) y n a < v1 (2) v n c < y1 

(3) y n b < v1 (4) v n b < y1 
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2n 2n+1 
Proof: (1): a>y a and b>y a implies the a s s e r t i o n . 

(2), (3), (4): a n a l o g o u s to (1). 

In the following we w r i t e ( i , j ) ~ ( k , l ) for 0<i,j,k,l<°° , 

if m=n (mod 2) for all m , n e { i , j ,k , 1}\{°°} ; f u r t h e r m o r e , 

OO 00 A 
let y x = 0 = v x for all x e F M t ^ ) . 

Lemma 1 5 : Let 0 < i , j ,k , 1 <°°, and let (i , j ) and 

(k,l)~(°°,°o). 

(1) ( y 1 a v y j d ) A ( y k a v y 1 d ) = 

m a x { i , k } w m a x { j , l } i - r f- n ^^ 
y ' a v y » J d i f ( i , j ) ~(k , 1) , 

^ m a x { i + 1 , j + 1 , k ) a v ^ m a x { i + 1 , j +1,1> a 

if ( i > j ) + ( k , l ) , m a x { i , j } < m a x { k , 1 } , 

^ m a x { i ,k+ 1 , 1 + 1 > a v y m a x { j , k + 1 , 1 + 1 > d 

if (i , j ) + (k , 1) ,max{ i , j }> m a x { k , 1} ; 

(2) ( v ^ v v ^ d ) A ( v k c v v 1 d ) = 

m a x { i , k } w m a x { j , l } j . r n ^ 
v ' cvv J ) d if ( i , j ) ~ ( k , l ) , 

v m a x { i + 1 , j + 1 , k > c v v m a x { i + 1, j + 1 , l > d 

if ( i , j ) + ( k , l ) , m a x { i , j } < m a x { k , 1 } , 

v m a x { i , k + 1 , 1 + 1 } c v v m a x { j , k + 1 , 1 + 1 > d 

if (i,j)4'(k,l) ,max{ i , j } >max{k , 1} . 

Proof: (1): The p r o o f is d i v i d e d into the f o l l o w i n g c a s e s : 
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1. (i,j)~(k,l) 2. ( i , j ) + ( k , l ) , m a x { i , j } < m a x ( k , l } 

1.1. i <k,j <1 2.1. i <j<k<l 2.7. j < i < k < l 

1.2. i<k,j >1 2.2. i <k< j <1 2.8. j<k<i<l 

1.3. i>k , j <1 2.3. k<i<j <1 2.9. k < j < i < l 

1.4. i > k , j >1 2.4. i<j <l<k 2.10. j < i < l < k 

2.5. i <1<j<k 2.11. j <l<i<k 

2.6. 1<i <j <k 2.12. 1<j <i<k 

By s y m m e t r y , the case ( i , j ) + ( k , 1 ) , m a x { i , j } > m a x { k , 1 } is 

a n a l o g o u s to 2.. 

i i r i w 3 a\> r k w 1 k w 1, m a x ( i , k } m a x { j , l } j 1 . 1 . : (y avy- ,d)A(y avy d)=y avy d=y ' avy J > d 

(Lemma 6); 

1 . 2 . : (y' i"avyJd)A(y^avy 1d) = ( y i a A y 1 d ) v y ^ a v y J d = 0 v y k a v y J d= 

m a x { i , k } w m a x { i , l K r T .. 
y ' avy J » d (Lemma 6); 

1.3.: a n a l o g o u s to 1.2.; 

1.4.: a n a l o g o u s to 1.1.. 

2.1.: ( y 1 a v y j d ) A ( y k
a v y

l d ) = ( y l a v y j + 1 d ) A ( y k
a v y

1 d ) = 

((y^-avy ̂ ^ ) A y k a ) v y 1 d = ( ( y 1 a v y j d ) AV1 A y k a ) v y X d = 

( ( y l a v y j + 1
a ) A y

k a ) v y 1 d = y k a v y 1 d (Lemma 7 , 6 , 1 4 , 1 2 ) ; 

2.2. : (y 1avy- jd) A ( y k
a v y

1 d ) = ( ( y l a v y j + 1
a ) A y

k a ) v y X d = 

i k i +1 1 ï + 1 1 i +1 1 
(y aAy a ) v y J avy d = 0 v y J avy d = y J avy d 

(2.1. , Lemma 6); 

2.3.: a n a l o g o u s to 2.2.; 
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2.4 * : a n a l o g o u s to 2 . 1 . ; 

2 . 5 . : ( y 1 a v y j d ) A ( y k
a v M

1 d ) = ( y 1 a v y j d ) A ( y k + 1
a v y

l d ) = 

( ( y l a v y : j d ) A y l d ) v y k + 1
a = ( ( y

i a v y j + 1 d ) A y l d ) v y k + 1 a = 

( y 1 a A y 1 d ) v y j + 1 d v y k + 1 a = O v y k + 1
a v y j + 1 d = y k a v y j + 1 d 

(Lemma 7,6); 

2.6.: a n a l o g o u s to 2.5; 

2 . 7 . : ( y X a v y ^ d ) A ( y k a v y l d ) = ( y l + 1 a v y J ' d ) A ( y k
a v y l + 1 d ) = 

y k a v y ^ d = y k a v y ^d (Lemma 7,6); 

2.8.: (y^-avy^d) A ( y k
a v y

l d ) = ( y l + 1 a v y j d ) A ( y k
a v y l + 1 d ) = 

( y k a A y ^ d ) v y l + 1
a v y

l + 1 d = O v y i + 1 a v y l + 1 d = y i + 1 a v y l d 

(Lemma 7,6); 

2.9.: a n a l o g o u s to 2.8.; 

2 . 1 0 . : ( y 1 a v y ^ d ) A ( y k
a v y

l d ) = ( y l + 1 a v y j d ) A ( y k
a v y

1 d ) = 

( ( y l + 1 a v y j d ) A y X d ) v y k
a = ( ( y

1
a v y j d ) A y

X d ) v y k a = 

( ( y l + 1 d v y J d ) A y 1 d ) v y k a = y k a v y 1 d (Lemma 7 , 6 , 1 3 ) ; 

2.11.: ( y 1 a v y ^ d ) A ( y k
a v y

l d ) = ( ( y l + 1 d v y j d ) A y X d ) v y k
a = 

C p
j
d A y

1
d ) v y

l + 1
d v y

k
a = O v y

l + 1
d v y

k
a = y

k
a v y

l + l
d ( 2 . 1 0 . , 

L e m m a 6); 

2 . 1 2 . : a n a l o g o u s to 2 . 1 1 . . 

The p r o o f of (2) a n a l o g o u s l y goes as the p r o o f of (1). 
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L e m m a 16: Let 0 <i , j ,k , 1 <°°, and let (i , j ) ~( 0 0 , 0 0) , (k , 1) 

and {j 

(1) y^avy-'dvy^a vy^"d = 

y m i n { i , k } a v y m i n { j , l } d . £ ( i J ) „ ( k > 1 ) > 

m i n { i - 1 , j - 1 , k v ^ m i n { i - 1 , j - 1 , l > d 

if ( i , j ) + ( k , 1 ) , m i n { i , j } > m i n { k , 1 } , 

^min{ i ,k- 1 ,1-1 } & v i j m i n { j ,k-1 ,1-1 > d 

if (i , j ) <f(k , 1) ,min{i , j } <min{k , 1 } ; 

(2) v ^ c v v ' d v v ^ c vv"^d= 

v m i n { i , k } c v v m i n { j , l } d . £ ( i J ) ^ k > 1 ) > 

v m i n { i - 1 , j - 1 , k > c v v m i n { i - 1 , j - 1 , 1 > d 

if ( i , j ) + ( k , 1 ) , m i n { i , j } > m i n { k , 1 } , 

v m i n { i , k - 1 , 1 - 1 > c v v m i n { j , k - 1 , 1 - 1 > d 

if ( i , j ) f ( k , l ) , m i n { i , j } < m i n { k , l } . 

P r o o f : (1): The p r o o f is d i v i d e d into the f o l l o w i n g c a s e s : 

1. (i , j ) ~(k , 1) 2. (i , j H ( k , 1) ,min{i , j } > m i n { k , l } 

2 . 1 . k<l<i<j 2 . 7 . k < l < j < i 

2 . 2 . k < i < l < j (li=«>) 2 . 8 . k< j <l<i 

2 . 3 . k<i<j <1 (jf«>) 2 . 9 . k<j <i<l 

2 . 4 . l<k<i<j 2 . 1 0 . l<k<j <i 

2 . 5 . l<i<k<j 2 . 1 1 . l<j <k<i 

2 . 6 . l<i<j<k 2 . 1 2 . l < j < i < k 

By s y m m e t r y , the case ( i , j ) f ( k , 1 ) , m i n { i , j } < m i n { k , 1 } is 

a n a l o g o u s to 2.. 
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1
 • is an i m m e d i a t e c o n s e q u e n c e of Lemma 6 . 

^ a v ^ d v ^ ^ l ^ i - ^ ^ j - ! ^ ^ ^ ^ ^ ^ 

l ^ a v y k a v p l - l d - . . . - y
i
a v y k a v y i d = l J i a V t i k a V i J i - 1 d -

U
l
"

1
a v H

k
a v l J

l
-

1
d = y

k
a V n

i
-

1
d C L e m m a 13,6,7); 

2 • 5 • : a n a l o g o u s to 2.2.; 

2 . 4 . : a n a l o g o u s to 2.1.; 

l ^ i ^ a v ^ d v p ^ v p l d ^ i ^ a v p j - l d v . ^ v ^ d ^ i - l a v p i d 

(Lemma 7,6); 

l ^ i y Iavp-'dV|j kavp^d=M^avpjdvy k~^ avp"'-d=ij^av|jJdvp-'-d= 

M W ' W d V a v y W - ' a v ^ d (Lemma 7,6); 

2 • 7 -• a n a l o g o u s to 2 . 1 . ; 

" ' a ^ ^ v ^ a v ^ d ^ i ^ a v p i d v p k a v ^ d - p j d v p ^ ^ l , , , 

y J - 1 d v y
k a v u

l
d = u

k a v l J j - 1 d ( L e r a r a a 7 > 6 ) . 

2 • 9 • : a n a l o g o u s to 2 . 8 . ; 

2 - T O . : a n a l o g o u s to 2.1.; 

2.11.: ^ a v ^ d v p k a v ^ d ^ i ^ a v p i d v M ^ v ^ d ^ j d v p k a v ^ d -

y ' avy avy d = y ^ 1 a v y l d (Lemma 7 , 6 , 1 3 ) ; 

2 • 1 2 » : a n a l o g o u s to 2 . 1 1 . . 

The p r o o f of (2) a n a l o g o u s l y goes as the p r o o f of (1). 
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Lemma 1 7 : Let 0 <i , j , k , 1<;°°, and let N , M e 2 N Q with 

N > m a x { i , j } , M > m a x { k , 1 } . 

, i j j > , r k M . i j n N . k 1 ,. 
( y a v y J d j A ( v c v v d ) = v ( y a v y J d ) v y (v c v v d) 

P r o o f : (y^avy^d) A (V^C vv^d) = (y^avy^ d) A F V^cvv^d) A(y^1 w ^ L ) 

r r i M 1 . rr k I,, N-x M r i i jv N , k 
[ ( y a v y J d ) A v 1 ) v ( ( v c v v d) Ay 1 ) = v ( y a v y J d ) v y (v c v v d) 

(Lemma 1 1 , 7 , 6 , 1 0 ) . 

L e m m a 18: y ^ n x A v ^ m x = y ^ n v ^ m x for x e J ^ and n , m e N 
^ 2 ' o 

P r o o f : The cases n = 0 or m=0 are i m m e d i a t e c o n s e q u e n c e s of 

L e m m a 6. The case n = 1 , m=1 can be e a s i l y c h e c k e d by Lemma 4 

and Lemma 9. By i n d u c t i o n h y p o t h e s i s , we get for n + m > 2 

c -i « i ï 2n 2m 2n 2 2m 2n 2 2m 
(w. 1 .o. g.m>1 J : y X A V x=y X A V X A V x=y v X A V X= 

2 f 2n 2m-2 . 2 2n 2m-2 2n 2m 
v (y X A V x ) = v y y x=y v x . 

We d e f i n e that a q u a d r u p e l (i,j,k,l) s a t i s f i e s (*) if one 

of the f o l l o w i n g c o n d i t i o n s h o l d for (i,j,k,l): 

(1) i,j , k , l e N o , (i,j ) - ( « , oo) , ( k , l ) - ( « , » ) ; 

(2) i = °o, j e 2 N o , k = o o , l e 2 N o ; 

(3) i = °o, j £ 2 N o + 1 , k e 2 N o , l = «»; 

(4) i e 2 N Q , j=oo,k=oo,ie2N o+1 ; 

(5) ie2N +1 J = « , k e 2 N +1 = 

(6) i = j=k = l = °°. 

In F M t J ^ ) we d e f i n e f ( i , j , k , 1 ) : = ( y
1
a v y ^ d ) a ( v

k
c v v

1
d ) for 

0<i,j ,k, 1<°° . 
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P r o p o s i t i o n 19: F M ( J ^ ) = { f ( i , j , k , l ) | ( i , j , k , l ) satisfies (*)} 

and 

(1) f ( i , j , k , l ) A f ( i ' , j ' , k ' , l ' ) = 

f (max {i , i'},max {j , j'} ,max {k ,k'} , max {1, T }) i£ ( i , j ) ~ ( i1, j') , 

(k,l)~(k',l'), 

f (max {i ,i'},max {j ,j'},max{k+1 ,1+1 ,k'},max{k+1 ,1+1 ,1'}) 

if (i , j ) ~ (i1, j1) » (k , 1) + (k1, l1) ,max (k , 1 l^max (k1, l1} , 

f (max {i ,i'},max {j , j'},max {k ,k'+1 ,1'+ 1},max (1 ,k*+1 , l'+ll) 

if (i , j ) ~ (i1, j') , (k,l) + (k',r) ,max(k,l }>max(k',r}, 

f (max {i+ 1 ,j + 1 ,i'},max{i+1 ,j + 1 , j1} ,max {k ,k'} ,max {1, l1}) 

if (i , j ) i(i', j') ,(k,1) ~ (k1,1') ,max{i,j }<max {i1, j'}, 

f (max{i ,i'+1 , j'+1 },max{j ,i'+1 , j'+1 },max {k ,k'},max {1,1'}) 

if (i,j) + (i',jO , (k,l)~(k',î) ,max {i , j }>max {i1, j 1}, 

f (max{i+1 , j + 1 ,i1 },max {i+1 , j + 1 , j'},max{k+1 ,1+1 ,k'},max{k+1 ,1+1 ,1'}) 

if (i , j ) + (!', j'),(k,l) + (k',l') ,max(i ,j}<max(i', j'} ,max (k , lkmax (k', l1} , 

f (max{i+1 ,j + 1 , i'},max {i+ 1 , j + 1 , j'} ,max {k ,k'+1 ,1'+1},max {1 ,k'+1 ,1'+1 }) 

if (i,j) + (i', j») (k,l) + (k',l') ,max {i , j}<max {i1, j '} ,max {k , l]>max {k1, l1} , 

f (max{i,i'+1 , j'+1},max{j , i'+1 , j'+1},max {k+1 ,1+1 ,k'},max{k+1 ,1+1,1'}) 

if (i , j) + (i', j1) (k,l) + (k',r) , max {i , j>max {i1, j'} ,max {k , J-^max {k1,1'} , 

f (max {i , i'+1 ,j'+1},max{j ,i'+1 , j'+1},max {k ,k'+1 ,1'+1},max {1 ,k'+1 ,1'+1}) 

if (i,j) + (i',j') (k , 1) + (k1, l1) ,max {i , j}>max{i', j1} ,max {k , !}>max {k1,1'} , 

and 
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(2) f ( i , j , k , l ) v f ( i ' , j ' , k ' , l » ) = 

£(min{i , i'} ,min{j , j'} ,min{k ,k'} ,min(l, 1'}) 

if (i,j)~(i,,j'),(k,l)~(k',l') 

£(min{i , i1} ,min{ j , j1} ,min{k-1 ,1-1 ,k'} ,min{k -1 ,1-1 ,1'}) 

if (i, j)~(i',j1) , (k,l)t(k',l') ,min{k,l}>min{k ,,r} , 

f (min{i,i'},min{j , j'} ,min{k ,k'-1 ,1'-1},min{ 1 ,k'-1 ,1'-1 }) 

if (i,j)~(i',j') ,(k,l) + (k',l») ,min{k , 1}<min{k', 1'} 

f(min{i-1 ,j-1 ,i'},min{i-1 ,j-1 , j'} ,min{k ,k'} ,min{ 1,1'}) 

if (i , j ) i (i1, j1) , (k , 1) ~(k', T) ,min{i , j }>min{i', j 1 }, 

f (min{i ,i'-1 , j'-1},min{j ,i'-1 , j'-1},min{k ,k'} ,min{l ,1'} 

if (i,j)t(i',jl) , (k,l)~(k',l') ,min{i,j }<min{i',j'} , 

f (min{i-1 , j-1 ,i'},min{i-1 ,j-1 ,j'},min{k-1 ,1-1 ,k'},min{k-1 ,1-1 ,1'}) 

if (i, j ) + (!', j'),(k,l) + (k',r) ,min{i , j}>min{i',j,},min{k,]}>min{k,,r} , 

f (min{i-1 , j-1 ,i'},min{i-1 , j-1 , j'} ,min {k ,k'-1 , V- 1},min (1 ,k L 1 ,1'-1 }) 

if (i, j)f(i', jl),(k,l) + (k',l») ,min { i , j)>min {i1, j'} ,min {k , 2}<min {k', 1'} , 

f (min {i , i1-1 ,j'-1},min{j ,i'-1 , j'- 1},min {k ,k'-1 , T-1},min {1 ,k'~ 1 ,1'-1 }) 

if (i , j ) + (i1, , 1) + (k1, l1) ,min {i , j]<min {i1, j'} ,min {k , l]<min{k1,1'}. 

f (min{ i , i1- 1 , j1- 1 } ,min{ j , i'- 1 , j1-1 } ,min{k- 1 ,1-1 ,k'} ,min{k - 1,L-1,1'} ) 

if (i, j ) + (!', j'),(k,l)f(k,,T) ,min{i , j } <min{i', j'} ,min{k, l}>min{k', 1«} 

Proof: (1) and (2) imply that {f(i,j,k,1)| (i,j ,k,1) satis-

fies (*)} is a sublattice of F M ( J 2 ) a n d , because of 

a = f (0 j 00 , 00 , 1 ) , b = f (1 1 , c = f (°°, 1 ,0 ,00 ) and d=f (°°,0 ,<*>,0) , 

that it is equal to F M p ^ ) . T h u s , what actually has to be 

p r o v e d is (1) and (2). 
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(1): Because of ( ( y
1
a v y ^ d ) A ( v

k
c v v

1
d ) ) A ( ( y

1
a v y ^ d ) A ( v

k
c v v

1
d ) = 

( ( y
i
a v y ^ d ) A ( y

1
a v y ^ D ) ) A ( ( v

k
c v v

1
d ) A ( v

k
c v v 1 D ) ) , the a s s e r t i o n 

is an i m m e d i a t e c o n s e q u e n c e of Lemma 15. 

(2): The p r o o f is d i v i d e d into cases s . t . ( 1 < s , t < 6 ) , w h e r e 

the case s . t . means that (i,j,k,l) s a t i s f i e s c o n d i t i o n (s) 

in (*) and (i ' , j ' ,k ' , 1 ' ) s a t i s f i e s c o n d i t i o n (t) in (*). 

By c o m m u t a t i v i t y of v , it is s u f f i c i e n t to handle the 

cases s . t . w i t h s < t . F u r t h e r m o r e , b e c a u s e of f { ^ , «>, ~0 , 

all the cases s.6 are t r i v i a l . 

1.1.: Let M e 2 N Q w i t h M > m a x { i , j , k , 1 , i 1 , j ' , k ' , 1 ' } . 

C ( y 1 a v y j d ) A ( v k c v v 1 d ) ) v ( ( y 1 ' a v y j ' d ) A ( v k ' c v v 1 ' d) = 

v M ( y 1 a v y ^ d ) v y M ( v k c v v 1 d ) v v M ( y 1 ' a v y j ' d ) v y M ( v k ' c v v 1 ' d ) = 

M i i i 1 i ' M k T k ' 1' 
v (y a v y J d v y x a v y J d)vy (v CVV dvv cvv d)= 

v M ( y m i n { i , i ' } a V y m i n { j , j ' } d ) v y M ( v m i n { k , k » } c v v m i n { l , l « } d ) = 

( u m i n { i , i ' } a v y m i n { j , j ' } d ) A ( v m i n { k , k ' } c v v m i n { l , l « } d ) 

(Lemma 1 7 , 1 6 ) . 

1.2.: Let Me2N w i t h M > m a x { i , j , k , l , j ' , l ' } . B e c a u s e of 

]vj_ i i M - 1 f 

j ' , l f e 2 N o , we have d=y J dvv d by Lemma 11. T o g e t h e r 

w i t h Lemma 17 and 18 it follows 
( ( y 1 a v y j d ) A ( v k c v v 1 d ) ) v ( y J ' d A v l f d ) = 

v M ( y X a v y j d ) v y M ( v k c v v 1 d ) v y j ' v 1 ' d = 

M , i w j j > w M r k l-,. M l ' M i ' 
v (y a v y J d)v y (v cvv d)vy v dvv y J d= 

M i i i 1 M k 1 1' 
v (y a v y J d v y J d)vy (v cvv dvv d ) . From this we get the 
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a s s e r t i o n by Lemma 16 and 17. 

1.3.: By Lemma 18, j
f
£ 2 N Q + 1 and k ' e 2 N o imply y j ' d A v

k
' c = 

i ' -1 k ' i
 1
 -1 k ' 

Y CAV c = y
J
 v c. T h e n , the p r o o f is a n a l o g o u s to 

1 .2. . 

1.4.: a n a l o g o u s to 1.3.. 

1.5.: By Lemma 18, i * £ 2 N o + 1 and k ' e 2 N o + 1 imply y 1 ' a A v k ' 
i i k ' -1 i ' -1 k f - 1 

y b A v b=y v b . T h e n , the p r o o f is analogous 

to 1.2 . . 

2.2.: If j < y and 1>1 T , we get the a s s e r t i o n from 

( y ^ d A v 1 d ) v ( ^ ? d A v 1 ' d ) = y ^ v 1 d v y j ' v 1 ' d=y^ v 1 ' (y J ' " ^ v v 1 " 1 ^ ) 

y ^ v 1 d=y J"dAv 1 d= (y^ dvyj ' d) A ( v ^ v v 1 ' d) by Lemma 16. The 

o t h e r cases are a n a l o g o u s . 

2.3.: Let M e 2 N Q w i t h M > m a x { j , 1 , j ' , k ' } . Using Lemma 6 

1 1 , 1 8 , 1 3 and 17, we get (yJ* d ^ v 1 d ) v ( yj ' d A V
k ' c) = 

i l i 1 -1 k ' 
( d A y J d A v d ) v ( C A Y J CAV c)= 

( ( y M d v V M d ) AyJ d A V 1 d ) V ( ( y M C V V M c ) AyJ ' " 1
 C A V

k ' C ) = 

( ( V ^ D A V 1 ^ V (yJ d A V M d ) ) V ( ( y M
C A v

k ' C) V (yj ' " 1
 C A V M C ) ) = 

M A j M , M k ' j ' -1 M y v d v y J v d v y V c v y J V c = 

vM(y:i" dvyj 'd) v y M ( v k ' c v v 1 d ) = (y ; jdvy :' ? d) A ( v k ' c v v 1 d) . 

2 . 4 . , 2 . 5 . , 5.4.: s i m i l a r to 2 . 3 . . 

i k i1 k 1 

3.3.: B e c a u s e of ( y J d A v c ) v ( y J d A v c) = 

_ i k i ' -1 k ' 
(y J CAV C )V (y CAV c) , the p r o o f is a n a l o g o u s to 2. 

4 . 4 . , 5.5.: s i m i l a r to 3.3.. 
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3.5.: Let M e 2 N Q w i t h M > m a x { j , k , i ' , k
1
} . U s i n g Lemma 6 , 1 1 , 

18,12,10 and 17, we get in the case k < k
f
 that 

( V d A v k c ) v ( p 1 ' a A v k ' c ) = ( c A p : ' " 1 c A v k c ) v ( b A y l f " 1 b A v k ' ~ 1 b ) = 

( ( y M C V V M c ) A y J " 1 C A V k c ) v ( ( y M b v v M b ) A y 1 ' " 1 b A V k ' " 1 b ) = 

( ( y M C A V k C ) V ( y j - 1 C A V M C ) ) v ( ( y M b A V k ' " 1 b ) v ( y i , - 1 b A v M b ) ) = 

M k j-1 M M k ' -1, , i'-1 M u M , j , , i ' M , k k ' 
y v c v y J V c v y V b v y V b = v ( y J d v y a ) v y (v C V V c ) = 

v
M
( y

: j
d v y

1
' a ) v y

M
( y 1 A ( v

k
c v v

k
' "

1
d ) ) = 

y O ^ y ^ d v y 1 ' ' ^ ) v y M ( v k d v v k ' " 1 c ) ) = 

y C C y ^ ' ^ v y 1 ' " 1 a ) A ( v k d v v k ' ' 1 c ) ) = ( y : j d v y l , a ) Ay1 A ( v k c v v k ' " 1 d ) = 

i ' i k k ' -1 
(y a v y J d ) A ( v cvv d ) . The case k'<k a n a l o g o u s l y follows 

4.5.: analogous to 3 . 5 . . 

P r o p o s i t i o n 20: A n i s o m o r p h i s m from FMCJ^) onto a s u b d i r e c t 

4 

p o w e r of FM(J.j) is given by f(i,j,k,l)i (e (i , j ) , e (k , 1) ) 

(the e l e m e n t s e ( i , j ) of F M ( j j ) are d e f i n e d in D A Y , H E R R M A N N , 

WILLE C 2 ]). 

P r o o f : The a s s e r t i o n is a s t r a i g h t f o r w a r d c o n s e q u e n c e of Pro 

p o s i t i o n 19 and of T h e o r e m 4 and 5 in [2 ]. 

P r o p o s i t i o n 21 : Let (i,j,k,l) and (i' ,j' ,k 1 ,1') s a t i s f y (*) 

T h e n f ( i , j , k , 1 ) = f ( i 1 , j 1 , k 1 , 1 ' ) if and only if 

( i , j , k , l ) = ( i ' , j ' , k ' , l ' ) . 
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Proof: The assertion immediately follows from Proposi-

tion 20 and T h e o r e m 5 in [2 1. 

P r o p o s i t i o n 2 2: The congruence lattice of FMCJ^) is 

described by the following diagram : 

Proof: By P r o p o s i t i o n 20, the intersection of the congru-

ence relations 0(avb,1) and 0(bvc,1) is the identity; 

f u r t h e r m o r e , by the H o m o m o r p h i s m Theorem and Corollary 8 

in [ 2 ], there is only one n o n - t r i v i a l congruence relation 

greater than 0(avb,1) and 0 ( b v c , 1 ) , r e s p e c t i v e l y , namely 

0 ( a v b , b v c ) . T h e r e f o r e , the distributivity of the congru-

ence lattice gives us the a s s e r t i o n . 
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4 

3. FM(J^): In this section we show the existence of epi-

m o r p h i s m s a and 3 from FM(J^) onto FMCJ^) (Lemma 2 3 ) , 

w h i c h separate FM(J^) ; that i s , ker an ker 3 = 

aj: = { (X,X) |XeFM(J^) } (Proposition 4 9 ) . To establish the 

p r o o f , we define m o n o m o r p h i s m s a and § from FMtJ^) into 

FM(J^) (Lemma 26) and m e e t - m o r p h i s m s a and 3 from FMtJ^) 
4 _ into FM(J^) (Lemma 4 3 ) , such that ax<ax and §x<Bx for all 

4 - -

x e F M C ^ ) . We prove that the intervals [ax,ax] and [§x,$x] 

are the congruence classes of ker a and ker 3 , respecti-

vely (Lemma 48). T h e r e b y , we get FM(J^) as a subdirect 4 

p o w e r of F M t ^ ) . Both Proposition 22 and P r o p o s i t i o n 49 

give us the p r o o f of T h e o r e m 3. F u r t h e r m o r e , the w o r d 4 p r o b l e m can be solved for F M ( J ^ ) . 

For the p r e p a r a t i o n of the m a i n - a s s e r t i o n s , several lemma-

ta have to be p r o v e d and are listed in the b e g i n n i n g of 

p a r t 3. For s i m p l i f i c a t i o n in the following we choose 

lower case letters for the generators of J^ and upper case 

4 
letters for the generators of J ^ . 

Lemma 23: There are e p i m o r p h i s m s a and 3 of FM(J^) onto 

FM(J^) such that 

(1) aO = 0 (2) 

aA = c 

aB = d 

30 = 0 

3A = a 

3B = b 
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AC = 

AD = 

a1 = 

a 

b 

1 

3C = c 

3D = d 

31 = 1 

4 4 

Proof: Since F M ( J 4 ) and F M ( J 2 ) are lattices freely gene-

4 4 r a t e d b y J 4 and J 2 , r e s p e c t i v e l y , the h o m o m o r p h i s m s from 
4 4 4 

J ^ into J ^ can be e x t e n d e d to e p i m o r p h i s m s from FM(J" 4) 

o n t o F M ( J 2 ) . 

L e m m a 24: T h e r e are e n d o m o r p h i s m s <f> and \p of F M ( J 4 ) 

such that 

(1) cf>0 = 0 (2) ipo = 0 

CJ)A = D A ( A V B ) IPA = B A ( A V D ) 

<J)B = C A ( A V B ) I^B = A A ( B V C ) 

(J)C = B A ( C v D ) i^C = D A ( B V C ) 

<|>D = A A ( C V D ) I|>D = C A ( A V D ) 

<F>1 = ( A V B ) A ( C V D ) ip1 = ( A V D ) A ( B V C ) 

P r o o f : It can be e a s i l y s e e n by m o d u l a r i t y that (1 ) and 

(2) d e f i n e h o m o m o r p h i s m s from J ^ into F M ( J ^ ) . T h u s , the 

4 
f r e e n e s s of F M ( J 4 ) gives as the a s s e r t i o n . 

lemma 25 : Let y and v the e n d o m o r p h i s m s of F M C J ^ ) de' 

fined in L e m m a 4 . 

(1) cpip = ip(p (2) aip = ya (3) 3<f> = v3 

(4) a<p = va (5) 3^ = y3 
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P r o o f : ( 1 ) : <WA=<|> (BA (AVD) ) = (C A (BvD) ) A ( (DA (AVB) ) v (AA (C VD) ) ) 

= CA ( A V B )A ( A V ( DA ( A V B ) ) )A ( C V D ) = CA ( A V B ) A ( A V D ) A ( A V B ) A ( C V D ) 

= CA ( AV B )A ( AV D )A ( BV C ) = ( CA ( AV D ) )A ( AV ( BA ( AV D ) ) )A ( BV C ) 

= (CA(AVD)) A((AA ( B VC)) V ( BA ( AV D ) ) ) = ^ ( DA ( BV A ) ) = M A ; 

= (p\pC=ip(pC, (p\pD=\p4)D (analogous to <p\pA=ip(pA) . 

(2) a M = a ( B A (AvD) ) =dA (cvb) =yc = iiaA , 

A\PB=A (AA (BvC) ) = CA (dva) = c = y d = y a B , 

ai|;C=a(DA (BvC) ) = b A ( d v a ) = b = y a = y a C , 

aijjD=a (C A ( A v D ) ) = a A ( c v b ) = y b = y a D . 

The o t h e r a s s e r t i o n s a n a l o g o u s l y f o l l o w . 

By L e m m a 2 5 , the f o l l o w i n g d i a g r a m c o m m u t e s : 

F M ( J * ) 
a 

T F M ( J ^ ) 
B 

<f> ip y v 
a 

B 
t FM(jp 

Lemma 26: T h e r e are m o n o m o r p h i s m s a and 3 from F M t J ^ ) 

4 
into F M ( J . ) such that 

(1) aO = 0 (2) BO = 0 

aa = C A(AvB) 

ab = D A(AvB)A(BvC) 

ac = A A(BvC) Be = C A ( AV D ) 

3d = D 

§1 = (AVD)A(CVD) 

Bb = B A ( A V D ) A ( C V D ) 

Ba = A A ( C V D ) 

ad = B 

a1 = (AVB)A(BVC) 
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4 4 
P r o o f : (1) Since F M ( J 2 ) is freely g e n e r a t e d by J ^ , it is 

e n o u g h to p r o o f the f o l l o w i n g s t a t e m e n t s : 

g a v a c = (CA(AvB))v(A A(BvC)) = (Cv(A A(BvC)))A (AvB) 

= ( C v A ) a ( B v C ) a ( A v B ) = ( B v C ) a ( A v B ) = a1 

g a v g d = (C A ( A V B ) ) V B = ( B V C )A ( A v B ) = a 1 

g b v g d = (D A ( A V B ) A ( B V C ) ) v B = ( B v D )A (A V B ) A ( B V C ) = ( A V B )A ( B v C ) = g 1 

g c v g d = (A A ( B V C ) ) v B = ( A v B )A ( B v C ) = a 1 

a a A a b = a a A a c = a a A a d = a b A a c = a b A a d = a c A a d = 0 = a 0 . 

(2): a n a l o g o u s to (1). 

(2) a B = B g = y v 

(4) av=cf>a 

(6) 3v=<J)B 

P r o o f : (1): a a a = a ( C A(A V B))=aA(cvd)= a = 3 ( A A ( C V D ) ) = g g a , 

a a b = a (D A ( A V B ) A ( B V C ) ) = b A ( c v d ) a ( a v d ) = b = 

3 = ( b A ( c v d ) A ( a v d ) ) = 3 3 b , 

AAC=A (AA (BvC) ) = CA (avd)=c=3 (C A ( A V D ) ) = 3 £ C , 

aa d=a B=d=3 D=33 d . 

(2) : «3 a=a (AA (CvD) ) =CA (avb) =vb=vy a = y v a = c A (avb) 

=6 (CA (Av B) ) =3GA, 

aBb=a (BA (AVD) A (CVD) ) =d A (cvb) A (a vb) =y (c A(a vb)) 

= u v b= 3 ( D A ( A V B )A ( B v C ) = 3 A B , 
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L e m m a 27: 

(1) ^ . = B B = i d F M ( J 4 ) 

(3) ay 

(5) 3y=^3 



a§c = a(C a ( A v D ) ) = a a ( c v b ) = y b = y v c = 3 ( A a ( C vB ) ) = $ a c , 

a§d=aD=b=ya=yvd=3B=3ad . 

( 3 ) a y a = a b = D A ( A v B ) A ( B V C ) = D A ( B V C ) A ( A V B ) A ( A V D ) A ( B V C ) 

= D A ( B V C ) A ( A V ( B A ( A V D ) ) ) A ( B V C ) = 

= D A ( B V C ) A ( ( B A ( A V D ) ) v ( A A ( B v C ) ) ) = ^ ( C A ( A v B ) ) = I | ; a a , 

a y b = a ( a A ( b v c ) ) = C A ( A v B ) a ( ( D a ( A V B ) a ( B V C ) ) V ( A a ( B V C ) ) ) 

= C A ( A V B ) A ( ( A A ( B V C ) ) V ( D A ( B V C ) ) ) A ( A V B ) = 

= C A ( A v B ) A ( D V ( A V ( B V C ) ) ) A ( A V D ) 

= C A ( A V D ) A ( A V B ) A ( B V C ) A ( A V D ) A ( ( D V ( A A ( B V C ) ) ) A ( B V C ) ) 

= 4 / ( D A ( A V B ) A ( B v C ) ) = I ^ A B , 

ayc = t|jac (analogous to ay a=ijjaa) , 

a y d = a c = A A ( B v C ) = ^ B = ^ a d . 

(4), (5), (6): a n a l o g o u s to (3). 

L e m m a 28: (1): c|)TnX<^T1X and i|;mX<ijjnX for X e J ^ if m E n ( m o d 2) 

and m > n . 

(2): <f>
m
1 <4>

n
1 and i|;

m
1<^

n
1 if m > n . 

2 2 

P r o o f : The a s s e r t i o n s are c o n s e q u e n c e s of <J> X < X , ip X < X 

and 4> 1 < 1 , r e s p e c t i v e l y . 

L e m m a 29: (1) cf>
m
XA(|)

n
Y=0 for X , Y e J 4 \ { 1 } if (i) : X+Y and 

m E n (mod 2) or (ii) : X e { 0 , A , D } and Y e { 0 , B , C } or 

(iii) : X=Y and m ^ n ( m o d 2). 
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(2) ip
m
XA^

n
Y=0 for X , {1 } if (i) : X+Y and m E n ( m o d 2) 

or (ii) : X e { 0 , A , B } and Y e { 0 , C , D } or (iii): X=Y and 

m ^ n ( m o d 2). 

Proof: XAY=0 for X , Y E J ^ \ { 1 } and X+Y implies the asser-

tions . 

L e m m a 30 : Let neN . 

(1) (f> 2 nA=AA(CV(f) 2 n" 1A)=AA(Dv(j) 2 n" 1B) 

(2) c|) 2 n~ 1A=DA(Av(f) 2 n~ 2B)=DA(Bv(j) 2 n~ 2A) 

(3) c|) 2 nB=BA(CV(j) 2 n" 1A)=BA(Dv(|) 2 n" 1B) 

(4) (f) 2 n* 1B=CA(Av({) 2 n" 2B)=CA(BV(j) 2 n" 2A) 

(5) (J)2nC = CA(Avcf) 2 n~ 1C)=CA(BV(j) 2 n" 1D) 

(6) ^ 2 n " 1 C = B A ( C v c f ) 2 n " 2 D ) = B A ( D v ( j ) 2 n * 2 C ) 

(7) <}) 2 nD=UA(Av(i) 2 n" 1C)=DA(Bv(j) 2 n" 1D) 

(8) (j> 2 n" 1D=AA(Cv(f) 2 n" 2D)=AA(Dv(j) 2 n" 2C) 

(9) ip 2 nA=AA(Cvi/; 2 n" 1A)=AA(Bvi|; 2 n" 1D) 

( 1 0 ) i | ; 2 I 1 " 1 A = B A ( A v ^ 2 n " 2 D ) = B A ( D v ^ 2 N ~ 2 A ) 

(11) i|;2nB = B A ( A v ^ 2 n ~ 1 C ) = B A ( D v l | ;
2 n " 1 B ) 

( 1 2 ) ^ 2 N ' 1 B=AA ( B v i | j 2 n " 2 C ) = A A ( C v ^ 2 n " 2 B ) 

(13) i|;2nC = CA(Avi|; 2 n" 1C)=CA(Dvî|; 2 n"' IB) 

(14) i|; 2 n" 1C = DA(Bvi|j 2 n" 2C)=DA(Cvi|; 2 n" 2B0 

(15) i|; 2 nD=DA(Cvi|; 2 n" 1A)=DA(Bvi|j 2 n" 1D) 

(16) ^ 2 n _ 1 D = C A ( A v i | J
2 n ~ 2 D ) = C A ( D v i | ; 2 n " 2 A ) . 
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(1): The case n=1 is p r o v e d by 

(î)2A=(f) (DA (AvB) ) =AA (CvD) A ( (DA (AvB) ) v (CA (AvB) ) ) 

= AA ( C v D ) A (Cv (DA ( A V B ) ) ) A ( A V B ) =AA ( C V ( DA ( A V B ) ) ) =AA (CV<f>A) a n d 

A A ( C V D ) A ( ( D A ( A V B ) ) V ( C A ( A V B ) ) ) = A A ( C V D ) A(DV(CA^VB.))) A ( A V B ) 

=AA (Dv (CA (AvB) ) ) =AA (Dv(})B) . By i n d u c t i o n h y p o t h e s i s , w e get 

for n> 1 : c|)2nA=cf)2<}>2n~2A=cj)2 (AA ( C v ^ 2 n ~ 3 A ) ) = 

0 (DA (AvB) A ( (BA (CvD) ) V(F)2N* 2 A ) =(F) (DA ( (BA (CvD) ) v (AA (Cvcj) 2 n' 3A) ) ) 

= cf> (DA (BV (AA ( C v 0 2 n " 3 A ) ) ) A (CVD) ) =<|>(DA (BV (AA ( C V ^ 2 1 1 " 3 A ) ) ) ) 

= <J) (DA (Bv(J) 2 n' 2A) ) =AA (CvD) A ( (CA (AvB) ) v (DA fBv(|)2n" 2 A ) ) ) 

= AA ( CVD ) A(Cv(DA(Bv()) 2 n" 2A))) A ( A v B ) = A A ( C v ( D A ( B v ( j ) 2 n ~ 2 A ) ) ) 

=AA(Cv4)(AA(Cvc}) 2 n" 3A)))=AA(Cv(|) 2 n' 1A) and f u r t h e r m o r e 

4>2nA=(j)2 (AA (Dvc})2n" 3 B ) ) =(|)(DA (AvB) A ( (AA (CvD) ) vc() 2 n" 2B) ) 

= 4)(Da ( ( AA ( CVD)) v(BA(Dv ( J) 2 n" 3B))))=(j)(DA(Av(BA(Dy { ) 2 N " 3 B ) ) ) A ( C V D ) ) 

= cj) (DA (Av<j) 2 n" 2B) ) =AA (CvD) A ( (DA (AvB) ) V(j)2n" 1 B) 

=AA ( (DA ( AVB) ) v (CJ) 2 n~ 2CA(f) 2 n~ 2 (AvB) ) ) 

= A A ( D v ( 4 > 2 n " 2 C A 4 > 2 n ~ 2 ( A v B ) ) A ( A v B ) = A A ( D v c j ) 2 n ~ 2 ( C A ( A v B ) ) ) 

=AA(Dvcf) 2 n" 1B) (Lemma 2 8 ) . 

A l l o t h e r cases of Lemma 30 can be p r o v e d in a s i m i l a r w a y . 

L e m m a 31: Let m , n e N and m < n . 
— — — _ _ _ _ _ _ _ _ ' R\ 

(1) cf>
2 m
Av<D

2 n
C = 

Q 

0)
2 m
Av4>

2 n
- 1

c (2) 4) 2 mBV(f) 2 nD= (j>
2mBv(f)2n~ 

(3) *
2 m

C v *
2 n

A = c()2mCv({)2n~ 1 A (4) 0 2 m D v 4 , 2 n B = 4,
2 m
Dv4,

2 n
" 1 B 

( 5 ) \j;
2m
Av\{j

2n
C= ̂

2 m A v ^ 2 n - ' C (6) i|)2mBvi|;2nD= , 2 m B u . 2 n --Bvip 1 D 

( 7 ) < p
2 m
C v « J 2 n

A = \p 2 mCvip 2 n~ (8) i|; 2 mDv^ 2 nB= 
. 2m- . 2n-1 B 
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Proof: (1): 4,
2 m
Av 4,

2 n
c=4»

2 l n
 (A v <f,

2
 Cn-ra) c ) =(j> 2 m ( A v ( C A ( A v < ) )2 (n-m) -1 c ) } } 

= *
2 m

( ( A v C ) A ( A v < f
2
(

n
-

m
) -

1
C ) = *

2 n
W

n
-

1
C (Lemma 30). 

(2), (3), (8): analogous to (1). 

Lemma 32: Let m,neN and m<n . * o 

(1) ^
2 m
A v d )

2 n + 1 
B= <^)

2m
Av(j)

2n
B (2) <J>

2 m
B V ( J>

2 n + 1 

A= ̂
2 m
B v d )

2 n
A 

(3) 
^ 2 m C V ( j ) 2 n + 1 D= 0 2 m C v 0 2 n D (4) cf> 2 m D v <j)2n+ ̂  C = (J)

 2 mDV(|) 2 nC 

(5) 
,2m. w.2n+1 
ip Avip D= ̂ 2 m A v ^ 2 n D (6) ^ 2 m D v ^ 2 n + 1 

A= ip2mDvip2nA 

(7) 
, 2m t ) w , 2n+1 ip Bvip C = ip2mBvip2nC (8) ip 2 mCvip 2 n + ̂  B = ip 2 mCvip 2 nB 

Proof: (1): ( j > 2 m A v ^ 2 n + ( A v + 1 B) =^> 2 m (Av (CAfAvcj)2 B) ) ) 

= (P^ m( (AvC) A (Avcj)2 ( n - m ) gj ) =(j)2mAv(j)2nB. (Lemma 30). 

(2), (3), . . . , (8): analogous to (1). 

Lemma 33 : Let m.neN 

> o 

(1) < ( . 2 m + 1 A v ^ 2 n + 1 C = D (2) * 2 m + 1 B v , | )
2 n + 1 D = C 

( 3 ) ^ 2 M + , C V ^ 2 N + 1 A = B ( 4 ) * 2 m + W N + 1 B = A 
Proof: The case m = n = 0 can be easily checked by Lemma 24. 

9 , 

By i n d u c t i o n h y p o t h e s i s , we get for m>n=0: <J> AvipC 

= 4>2m+lAvl{jCvip(p
2C=(p2(())2m~1AvipC) vipC = (pZDviljC 

= ( D A ( BV ( A A ( CV D ) ) ) ) V ( D A ( BV C ) ) = ( ( D A ( BV C ) )V B V ( AA ( CV D ) ) ) A D 

= ( B V C V ( A A ( C V D ) ) ) A D = ( B V C V D ) A D = D ( L e m m a 2 4 ) . N o w l e t n > 0 . 
t,t ^ , 2m+1 . , 2n+1 n A 2 m + 1 A ,2m+1.2 A ,2n+1^ 
We get: <J> Av<j> C=4> Av<p ip Avip C 

_ 2m+1 A 2 , . 2m+1 A w . 2 n - 1 P . ,2m+1. .2^ ,2m+1 A .2m+1 I T ) ,2 n 

= (p Avip [(p Avip CJ =4> Avip D=(p Av(p ipBvip D 
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= 4> 2 m + 1 A v ^ (4) 2 m + 1 Bv^D) =4) 2 m + 1 Avi|;C = D (Lemma 28) ; 

(2), (3), (4): analogous to (1). 

Lemma 34 : Let m,neN 

(1) 
, 2 m . w . 2 n + 1 D 
c() Avjp B =A (2) c D 2 i n B v ^ 2 n + 1 A = B 

(3) 
, 2 m ~ , 2 n + 1 n <p Cvip D = C (4) < } ) 2 m D v ^ 2 n + 1 C = D 

(5) 
, 2 m + 1 . w , 2 n n <p Avip D =D (6) 0 2 m + 1 B v ^ 2 n C = C 

(7) 
. 2 m + 1 . 2 n n (f> Cvip B = B (8) 

^ 2m+ 1 2 n A = 
A 

Proof: (1): Case m=0 is a consequence of Lemma 28. For 

m>0 we get by Lemma 33: 

A = * 2 r a - 1 D v ^ n + W m A v ^ 2 n + 1 B > 4 2 m + 1 D v ^ 2 n + 1 B = A . The other 

assertions similarly f o l l o w . 

Lemma 35: Let m.neN 
J Q 

(1) <j)2mAvi|,2nA=A (2) (J> 2 mBv^ 2 nB = B 

(3) (t> 2 mCv^ 2 nC = C (4) (j)2mDvi|j2nD = D 

(5) (j)m1 v4>n1 = 1 

Proof: (1): For m=0 or n=0 the assertion follows by 

Lemma 28. If m,n>0 we get 

. , 2m-1~ . 2n-1 , 2m. , . 2m+1T.„ , 2n+1 T 3 . , T - , 
A= 4> Dvi|j b>4) Avip A>(j) Dvij; B=A by Lemma 33. 

(2), (3), (4): analogous to (1). (5) we get by 1=AvC=BvD 

using Lemma 34 and (1), (4). 

362 



In the following let 
00 

<p x=o= 
00 

••Ip X for all XeJ^ • 

Lemma 36: Let neN u{°°} . 
0 

(1) (pip
n
A=4>1 Ai|j

n
D= (AvB)A^

n
D (2) <W

n
B = <j>1 AI|;nC = (AvB) AIJ;nC 

(3) (pip
n
C = (pl AI|JnB= (CvD) AIJ,nB (4) 0^

n
D = 4)1 A^

n
A= ( C v D ) A\pnA 

(5) A(F)nB = (AvD)/ ̂ (j>
n
B (6) 04)

n
B=01 A(})nA= (BvC)A0 n

A 

(7) i|;(j)nC = \f;1 A0nD = (BvC)/ \cj> D (8) ip<j)nD=i|; 1 a 4>nC = (AvD) ACJ)nC 

Proof: (1): The case n=0 is trivial. For n>0 we get 

n n "j 
by induction hypothesis and Lemma 25: (pip A=\p( (AvB) Aip D) 

= ( ( B A ( A V D ) ) V ( A A ( B V C ) ) ) A ^ N D = ( A v B ) A ( A V D ) A ( B V C ) A 0 N D 

=(AvB)A0 nD=(AvB)a(CvD)A^ nD= 4> 1 A ^ n D . The other assertions 

analogously follow. 

Lemma 37: Let m ,neN u . 

(1) c K ^ A v ^ C ) = 4)1 A(4;mDvij,nB) (2) 4>(^ mAv0 nD) = 4>1 A (^Dv^A) 

(3) (P(ip
m
Bvip

n
C) = 01 A(i|)mCvl|;

nB) (4) 4> (0mBvipnD) = 4>1 A (ipm
Cvip

n
A) 

(5) ip ( 0mAvcJ)nB) A(4,mBv4)nA) (6) 0(4)mAv4,nC) — Ip 1 A (4)mBv4)nD) 

(7) ip ( cj)mB v cj)nD) =4,1 A(4)mAv4,nC) (8) i|;(4)mCv4)nD) — Ip 1 A (4>mDv4)nC) 

Proof: (1) : <J> (ip mAv0 nC) = ( (AvB) A ^D ) v ( (CvD) AipnB) 

= ( ( ( A V B ) A(J/ND) VI|JNB) A ( C v D ) = ( ^ M D V 0 N B ) A ( A V B ) A ( C V D ) 

k 1 

= (p1 A (ip Dvip B) (Lemma 36) . All other cases similarly 

follow. 
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Lemma 38: Let k.l.meN u{°°}. 
» » o 

(1) cf) 2 mC^ kAv^ 1C) = 0 2 m 1 A C^ kAv^ 1C) 

(2) (J)2m(^kAv^lD)=(j)2m1 a ^ A v ^ D ) 

(3) 4> 2mC^ kBv^ 1C) =4)2m1 A(4; kBv^ 1C) 

(4) (J)2m(^kBv^lD)=cl)2m1 A(^kBvl|;
1D) 

(5) i|j2m((î)kAv(f)lB)=i|j2m1 a (d>kAvcf)
1B) 

(6) ip 2 m(<p kAv<p 1C)=(p 2 mU((p kAv (p
1C) 

(7) ^2m((j)kBv(f)lD)=^2m1 A((j)kBv(f,
1D) 

(8) ip2m((pkCvcp1I))=(p2wU((pkCv(p
1D) 

(9) 1 1 Aip11 

Proof: (1): The case m=0 is trivial. By induction hypo-

thesis we get for m>0: 2m(\jjkAv^1 c) =cf>2 (<j)2m~2 1 A ( I ^ A V ^ C ) ) 

= <p2m1 a<P21 A(pn(ipkAviij1C)=<t)2mU(ipkAvip1C) (Lemma 37 , 28). 

(2), (3), ..., (8): analogous to (1). (9) immediately 

follows by (1) with k=l=0 and Lemma 37. 

Lemma 39: Let i,i,k,leN , and let M,Ne2N with 
* J * g ' ' o 

M>max{k,l}, N>max{i,j} . 

(1) ( i ^ B v ^ C ) A f ^ A v ^ B ) ̂ ( ^ B v t / P c ) vl|;
N((J)

kAv(J)1B) 

( 2 ) ( i ^ A v ^ D ) A ( ( j ) k C V ( j ) 1 D ) = ( } ) M ( ^ 1 A v i | j : i D ) v i | , N ( < f ) k C v ^ D ) 

(3) (i^Avi^C) A((^
k
Bv({)

1
D)=(t)

M
(^

1
Av^jc) (<f>

k
Bv^D) 

(4) (i^Bvi^D) A((J)
kAv(j)1C) = (f)M ( ^ B vijP D) vtJ,N ( ^ A v c ^ C ) 
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Proof: (1): (ip1Bvipj C) a (cf^Av^B) 

= A((p
kAv<p1B) A(/j1 V({)N1 ) 

= (i|;N1 v(({)M1 A(^:lBvi/Pc))) A((j)kAv({)
1B) 

= C<F>ML A (ip1Bvip j C) ) v A (cj)kAv(j)1B) ) 

M i i M V 1 
= ({)u ( i|/1W ̂  J C ) v N ( (j,K A v 0 1 B ) ) (Lemma 35 , 38). 

(2), (3), (4): analogous to (1). 

Lemma 40: ( ^ X v i j P X) A (c^Xvcf^X) < M 1 for all i ,j ,k,leNu{«>} 

4 
and for all X e J ^ . 

Proof: The assertion follows by Lemma 38 and by 

4;1><K^l~1<î>XvijP-1X) and cj) 1 >cf)(cf>k" 1 î Xvc})1 ~ 1 X) • 

Lemma 41 : Let i,j e N Q with i = j (mod 2); Me2N with M > m a x { i , 

and let X c J ^ . 

( 1 ) i p 1 ( p X v i p i x > i p M
( p i ( 2 ) 4 ) 1 ^ X v ( { ) j x > / V l 

Proof: (1): ^QAvijjJ A ^ c ^ A v ^ 4>D= 4> (i{j1AvipJ D) 

= 01 A ( ^ D v ^ A ) ><P1 A ( ^ M A X { I >i
 }

D v ^
m a x { i }

A ) >c|>1 A ^ M A X { I ' J } + 1
1 

M M 

>c})lAi|i 1=(j)ijj 1 (Lemma 37 , 38). The proofs for B,C,D analo-

gously go. For 0 or 1 the assertions are trivial. 

(2): analogous to (1). 
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Lemma 42: Let i,j,k,leN ; M,Ne2N with M>max{k,l} and 

N >max{i,j} . 

(1 ) 0X(f)AvijPA) A(4> k^Av4) 1A) ̂ ( i / ^ DvijPA) vipN ( <pkB v(j)
1A) 

(2) C^^-^Bv^J B) A v4>
1
B) = 4>M

(^
1
Cvi/;jB) vip

N ( cf^Av^B) 

(3) ( r J ^ C v ^ C ) A((j)kijjCv4,1C)=4)M(^1Bvi{jJc) vl|j
N(({)

kDv(j)1C) 

(4) O^DvtjPD) A(<j)
k
l|;Dv(j)

1
D) = (J)

M
(^

1
Avi|ijD) vip

N
(4>

k
Cv<|)

1
D) 

Proof: (1): O 1 (pAvijjj A) A ( cJ^Avc^A) 

= (ip1(pAvip^A) A((j)kjpAv(p
1A) Aip(j)1 

^ ^ A v ^ A ) A((f)k
l|;Av(j)

1A) a(i|;N4)1 v / ^ 1 ) 

= ( ( O ^ A v i j P A ) ACJ)M^1 ) V / ^ 1 ) A ( (J)
k^Av (f)

1A) 

= ( (i(J1cj)Av̂  j A) a<J>Mi|;1 ) v ( O ^ A v c j ^ A ) 1 ) 

= ip ( O 1 " 1 " 1 A) A({)M1 ) v<j) ( (<J)k~1 ipAvQ 1' 1 A) AipN1 ) 

= i|;((((AvB) A ^ 1 _ 1 D ) A(J)M1) v ^ ( ( ( ( A V D ) A ( | ) k " 1 B ) v<J>1 ~ 1 A ) A^ M 1 ) 

= I K O L ~ 1 D V L J , J " 1 A ) A ( A V B ) Acf)M1) VCF) ( (<J)k" 1 BvcJ, 1 - 1 A ) A ( A v D ) A ^ N 1 ) 

= ip((ipl~1DvipJ~1A) A(pM1) v(f)(((f)
k"1Bv(})l~1A) a^ N1) 

= 1 Dvi/; j ~ 1 A) v0i|;N((j)k"1Bv(J)l"1A) 

= A) vijjN(4)kBv(j)1A) (Lemma 40, 35 , 41 , 37 , 38). 

(2), (3), (4): analogous to (1). 

Before we define meet-morphisms, let us recall that the 

elements of FMCjfJ) have a representation as quadrupels 

f(i,j,k,l)=(y 1av MJd)A(v
kcvv 1d) with (i,j,k,l) 

satisfying condition (*) in section 2 (Proposition 19). 
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Furthermore, let us define for ieN : 
' o 

\j;~1Avi|>lD:=BvijjlD, I|T 1 Dvij^A : = CVI|/a, \|T1 B v ^ C : =Avijj1C , 

^~1Cvi|jlB:=Dvi|;lB, î "*1 Avip" 1 D : = 1 , 1 Bvip" 1 C : = 1 , and 

({)"1Av(f)lB:=Dv(})lB,(t)~1Bv(f)lA:=Cv(j)lA, <J>~ 1 O ^ D : =Bv(|)
1D , 

^ Dv(j)1C : =Avcf)1B , <t>~1 AvtjT 1 B : = 1 , <ff 1 Cv<j>~ 1 D : = 1 . 

Lemma 43: There are meet-morphisms a, 3 from FÎ^J^) 

4 
into FM(J^) such that 

(1) âf (i, j ,k,l) = (^ l" 1Dv l|;j"
1A) A((f)

k~1Dv4)l"1C) 

(2) 3f (i, j ,k,l) = O l - 1 B v i | P " 1 C ) A(^ k" 1Bv4, l~ 1A) 

Proof: (1): What actually has to be proved is 

(i)"âf(i,j,k,1)=âf (i,j,0,0)*âf(0,0,k,1) 

(ii) â(f(i,j,0,0)Af( r,s,0,0))=âf(i,j,0,0)Aâf(r,s,0,0) 

(iii) â ( f ( 0 , 0 , k , l ) A f ( 0 , 0 , t , u ) ) = â f ( 0 , 0 , k , l ) A a f ( 0 , 0 , t , u ) 

since by Proposition 19, (i), (ii) and (iii) we get: 

a ( f ( i , j , k , l ) A f ( r , s , t , u ) ) = a f ( w , x , y , z ) = a f (w,x,0,0) Aaf(0,0,y,z) 

= â(f(i,j,0,0)Af( r,s,0,0))Aâ(f(0,0,k,l)Af(0,0,t,u)) 

= â f ( i , j , 0 , 0 ) A â f ( r , s , 0 , 0 ) A a f ( 0 , 0 , k , l ) A a f ( 0 , 0 , t , u ) 

=af (i , j ,k , 1) Aaf (r,s , t ,u) , if 0<i , j ,k , 1,r ,s , t ,u<°°. If some 

ne{i , j ,k , 1, r,s , t ,u} equals
 0 0

, the proof easily can be 

checked by definition of a. 

(i) : âf (i, j ,0,0) Aâf(0,0,k,l) = (i|;l"1Dvi|;^"1A) A1 A1 A(cf)k*1Dv(j)l"1C) 

= C^ 1" 1 Dvxp j ~ 1 ) A ( 0 k * 1 D v 0 l - 1 C ) = â f (i , j ,k , 1) 
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(ii): The proof is divided into the following cases 

( (i , j ) ~(r,s) means that m=n(mod 2) for all m,ne{i , j ,r ,s}\{°°} 

and i , j ,r,seNQu{oo}) : 

1. (i,j)~(r,s) 2. (i,j)+(r,s),max{i,j}<max{r,s} 

1.1. i <r, j<s 2.1. 0<i<j <r<s 2.8. 0<r<j<i<s 

1.2. i<r, j>s 2.2. 0<i<j<s<r 2.9. 0<i<r<j<s 

1.3. i>r, j<s 2.3. 0<j<i<r<s 2.10. 0 

1.4. i>r, j>s 2.4. 0<j<i<s<r 2.11. 0<j 

2.5. 0<i<s <j <r 2.12. 0<s<j<i<r 

2.6. 0<s <i <j <r 2.13. i•j=0 and i + j>0 

2 7 0<j<r<i<s o r r ' s = 0 a n <^ i"+s>0 

2.14. i = j =0 or r = s=0 

By symmetry, the case (i,j)+(r,s), max{i,j}>max{r,s} 

is analogous to 2. 

1.1. and 1.4. are immediate consequences of part 2, Lemma 6 

and Lemma 28. 

1.2. a((y Xavyjd) A(y r
avy

sd) )=â(yravyjd)=i|ir"1Dv4;j'"1A 

= ( ^ S " 1 A A I P 1 " 1 D ) vi|;j'"1
AAi|;

r
"

1
D=(0S"1AA(I|;l

"
1
Dvl|;j"1A)) v ^ r " 1 D 

= C^ 1" 1 DVT|J j ~ 1 A) A(4; r~ 1Dvi|; S" 1A)=â(y lavyjd) A A ( Y r
a v y

s
d ) 

(Lemma 29 , 2 8) ; 

1.3. analogous to 1.2.. 
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2. a ( ( y 1 a v y J d ) a ( y r
a v y

s d ) ) 

= â ( p m a x U + 1 ' i + l
 ) r } a v y m a x { i + 1 , j + 1,s} d ) 

= ^ m a x { i , j , r - 1 ) D v ^ m a x { i , j , s - 1 > A 

2 . 1 . a C i / a v p ^ d ) A ^ ( y r a v y s d ) = (ipl~1Dvipj ~ 1 A ) A (i|j r" 1Dv^ s" 1A) 

Dvif^A) A ( I J J R ~ 1 D V I P S ~ L A ) = ( ( I P L ~ 1 D V I P J A ) A I | ; R " 1 D ) VIPS 

( (DAIJJJ " 1 + 1 A ) A C A ( D v ^ r _ l " 1 A ) ) V ^ s _ 1 A 

((((<!<j ~ l + 1 A v D ) AI|; r" l" 1A) vD) AC) v ^ s " 1 A 

" 1 A v D ) A ^ R " 1 _ 1 A ) v D ) A C ) 1 A 

C ( * r _ i 
_ 1 A V D ) A C ) v ^ s " l A = ^ l ~ 1 ^ r " l D v ^ s " 1 A 

s- 1 Dvip A (Lemma 3 2 , 2 8 , 3 0 ) ; 

2 . 2 . ,2.3,2.4.: a n a l o g o u s to 2 . 1 . ( b y s y m m e t r y of J^ and 

c o m m u t a t i v i t y of A ) ; 

2 . 5 . â ( y 1 a v y : ' d ) A^ ( y r a v y s d ) = (ip1" 1 Dv^J " 1 A) A 1 Dvij,s~ 1 A) 

= (ip1" 1 Dvip j A) A(i|; rDv^ s" 1A)=i|j rDv( I|j
S~' lAA(^ l" 1Dvi|;jA)) 

= iJ)TDvipJ Aa (\pS~1AAip1~1D) =ipTDvip^A=ipT'~1Dvilj^A 

(Lemma 3 2 , 2 8 , 2 9 ) ; 

2 . 6 . ,2.7. ,2.8. : a n a l o g o u s to 2.5.; 

2 . 9 . a ( y 1 a v y ^ d ) AÂ ( y r a v y s d ) = O 1 " 1 Dvijj Î " 1 A) A 1 Dvips~ 1 A ) 

= IP1"1 ( C ^ " 1 A V D ) AC) v L | ; S " 1 A = ^ L " 1 I | ; : ' " L + 1Dv l|i
t" 1A 

= ijj^Dvipt~1A (2.1. , L e m m a 30,32); 

2 . 1 0 . , 2 . 1 1 . , 2 . 1 2 . : a n a l o g o u s to 2 . 9 . 

2 . 1 3 . Let 0 = i < j < r < s . â f ( 0 , j , 0 , 0 ) A a f ( 0 , 0 , r , s ) 

= ( C V I | ; J " 1 A ) A ( ^ R " 1 D V ^ S " 1 A ) = ( ( C V ^ ^ " 1 A ) A I| ; R ~ 1 D) vi{jSA 

= ( (CvijP "
1
 A) ADA (Cvipr

~
2
A) ) v ^ s

A = (DA (Cvij,r
~

2
A) ) v ^

S
A 

= ̂
r
"

1
Dvi|;

S
A=^

r
"

1
Dvi|;

S
~

1
A (Lemma 3 2 ) . 



Corresponding 2.2. until 2.12., all other cases can be 

easily proved in a similar way. 

2.14.: The assertion is trivial because of âf (0,0,0,0) = 1 . 

(iii) : By symmetry of definition of <J> and if; , assertion 

(iii) analogously as (ii) follows. 

Since the proof of (2) is analogous to (1), Lemma 43 is 

completely proved. 

Lemma 44: a a = i d p ^ ^ = $ 3 

Proof: 1. Let x=f(i,j,k,l)eFMCJ^) with i,j,k,l>0. 

aax=a ( (ip1 " 1 Dvi^J " 1 A) A ( <pk~ 1 Dv 0 1 " 1 C) ) 

= (li l" laDv Vij"
1aA) A ( v k " 1 a D v v l _ 1 a C ) 

= ( y l ' 1 b v y j ' 1 C ) A ( v k " 1 b v v l _ 1 a ) 

=(y
x
avyjd)A(v

k
cvv

1
d)=f(i,j,k,l) (Lemma 25). 

2. Let x=F(i,j,k,l)eFMCJ^) with some of i,j,k,l 

equals 0. We have to use the definition for ex-

-1 -1 

pressions with ip or 0 ; then the proof is ana-

logous to 1 . . 

33 = id C A. r t4 . can analogously be shown. 
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Lemma 45: ax<ax and §x<Î3x for all xeFMtJ^) 

Proof: af (i , j ,k , 1) =a( (]iiavyJ d) A (v^cvv-'^d) 

= ( ^ 1 ( C A ( A V B ) ) v ^ ^ B ) A ( C J ) K ( A A ( B v C ) ) v 0 1 B ) 

< (0 l" 1Dvi| Jj"
1A) A((j)k"1Dv(j)l"lC)=af (i, j ,k,l) (Lemma 37). 

§x<3x (analogous to ax<ax). 

Lemma 46: Let and be the set of all intervals 

[ax,ax] and [§x,i3x]with xeFMCJ^), respectively. 

(1) U I a = FM(J^) (2) U l 3 - F M ( j 4 ) 

Proof: (1): Since every meet-morphism is isotone, we get 

a x < a ( x v y ) , a y < a ( x v y ) and this implies a x v a y < a ( x v y ) . 

Now, let S e [ a x , a x ] and TeCay,ay]. 

B y a ( x v y ) = a x v a y < S v T < a x v a y < a ( x v y ) a n d 

a (.XAy) = a x A a y < S A l < a x A a y < a ( x A y ) , we get SvTe[a(xvy) , a ( x v y ) ] 

and S A T E : [ A ( X A Y ) , A ( X A Y ) ] . Since AE [ A A (BvC) , A ]= [ac ,ac ] , 

B E [ B , B ] = [aD,aD] , C £ [ C A ( A V B ) , C]=[aa,aa], 

DC[DA(BVA)A (BVC) ,D]=[ab,âb] and since FM(J^) is freely 

4 
generated by J^, the assertion follows. 

(2): analogous to (1). 

4 Lemma 47: and are partitions on FM(J^). 

371 



Proof 

otx \ yfi ay [ax,ax]n[ay ,ay]=(=0 implies 

axvay<axAay. Using Lemma 27 and 

Lemma 44, we get xvy<xAy by 
ay 

aa(xvy)<aa(xAy). Thus, x=y and the 

assertion follows by Lemma 46. The 

assertion for Ifi can be proved by the same arguments. 

ax 

Lemma 48 : Let kera x:= (XeFM(J^) |aX=x} and 

kerB x:= (XeFM(J 4)|3X=x} for xeFMCJ^) 

( 1 ) kera = [ a x , a x ] 
3C ~~ 

(2) ker6 =[§x,Bx] . 

Proof: Lemma 48 is an immediate consequence of Lemma 47 

together with Lemma 27 and 44. 

Proposition 49: a and 3 are separating homomorphisms 

from FM(J^) onto F M ( J 2 ) . 

Proof: By Lemma 48 it is enough to show that the meet of 

two intervals [ax,ax] and [§y,3y] is empty or consists of 

only one element. We choose a fixed element x=f(i,j,k,l) 

4 

of F M ( J 2 ) . Our first goal is to determine all elements 

yeFMCJ^) for which I X y '
= [ax, ax ] n [ 3y , 3y ]=)=0 . 
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ax >> By Suppose • Then axv3y<axAf3y 

y ^ and 3axvy=3axv33y<3axA33y=3axAy 

(Lemma 27 ,44). Therefore we get 

ax cr By yvx=3ax<y<3ax (Lemma 27). By Lemma 4 

and Proposition 19, 

yvx=f(j+1,i+1,1+1,k+1). For determining 3ax we have to 

distinguish in 

(i) i , j ,k , 1 >0 : 3af(i, j ,k,l)=3((^ l" 1Dvi^j~ 1A) A(0k~1Dvc()1"1 

3 D v y j " 1 3 A ) A ( v k " 1 B D v v 1 " 1 3 C ) 

= (y : j" 1avy l" 1d) A ( v l - 1 c v v k ~ 1 d ) = f (j-1 ,i-1 ,1 -1 ,k-1 ) 

(Lemma 25). 

(ii) i*j=0 and i+j>0 or k»l=0 and k+l>0: Let w.l.o.g. 

0=i <j,k, 1. 

gâf (0, j ,k,l)=3((Cv^~ 1A) A((j)k'1Dv(|)
l"1C) 

= ( c v y J - 1 a ) A ( v k " 1 d v v l " 1 c ) = ( y : j _ 1 a v y d ) A ( v l " 1 c v v k " 1 d ) 

=f(j-1,1,1-1,k-1) (Lemma 25). 

(iii) i = j=0 or k=1 = 0: Let w.l.o.g. 0=i = j<k,l. 

3 a f ( 0 , 0 , k , l ) = 3 ( 1 A ( 0 k " l D v 0 l " 1 C ) ) = 1 A ( v l " 1 c v v k _ 1 d ) 

=f(0,0,1-1,k-1) (Lemma 25). 

For summarizing these results, we define: 

i* : = j , j*: = i, k*: = 1, 1*:= k 

m-1 if m>0 

and for all me{i,j,k,l}: m := 1 if m=0 and m* + 0 

0 if m=m*=0 
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It follows: I ±0<^>ye[f (j + 1 ,i+1 ,1+1 ,k+1) ,f (j ,i ,l,k) ] 
xy 

ye{f (j ,i ,1 ,k) eFM(J2) |me{m,m,m+1 } and m=m <=> m =m 

with me{i,j,k,l}} (Proposition 19). 

Let us say, y satisfies (**) , if y is an element of 

the set just mentioned. 

In the following we have to prove axAgy=axv3y for a 

fixed x and all y satisfying condition (**). The proof 

will be divided in several cases, since we have some 

possibilities for the choice of y and since the cases 

with some of i,j,k,l equals 0 or equals <» have to be 

treated separately. By symmetry of J^ and by commutati-

vity of meet and join, it is enough to prove the follo-

wing cases : 

1.1. x=f (i > j ,1), y=f(j + 1,i +1 ,1+1 ,k+1) for 0<i,j ,k, 1<» 

1.2. x=f (i J ,1), y=f(j-1,i+1,1+1 ,k+1) for 0<i,j ,k, 1 <°° 

1 .3. x=f (i > j >k ,1), y=f(j-1,i-1,l+1,k+1) for 0<i,j ,k,l<~ 

1.4. x=f (i ,i,k ,1), y=f(i,i,l+1,k+1) for 0<i ,k , 1 <°° 

1.5. x=f (°° ,2m, °°, 2n) ,y=f (2m+1 ,°o,2n-1 for 0<m ,n<°° 

2.1. x=f (0 > j >k ,1) , y=f(j+1,1,1+1,k+1) for 0<j ,k , 1<°° 

2.2. x=f (0 oo oo > i ,2n+1) ,y=f , 1 ,2n,°o) for 0<n<°° 

3.1. x=f (0 ,0,k ,1) , y=f(1,1,l+1,k+1) for 0<k, 1<°° 
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1 . 1 . : Â X A 3 Y = ( ^ L _ 1 D V L | J J " 1 A ) A ( ( F ) K " ' 1 D V ( J ) L " 1 C ) A( 1 |;JBV L |; 1 C) A( ( |) 1 BV(|) K A) 

= C^
J
Bvip

1
C) A(tf)

1
Bv(()

k
A)=(|)

M
(i|j

1
Cvi|;jB) vip

N
(<})

k
Av<f)

1
B) 

= (f)M(^lCvi|;l + 1Dvl|;jBv^j
 + 1 A ) v l|j

N(4, kAv0 k + 1Dv(|, lBv(|) l + 1C) 

= ((i|;
1
(l)Bv^jB) A((j)

k
4jBv(})

1
B)) v((l|Jj

 + 1
4)Dvi|j

l+1
D) A((j)

l
"

1
4JDv(|)

k+1
D)) 

=axvgx (Lemma 39,42). 

1 .2. : âxA3y=(ip l" 1Dv l|j^"
1A) A((})k"1Dv4)l""lC) A(i|I:'"2Bvi|I1C) A(c{)1BAc()kA) 

= (ip1" 1 Dv^j " 1 A) A ~2Bvlp
1C) A (4)1Bvcj)kA) 

= ( IF^CV (i{j J " 2 B A (ip1' 1 D v i ^ ~ 1 A ) ) ) A ((j)1Bvcf)kA) 

= (ip1Cvipj " 1 Av (ipj "2BAI|;1~ 1 D) ) A ((J^Bvc^A) 

= (^1Cv1|;j"*
1A) A(cf,1Bv(|)kA) =(f)M(i|jlCvi|;j~1A) v^N(4)kAvcf)1B) 

= < { ) M ( ^ L C V 4 J J B V I J J J " ' I A V ^ L + 1 D ) V L J J N ( < J ) K A V ( } ) L B V 4 ) L + 1 C V ( } ) K + 1 D ) 

= ( (ip^ <pB v B) A (c})k^Bv(j)1B) ) v((l|;j"
14,Dvi|;l+lD) A(4)l+1

lpDv(J)
k+1D) 

=axv3x (Lemma 29,39,42). 

1 . 3. : âxA3y=(i|jl"1Dvl|>J"
1A) A(c|)k'1DV(j)l~1C) A(^j~2Bv^1"2C)A(01^(J)kA) 

= (^X"1Dvi|;j"1A) A (c|)1Bv4)kA) ~ 1 A) vi|,N (cj^Avcj^B) 

= (ip1Cvipî Bvipj ~ ̂  vip1"^ D) vipN((p
kAv(p

lBv(p
l + 1 C v ( p

k + 1 D ) 

= ((ip1(pBviph) A((p
kipBv(p

lB))v((ip^~'l
(f)Dvjp

l'1D) A((p l + 1ipDv(p k + 1D)) 

=axv§x (Lemma 39,42). 

1 .4. : âxA3y=(^ l~ 1Dvij; l" 1A) A((J)k"1Dv(})l"1C) A(^l"1Bv4;l"1C>^lBv(})k'2A) 

= I|J1"1 ( (DvA) A ( B V C ) ) A((f)lBv((J)k"2AA((()k"1Dv(()l""1C) ) ) 

^ip1'1^! A(<plBv<pk~1Dv((pl~1DA(t)k~2A)=ipl1 A(<J)k"1Dv4)lB) 

= <pMipl1vipN(<})
k-',Dv<plB) 

= <t>
M
(ip

l
Cvip

l
Bvip

l
Avip

l
D)vip

N
((t)

k
Av<1)

l
Bv(p

l+1
Cv(p

k
~
l
D) 

= ( ( ^ B v t j / B ) A (<j)ki|;Bv<|,1B) ) v ( ( i J ^ D v ^ D ) A (> 1 + 1 i|;Dv<j)k~ 1 D) 

=axv§x (Lemma 29,39,42). 



1.5.: â x A 3 y ^ 2 m " 1 A A c î ) 2 n - 1 C A ^ 2 m B A 0 2 n - 2 B ^ 2 m B A 0 2 n - 1 C 

= B A 0 2 n - 1 C A ^ 2 m B K ^ 2 n i + 1 A v 0 2 n B ) A c ( ) 2 n - ' l C A ^ 2 n i B 

= C ( ^ 2 m + 1 A A 0 2 n " 1 C ) v c ) ) 2 n B ) A ^ 2 m B 

= ( ( ip 2 m + 1 A A 0 1 A 0 2 n " 1 c A,]; 1 ) v 4, 2 nB) A i|;2mB 

r r 1 2m+1 . 2n-1 , 2n 2m.n = ((I|> (J)DA<J) IPD) v<j) B) AIP B 

= (i|;2MBA(j)2NB) v(i|;2M+1(})DA(|,2N"1L|;D)=axv3y (Lemma 34 ,37). 

2. 1 . : âxA3y=(Cvi|;j"1A) A(c|)k~1Dv(J)l"1C) a(^^BvC) A(cj)
1Bv(J)kA) 

= (i|pBvC) A(c})1Bv(f)kA)=(})M(Cv^jB) (<j>kAv(j) 1 B ) 

= (l>M(Cvlphvip^
 + 1AvijjD) vl|;

N((f,kAv(})lBvél+',Cv0k+1D) 

= ((CVI|PB) A((J)kAv(J)1B)) VCJ)M(L|;J + 1AV0D) ( 0 1 + 1 CV0K + 1 D) 

= ( (CV^JB) A(CF)kAv(|)1B) A (BvC)) v0 M(0j + 1Av0D) ( 0 1 + 1 C v 0 k + 1 D) 

= ( (Cv^^B) A((0kAAi|;1) V(})1B)) v0 M(^j + 1Av4;D) vi|;N((j)l+1Cv(()k+1D) 

= ( (^Bv^^B) A(0KLI;Bv({)1B)) v( (IFĴ  + 10DVI|;D) A(({)
l+1

l|;Dv(|)
k+1D) 

=axv3y (Lemma 39,37,42). 

2.2. : âxA3y=CA(|)
2nCACA(j)2n"',B=(j)2nC=02Tl((|)Bvl|jD)=(})

2n+1Bv(})2n4;D 

= (0BA4) 2 n + 1B) v(i|;DA(f)2ni|;D)=axv3y (Lemma 33). 

3. 1 . : ÂXA3Y=1 A(4, k
"

l
Dv(})L"1C) A(BVC) A(4>1

Bv(j)
k
A) 

= (BvC) A((j)
1
Bv({)

k
A)=(f)

M
(BvC) vip

N
(<j)

k
Avc{)

 1
B ) 

= (()M(BvCvipAvipD) vipN[(f)kAv(plBv(p
l + 1Cv(p k + 1D) 

= ( (BvC) A ((p
kAv(f)

1B) ) v ^ (ipAvifjD) vipN ( 0 1 + 1 C v 0 k + 1 D) 

= ( (BvC) A (AvB) A (^Avcf^B) A (BVQ) V (p
M
 (IJJAV^D) ( 0

1 + 1
 C v 0

k + 1 D) 

= ((BvC) A(AvB)A((t|)
kAAL|;1) v0 1B)) vc|)M(l|;Av^D) vip

N (<f>1+ 1 C vcj)k+ 1 D) 

= ( (c|>BvB) A (cf)k^Bv(f)1B) ) v ( ( M D v ^ D ) A ( 0 1 + 1 D v 0 k + 1 D) 

=axv3y (Lemma 39,30,37,42). 

This completes the proof of Proposition 49. 
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Proposition 50: The congruence lattice of FM(J^) is 

described by the following diagram. : 

Proof: By Proposition 49, the intersection of the congru-

ence relations kera and kerB is the identity; furthermore by 

the Homomorphism Theorem and Proposition 22, there is only 

one coatom greater than kera and ker3, respectively, namely 

0(AvB,BvC,OD,DvA) . Therefore, Proposition 22 and Pro-

position 49 together with the distributivity of the con-

gruence lattice gives us the assertion. 

Proof of Theorem 3: By the Homomorphism Theorem, the asser-

tions are immediate consequences of Proposition 50. 

Another immediate consequence of Proposition 49 is the 

following Proposition which (together with Proposition 19 

and 21) solves the word problem for FM(J^). For stating 

the Proposition, we define 
A A A A _ ^ A A A A 

g(i>j>k,l,j,i,l,k):= af(i,j,k,1) A3f(j,i,1,k) 

for f(i,j,k,l),f(j,i,l,k)eFM(J^). 



Proposition 51 : The elements of FM(J^) can be uniquely re-
/\ 

presented as octuples g(i,j,k,1,j,i , 1 ,k) such that (i,j,k,l) 
S\ 

satisfies (*) and f(j,i,l,k) satisfies (**) with respect 

to f(i,j,k,l); furthermore, for o=v and O=A, respectively, 

we have 
/\ /\ /\ /\ /\ /\ S\ / N ^ S / N / S 

g(i>j,k,l,j,i,l,k)o g(m,n,p,q,n,m,q,p)=g(r,s,t,u,s,r,u,t) 

if and only if 

f(i,j,k,l)of(m,n,p,q)=f(r,s,t,u) and 
A A A A A A A A A A A A 

f (j ,i,l,k)of(n,m,q,p)=f(s,r,u,t) . 

Now we can solve the word problems for FM(J^) and FM(J"| ^ 

There exist epimorphisms y and 6 of FM(J 3) such that 

(1) y0=0 (2) 60=0 

ya=dA(avb) 6a=b 

yb=ca(avb) 

yc=b A(cvd) 

yd=aA(cvd) 

y1=(avb)A(cvd) 

ôb=aA(bvc) 

6c=dA(bvc) 

6d=c 

61=bvc 

.4 
and endomorphisms p and a of FM(J 1 p such that 

(1) p0=0 

pa=dA(avb) 

pb=cA(avb) 

pc=bA(cvd) 

pd=aA(cvd) 

p1=(avb)A(cvd) 

(2 ) a0=0 

aa=b 

ab = a 

ac=d 

ad=c 

a1 = 1 

378 



These endomorphisms give us representations of F M ( J ^ ) and 

F M C j j ^ ) . 

Proposition 52 : 

FM(J^)={h(k,l,j,i,l,k) |g(i,j,k,l,j ,i,l,k)eFM(J^)} with 

~ ~ ^ k-1 1-1 i-1 i -1 1-1 V- 1 
H ( K , 1 , J , I , 1 ,k):= ( y K ' d v y 1 , C ) A ( 6

j 'bvS 1
 C ) A ( y i 'bvy K 1

 a ) 
/s /s. /s 

for 0<i , j ,k , 1 ,k, 1<°° and 

-1 -1 y x, 6 x analogously defined as in Lemma 43. 

Proof: Let T the epimorphism from FM(J^) onto FM(J^) 

4 4 
with T X = X for all XcJ^, X E J ^ . We get TI|J = 6T and 

•V /N 

T ( } ) = Y T . Since i-1 <i and j — 1 <j it follows 

ô 1 d v ô ^ a = ô 1 " 1 c v ô j * 1 b > ô l c v ô ^ b and Tg(i,j,k,1,j,i,1,k) 
/\ /S v̂ /S 

= ( 6 l _ 1 d v 6 : j " 1 a ) A ( Y k " 1 d v Y
l " 1 c ) A C ^ J ' ^ v é 1 " ^ ) A ( Y

l " l b v Y
k " 1 a ) 

A. 
V - 1 1 - 1 I - 1 1 - 1 1 - 1 V - 1 /V /V /V 

= (Y d v y 1 1 c ) A b v 6 C ) A ( y
1 V y K 1 a ) = h (k , 1 , j , i , 1 , k ) 

Corollary 53: For o=v and O=A 9 respectively, we have 
A A A A / \ / N / \ / \ /\ S\ S\ /\ 

h(k,l,j,i,l,k)oh(p,q,n,m,q,p)=h(t,u,s,r,u,t) 

if and only if e(k,1)°e(p,q)=e(t,u) and 
A A A A A A A A A A A A 

f(j ,i ,k,l)of(n,m,q,p)=f(s,r,u,t) 

(The elements e(i,j) of FM(jj) are defined in DAY, HERRMANN, 

WILLE [2], and f (i , j ,k , 1) e F M ^ ) ) . 
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Proposition 54 : 

F M ( J ^ 1 ) = {p(k,l,î,k) |g(i,j ,k,l,j ,i,î,k) eFM(J*)} with 

p(k,l,î,k):= ( p
k
"

1
d v p

l
"

1
c ) A ( p

l
"

1
b v p ^ "

1
a ) 

/S _ -J 

for 0<k, 1 ,k , 1 <°° and p x analogously defined as in 

Lemma 43. 

Proof: Let n the epimorphism from FM(J^) onto FM(jj 

4 4 ' 
with riX=x for all XcJ^ and xeJ^ ^ . 

We get p n = ri<J) and on = rî  • Since 

a 1 ^dva*' ^ a=o^ ^bvg 1 ^c=avd=bvc=1 it follows 
A A A A 

ng(i,j,k,l,j,i,l,k) 

f i-1 j i-1 . r k-1 , 1-1 . r j-1, i-1 . r Î-1, k-1 . 
= ( A dva J a j A ( p dvp c ) A ( A J bva C ) A ( P bvp a) 

k-1 1-1 1-1 1 ^ ~ 
= (p dvp c)A(p bvp a)=p(k,1,1 ,k) 

Corollary 55: For o=v and O=A , respectively, we have 

p(k,1,1,k)op(m,n,n,m)=p(r,s,s,t) if and only if 

e (k , 1) oe (m,n) =e (r, s) and e (1 ,k) oe (n ,m) =e (s ,r) . 

4 4 
Corollary 56: (1) F M ( j p is a sublattice of FM(J^ 

(2) FM(J^) is a sublattice of FM(J^) . 

4 Proof: (1): There exists a monomorphism X from F M ( j p 

4 

into FM(J^ .j ) such that 

A O O Xc = aA (cvd) 

Xa=c Xd=d 

Xb=bA(cvd) X1=cvd 
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(2) is an immediate consequence of Lemma 26. 

The diagram of FM(J* ^ is shown below. 
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Proc. Univ. of Houston 
Lattice Theory Conf..Houston 1973 

Freie modulare Verbânde FMCpM^) 

von Aleit Mitschke und Rudolf Wille 

In der vorliegenden Note werden modulare Verbânde FM(pM^) 

untersucht, die bis auf Isomorphie dadurch definiert sind, 

daft sie in der Klasse aller modularen Verbânde von einem 

partiellen Verband ^M^ frei erzeugt werden; die partiellen 

Verbânde ^M^ sind dabei folgendermaften definiert: 

1st M^ ein funfelementiger Verband der Lânge 2 mit klein-

stem Element 0, Atomen a 2 , a^, a^ sowie grofttem Element 1 

und ist D ein beschrânkter, distributiver Verband mit klein-

stem Element 0 und grofttem Element a 2 , dann ist ^M^ der 

partielle Verband, der D und M^ als Unterverbânde besitzt 

so, daft D u M 3 = d M 3 und DnM 3={0,a 2l gilt und daft ^va^ bzw. 

dva c mit deD nur fiir deDnM~ existiert. 

1 

Fur aile Begriffe, die in dieser Note nicht erklârt werden, 

sei auf GRÂTZER [1] verwiesen. 
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Da nicht distributive, modulare Verbânde stets Unterverbân 

de enthalten, die zu M^ isomorph sind, treten in jedem 

nicht distributiven, modularen Verband partielle Verbânde 

pM^ als relative Unterverbânde au£, wobei haufig die Kennt 

nis der von solchen relativen Unterverbânden erzeugten Un-

terverbânde wesentliche Einblicke in die Struktur des Ver-

bandes gibt. Aus dieser Tatsache erhâlt der folgende Satz 

seine Bedeutung fur die Untersuchung nicht distributiver, 

modularer Verbânde. 

Satz: M sei ein modularer Verband und ^M^ ein relati-

ver Unterverband von M . Dann sind folgende Aussagen 

âquivalent: 

(1) M wird erzeugt von ^M^ . 

(2) M ist isomorph zu F M ^ M ^ ) . 

(3) M ist isomorph zu der subdirekten Potenz von M^ , 

die aus alien quasi-eigentlichen, stetigen Abbildun-

gen von dem Stoneschen Raum 5(D) in den T Q-Raum M^ 

mit der Subbasis { [ a ^ a e M ^ l besteht; dabei heiftt eine 

Abbildung zwischen topologischen Râumen quasi-eigent-

lich, wenn das Urbild jeder quasi-kompakten, offenen 

Menge wieder quasi-kompakt ist (s.HOFFMANN&KEIMEL [2; 

Definition 1.7]). 
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Der Beweis des Satzes wird durch drei Hilfssâtze vorberei-

tet. Mit einer in WILLE C6] entwickelten Methode wird in 

Hilfssatz 1 gezeigt, daft FM(^M^) zu einer subdirekten Po-

tenz von M^ isomorph ist. In Hilfssatz 2 werden Normal-

formen fiir die Elemente von FM(^M^) angegeben, an denen 

sich ablesen lâftt, daft die in SCHMIDT [5; Lemma 17.1] kon-

struierten modularen Verbande M isomorph zu den FM(^M^) 

sind. Hilfssatz 3 beschreibt dann die Isomorphie der Kon-

gruenzrelationenve rbande von D und FM( m .,) d i e auch 

schon in SCHMIDT [5] gezeigt ist. 

von einem 

ist M 

Beweis: Die Behauptung soli zunachst unter der Vorausset-

zung bewiesen werden, daft D ein endlicher, dist ributiver 

Verband ist. In diesem Fall kann folgendes Lemma aus WILLE 

[6] angewandt werden. 

M^-Lemma: S sei ein subdirekt irreduzibler, modularer Ver-

band, der von der endlichen Menge F^uE^uE^uE^uE^ erzeugt 

wird (E^ ,E 3 ,E 540) J sei ferner e^ : =sup U (EI i tei.lt j ) und 

e^ : =inf U(E^ | j teilt i) fiir ie{2,3,5}. 1st dann gilt: 

(ë2Ac?3) v ( ë 2 A i 5 ) v ( i 3 A g 5 ) > (e 2ve 3) A ( e 2 v e 5 ) A ( e 3 v e 5 ) 
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Hilfssatz 1 : M sei e m modularer Verband, der 

relativen Unterverband ^ M 3 erzeugt wird. Dann 

isomorph zu einer subdirekten Potenz von M_ . 



Da M isomorph ist zu einem subdirekten Produkt subdirekt 

irreduzibler Verbânde, die von einem homomorphen Bild von 

d M 3 erzeugt werden, ist zu zeigen, daft ein subdirekt irre-

duzibler, modularer Verband S, der von einem homomorphen 

Bild ^(pM^) erzeugt wird und nicht zu M^ isomorph ist, 

einelementig sein muB. |S|=1 erhâlt man offenbar, wenn 

man fiir aile c,deD, fur die c oberer Nachbar von d ist, 

^c = i|;d nachweist, da dann t/ja2 und damit folgt. 

1st c oberer Nachbar von d in D , dann existiert ein 

v-irreduzibles Element c in D mit c=cvd ; ferner gibt 

es wegen der Distributivitât ein grôtëtes Element d in D , 

das nicht grôtèer oder gleich c ist. Fur E :-i|;(d], 

E2.'=^[c), -E^ :-{ipa^.} und E^=0 liefert nun das 

M^-Lemma die Ungleichung 

(ifjâ A (ipdvijjâ ) ) v (ipa^A (ipdvipa^) ) v ( (ipdvipa^) A(^dv^a^)) > 

(\jjcvipâ ) A (^cv^a^) A (^a^ v^a^) = 

Da wegen der Modularitât von S die linke Seite der Un-

gleichung gleich 

O d v (ipa^Ajpa^) ) v (ipd 

v (ipa^Aipa^) ) v ( (ipdvipaA (\fjdv\pa r) ) 

= ipd v ( ( ipd vip a ~ ) A ( ipd vip a R ) ) — (i^dv^a^) A (ipdvipar) ist, folgt 

ipd=\pa2A (ipa^v^d) a (\pa,.vipd) >ip (ipçvijja?,) a (i^cv^a^) =ipc . 

Wegen cAd=cAd erhâlt man ipc<]pd, also • (çvd) =ij;d , 

womit die Behauptung des Hilfssatzes fiir endliches D be -

wiesen ist. 386 



Fur einen beliebigen beschrânkten, distributiven Verband D 

wird zunâchst gezeigt, da/3 jede in M^ geltende Gleichung y 

auch in M gilt. Sei E eine endliche Teilmenge von M , die 

als Bild einer Belegung der Variablenmenge von y auf-

tritt. Da jedes Element von E in dem Erzeugnis einer end-

lichen Teilmenge von D und M^ liegt, gibt es einen endlich 

erzeugten Unterverband D von D mit 0,a2eD, so datè E im Er-

zeugnis von pM^ enthalten ist. Nun ist bekanntlich ein 

endlich erzeugter, distributiver Verband endlich (vgl. 

GRATZER [1; Theorem 8.1]). Daher ist nach dem Vorangehenden 

der von ^M^ erzeugte Unterverband von M zu einer subdirek-

ten Potenz von M^ isomorph, woraus folgt, daft y bei der be-

trachteten Variablenbelegung gilt. M liegt somit in der 

kleinsten gleichungsdefinierten Klasse, die M^ enthâlt. 

Nach JÔNSSON [3; Corollary 3.4] ist in dieser Klasse jeder 

subdirekt irreduzible Verband mit mehr als zwei Elementen 

isomorph zu M^. Folglich ist, da es keinen Homomorphismus 

von ^M^ auf einen zweielementigen Verband gibt, M isomorph 

zu einer subdirekten Potenz von M^• 

Hilfssatz 2 : M sei ein modularer Verband, der von einem 

relativen Unterverband ^M^ erzeugt wird. Dann besitzt jedes 

Element a in M eine eindeutige Darstellung 

a=x v[(y va 7)A(Z v a c ) ] mit x ,y ,z eD und x Ay =x AZ =y AZ ; 
a v 7 a 3 7 ci 5 7 a '7 a ' a a 7 a a a 7 a a' 

speziell gilt D=[0,a2]. 
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Beweis: Zunâchst soil gezeigt werden, daft 

N:={xv((yva^)a(zva^))|x,y,zcD und xAy=xAz=yAz) 

ein Unterverband von M ist. Dazu wird die Gûltigkeit fol-

gender Gleichungen fur x,y,z,x
f
,y' , z'eD mit XAy=xAz=yAZ 

und x'AY'=x'AZ'=Y'AZ' bewiesen: 

(A) (xv[(yva 3)A(zva 5)])A(x'v[(y *va^)A(z'va 5)]) = 

( X A X ' ) v[((yAy ' ) v a j A ( ( Z A Z ') v a c ) 3 

(v) (xv[ (yva 3)A(zva 5)])v(x'v[(y'va 3)A(z'va 5) ]) = 

XVX ' V ( (y vy ' ) A ( Z V Z ' ) ) V [ (y vy ' v ( (xvx 'jAfzvz'jjva^A 

A(zvz'v((xvx , )A(yvy ,))va [ :) 3 b 

Nach Hilfssatz 1 ist M zu einer subdirekten Potenz von M^ 

isomorph, so daft die Gleichungen (A) und (v) genau dann in 

M gelten, wenn sie bei jeder Belegung von x,y,z,x',y',z f 

mit 0 oder a 2 in M^ gelten. 

Fiir den Giilt igkei tsbeweis in M^ kann man o.B.d.A. x 1 <x 

annehmen, da (A) und (v) in x und x' symmetrisch sind. 

Wegen der Bedingung xAy=xAz=yAz miissen, falls nicht 

x = y = z = a ^ gilt, zwei der Variablen x,y,z mit 0 belegt wer-

den (dasselbe gilt fiir x 1 ,y ' , z ' ) . 

Damit erhalt man folgende Fallunterscheidung: 

Fall 1 : x=y=z=0 

Fall 2: x=y=0, z=a^ 

Fall 3: y=z=0, x=a 2 

Fall 4: x=y=z=a 2 
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Fall 2 impliziert aus Symmetriegriinden den Fall x=z=0,y=a 

Fall 1 : 

( A ) O A ( O v [ ( y < v a 3 ) A ( z ' v a 5 ) ] ) = 0 

(v) O v ( O v [ ( y ' v a 3 ) A ( z , v a 5 ) ] ) 

= (y'v(x'AZ') va 3)A(z'v(x'Ay')va^) (x'Ay'=x'AZ'=y'AZ ' ) 

= ( y ' A z , ) v [ ( y ' v ( x f A z ' ) v a 3 ) A ( z f v ( x , A y f ) v a 5 ) ] 

Fall 2: 

(A) [a^A(a 2va 5)]a[(y'va^)a(z'va 5)] (x f<x=0) 

= a^A[(y'va^)A(z'va 5) ] 

= a ^ a ( z 1 v a 5 ) 

= a 3 a ( ( a 2 a z ' ) v a 5 ) ( z ' < a 2 ) 

(v) [a^A ( a 2 v a ^ ) ] v [ (y ' v a ^ ) A (Z ' va,-) ] 

= ( y ' v a 3 ) A ( a 3 v z
, v a 5 ) 

= ( y ' v a 3 ) 

= ( y f A ( a 2 v z , ) ) v [ ( y ' v a 3 ) A ( a 2 v z , v a 5 ) ] ( y ' , z ' < a 2 ) 

Fall 3: 
( A ) A 2 A ( x T V [ ( y ' V A 3 ) A ( z ' V A 5 ) ]) 

=x'v(a 2A(y'va 3)A(z'va^)) (x'<a 2) 

= X ' V ( Y • A Z ' ) ( Y ' , Z ' < A 2 ) 

= X ' ( X ' A Y ' = Y • A Z ' ) 

= a 2 A X ' 

(v) a 2v(x
fv[(y'va 3)A(z'va^) ]) 

= a 2 v [ ( y ' v z
f v a 3 ) A ( z ! v y ' v a 5 ) ] ( x , < a 2 j y

f , z f e { 0 , a 2 } ) 

= a 2 v ( y
,
A z

,
) v [ ( y ' v z ' v a 3 ) A ( t ' v y

,
v a 5 ) ] 
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Fall 4: 

(A ) 1 A ( X ' v [ ( y ' v a 3 ) A ( Z ' v a 5 ) ] ) 

= (a 2 AX' ) v[((a2 AY 1 ) va 3) A((a2 AZ ' ) va 5) ] (x ' ,y ' , z ' <a 2) 

(v) 1 v(x'v[(y f va 3) A(Z ' va^) ] ) 

= 1 

= a 2 V [ ( a 2 v a 3 )A (a 2 va,-) 

Da DcN wegen d=d v [ (0 va 3) A (0 va^) ] fiir dfeD und a ^ a ^ e N wegen 

a 3 = 0 v [ ( 0 v a 3 ) A ( a 2 v a ^ ) ] sowie a 5 = 0v[(a 2va^)a(0va^) ] gilt, 

ist die Erzeugendenmenge ^ M 3 in N enthalten, woraus N=M 

folgt. Jedes Element a in M hat somit die Darstellung 

a=x &v[(y^va 3)a(z^ va^) ]. Die Eindeutigkeit dieser Darstel-

lung ergibt sich aus 

x -aAa 0 a 2 

(*) y a = ( [ a A a 5 ] v a 3 ) A a 2 

z a=([aAa^]va^)Aa^. 

Die Gleichungen von (*) werden folgendermaften bewiesen: 

x a = x a v ( y a A Z a ) ( x a A y a = y a A Z a ^ 

= x a v ( a 2 A ( y a v a 3 ) A ( z a v a 5 ) ) ( y a '
z a s a 2 ^ 

= ( x a v [ ( y a v a 3 ) A ( z a v a 5 ) ] ) A a 2 

= a A a 2 

> ^ a
= ( y

a
v a
3

) A a
2 ( > V

a
2

} 

= ( [ ( y a
v a 3 ) A a 5 ] v a 3 ) A a 2 

= (C(x av[ ( y a v a 3 ) A(Z ava 5)]) A (Ov[(a 2va 3) A(0va5}]) ]VA 3 ) AA2 ( 

=([aAa^]va 3)Aa^ 
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( [ a A a ^ ] v a 5 ) A a 2 a n a l o g 

(*) liefert auch unmittelbar D = [ 0 i n M . 

Hilfssatz 3: M sei ein modularer Verband, der von einem 

relativen Unterverband ^M^ erzeugt wird. 1st 0 eine Kon-

gruenzrelation von D, dann ist 

2 
0:={(a,b)eM | ( x & , x b ) , , y b ) , ( z & , z f e ) £ 0 } eine Kongruenz-

2 

relation von M mit 0=0nD ; darùberhinaus wird durch 

01 >0 ein Isomorphismus zwischen den Kongruenzrelationen-

verbânden von D und M erklârt. 

Beweis : Aus x =x AX und x =x vx, v[fy vy L) A(Z vz, ) ] 
aAc a c ave a b w a 7 b J K a b J 

sowie den entsprechenden Gleichungen fur die anderen Kompo-

nenten (siehe (A) und (v)) folgt, daft 0 eine Kongruenzre-

2 , 
lation von M ist. ©=0nD ist wegen D={aeM|y =z =0} klar. 

a a 

Fur eine Kongruenzrelation $ von M erhâlt man aus (*) 

2 
$> = $nD . Demnach hat jede Kongruenzrelation 0 von D genau 

eine Erweiterung auf M, weshalb 0» >0 ein Isomorphismus 

zwischen den Kongruenzrelationenverbânden von D und M sein 

muft. 

Beweis des Satzes: Die Âquivalenz von (1) und (2) folgt 

unmittelbar aus Hilfssatz 2 mit den Gleichungen (A) und (v) 

Fur den Nachweis der Âquivalenz von (2) und (3) wird ge-

zeigt, daft F M ( D M 3 ) isomorph ist zu der subdirekten Potenz 
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von Mg, die aus alien quasi-eigentlichen, stetigen Ab-

bildungen von -S(D) in M^ besteht. 1st \fj ein Homomorphis-

mus von FM(pM 3) au£ M^ mit = (ie{2 ,3 , 5 }) , so ist 

P: = (ip 0) nD wegen ^^{O^^} ein Primideal von D, das nach 

Hilfssatz 3 \jj eindeutig bestimmt; fur ^ soil deshalb 

auch ipp geschrieben werden. Nach Hilfssatz 1 ist dann 

FM(pM 3) isomorph zu der Potenz von M^, die aus alien Ab-

bildungen â : S ( D ) — ( a e F M ( D M 3 ) ) mit â(P)=^ pa(PeS(D)) be-

steht. Somit ist noch zu zeigen, daft die â genau die 

quasi-eigentlichen, stetigen Abbildungen von S(D) in M^ 

sind. 

Daft fur jedes a e F M ^ M ^ ) die Abbildung â quasi-eigentlich 

und stetig ist, folgt mit Lemma 11.4 in GRÂTZER [1] aus 

{P|â(P)>a 2}={P|x a<tP} 

{P|â(P)>a,}-{P|zèP} 
r o a [ * * J 

{P|â(P)>a 5)={P|y atP} 

{P|â(P) = 1 } = {P |x a,y a,z a^:P} , 

was mit Hilfssatz 2 und (*) folgendermaften nachgewiesen 

wird: 

â (P) >a 2 ^pa>a2 

x iP 
a^ 
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â (P) >a 3 i|;pa>a3 

a 2 = ( [ippaAa3 ]va^) Aa 2 = ̂ p ( (CaAa 3]va 5)Aa 2)=^pZ a 

a 

â(P)>ap<=»y analog 
j a 

Sei umgekehrt a eine quasi-eigentliche, stetige Abbil-

-1 -1 
dung von 5(D) in M^ . Dann sind a ta 2) ^a^) 
_ -j 

a ta^) quasi-kompakte, offene Teilmengen von S(D) . 

Nach Lemma 11.4 in GRÂTZER [1] existieren somit x,y,zeD 

mit c T 1 [ a 2 ) = {P|x*j:P}, a~
1 [a 3) ={P | z£P} und a" 1 [a $) = { P | yiP}. 

Angenommen XAy^xAz . Dann gibt es nach Lemma 11.2 in 

GRATZER [1] ein Primideal P von D mit X A Y £ P aber X A Z S P , 

d.h. x,y£P aber zeP. Aus x,y£P folgt 
- 1 - 1 - 1 - 1 

Pea [a 2)na [a^)=a {1}ça C a ̂ ) , was jedoch zeP wider-

spricht. Somit war die Annahme falsch, und es gilt 

XAy<xAz. Analog zeigt man xAz<yAz und yAz<XAy, womit 

xAy=xAz=yAz nachgewiesen ist. Setzt man nun 

a:= xv[(yva^)A(zva 5)], so erhâlt man nach Hilfssatz 2 
x=x , y=y und z = z , was wegen (**) a=â zur Folge hat. a a a 

Damit ist der Satz vollstandig bewiesen. 

Es soil noch angemerkt werden, daft nach dem Satz und Hilfs-

satz 3 wie zwischen den Kategorien der beschrânkten, distri-

butiven Verbânde und ihren Stoneschen Râumen (vgl. HOFFMANN 
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& KEIMEL [2; Theorem 5.23]) eine Dualitat zwischen der 

Kategorie der freien modularen Verbânde FMC^M^) mit den 

Homomorphismen, die M^ identisch auf sich abbilden, und 

der Kategorie der Stoneschen Râume 5(D) mit den quasi-

eigentlichen, stetigen Abbildungen besteht; ferner sind 

die Kategorien der beschrânkten, distributiven Verbânde 

und der freien modularen Verbânde FM(qM^) âquivalent, 

ja sogar isomorph. 

Beispiel : Daft fiir Verbânde der Lânge 2 mit mehr als funf 

Elementen kein entsprechender Satz wie fiir M^ gilt, wird 

an folgendem Beispiel deutlich: 1st V ein Vektorraum 

iiber einem Primkôrper mit der Basis e , e^, e 2 , e^
 u n <^ 

ist P:=<e Q>, A : = < e Q , e 2 > , B:=<e^,e 3>, C:=<e Q+e^,e 2+e 3> 

und D : = < e o - e 3 + e 2 > , so bilden die Untervektorrâume 

{0}, P, A , B, C, D und V einen relativen Unterverband 

^M^ des Untervektorraumverbandes von V, der durch folgen-

des Diagramm dargestellt wird: 

V 
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Folgende 1-dimensionale Untervektorrâume liegen im Er-

zeugnis von ^M^ : 

Qc 

D 

D 

(P+C)nB=<e 1> 

(P+B)nO<e + e,> v y o I 

(P+D)nB=<e 3> 

(P+B)nD= <e -e,> v J o 3 

( P + D ) n C = < e Q + e 1
+ e

2
+ e 3 

(P+C)nD=<e -e-,-e0-e7: ^ y 0 1 2 3 

Wegen V = P + Q B + R B + S C und wegen P + Q B
= P + Q C = Q B

+ Q C > 

P + R B = P + R D = R B + R D , P + S C = P + S D = S C + S d erzeugt 3 M 4 nach 

Satz III.2.1 und Satz III.2.4 in MAEDA [4] einen komple-

mentaren, einfachen Unterverband der Lânge 4, der somit 

zu einem Untervektorraumverband eines 4-dimensionalen 

Vektorraumes V' isomorph ist. Da V als Vektorraum uber 

einem Primkorper vorausgesetzt war, muft 3 M ^ folglich 

den Verband aller Untervektorrâume von V erzeugen. Man 

hat daher unendlich viele Isomorphieklassen subdirekt 

irreduzibler, modularer Verbânde, die von einem homomor-

phen Bild von 3 M ^ erzeugt werden. 
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by GQnter Bruns and Gudrun Kalmbach 

This paper contains some preliminary studies of 

free orthomodular lattices. An orthomodular lattice 

(abbreviated: OML) is considered here as a (universal) 

algebra with basic operations v , a,' , 0, 1. All general 

algebraic notions like subalgebra or homomorphism are to 

be understood in this way. 

We assume the basic notions of the theory of OMLs 

to be known; the reader can find the necessary information 

in [l] and O ] . 

In the first chapter we describe a method to present 

a finitely generated OML as a direct product of a Boolean 

algebra and an OML of a special type, which we call tightly 

generated. We use this to describe certain OMLs which are 

freely generated by some simple partially ordered sets. In 

the second chapter we construct a special extension of an 

OML L. Since it is generated by L and one additional element 

we call it a one-point extension of L. We use this constructio 

in the last chapter to prove that the free OML generated 

by a three-element poset consisting of two comparable 

elements and an element incomparable with both contains 

an infinite chain. This answers a question posed by D. 

Foulis. 
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1. Some simple free QMLs 

As is well known every interval of the form £0, cj 

in an OML L can be made an OML by defining the ortho-

complement a* of an element a in [0, cj bv a* = a'A c. 

If c is in the center of L, i. e. if c commutes with 

every element of L, then the map x } XA C is a 

homomorphism of L onto f0, c]; moreover, the map 

x > (x A c', x A c) is in this case an isomorphism 

between L and the direct product [0, c'J<L0, c*J. 

We start out by describing a simple but useful such 

splitting of a finitely generated OML. To simplify 

notation we define for an element a of an OML L: 

1 o a = a' and a = a. We say that an OML L is tightly 

generated by a finite set G iff it is generated by G and 

for every map <S € (i.e. <5 : G the equation 

/ \ x = 0 holds. 
< CG 

(1.1) Let L be an OML generated by a finite set G 

and define c Then c is in the center of L, 
Sal*' 

the OML [0,c']is Boolean and thé OML [0,cj is tightly 

generated by £ x a c | x €. G}. In particular is every 

finitely generated OML the direct product of a Boolean 

algebra and a tightly generated OML. 

Proof. The element c obviously commutes with every 

element of G and hence with every element of L, which 

means that it is in the center of L. To show that £0,c'l 

is Boolean it is enough to show that any two elements 
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x A c' , y A c' with x ,y € G commute in [ 0 , c'J , i.e. that 

( ( X \ c' ) \ (yAc' ) ) V ( ( X A c' ) A ( y A c' )* ) = x A c' 

h o l d s , where (y A c ) is the orthocomplement of y a c 

in [ 0 , 0 . But 

( ( X A C ) A ( Y A C ) ) V ( ( X A C ) A ( Y A C ) ) = 

( x A y A c ' ) v ( ( x A c ' ) A ( ( y ' \ / c ) a c' ) ) = 

( x A y ^ c ' ) v ( x A y ' A c') = 

( x , y A V A z ' " z ) ) v ( x A y ' A V A z ' f ( z ) ) = 

( V A ^ w ) v ( V A / ( z ) ) = 

In order to show that the OML [0,cj is tightly generated 

by [ x a c | x ç G ^ we define for a given I €.2 : 

H = {X € G I e ( x ) = 0 ̂  and J = { x t G ( £ ( x ) = 1J . We then 

have to prove that 

/ \ ( x A c ) A 
/ \ ( (x a c)' a c) = 0 

xe H * «J h o l d s , which is shown by the following little calculation 

( X A c ) A / \ ( X A C ) * A C = 
At H H f 1 

C A / \ X A / \ ( X ' V C ' ) = 
K t q x « 3 

C A / \ x A ( c ' v / X X ' ) = 
> « 3 

CJ A A x . A x ' = 
X i. H * € 3 

/ \ X £ ( X ) A N V ^ X 1 _ C < x ) = o, 
X € Q Kt(r 

completing the proof. 

As a first application of this we characterize the 

free OML generated by a t w - e l e m e n t set. The structure of 



it is well known, the following simple proof, however , 

seems to be new. 

Let M02 be the following OML: 
j. 

Let p^, p 2 , Pg» p^ be the atoms of the Boolean algebra 2 + . 

(1.2) The OML 2 4
X M 0 2 is freely generated by the 

set [(p 1 v p 2 ,a) , <f1 v p 3 ,b)\ . 

Proof. Let L be an OML generated by the set {x,y^. 

With c having the meaning of (1.1), L is isomorphic with 

the direct product [0,c']x ro,c]. Since [0,c'l is Boolean 

and is generated by an at most two-element set it has at 

^ r-

most 2 elements. Since L°»cj i s tightly generated by an 

at most two-element set it is a homomorphic image of M02 

and, hence, has at most six elements. It follows that L 

has at most 2 4.6 = 96 elements.But the OML 2 4 x M02 has 96 

elements and is generated by {( p^v p 2 , a ) , ( p ^ v p^ ,b )} . It 

follows that it is freely generated by this set. 

In a similar fashion one can determine the structure 

of the OML which is freely generated by the poset 
a 2 

(1) N. 

* y n > > 

i.e. by the set |x,y,zi with the relations x * z and y ^ z . 

If an OML L is generated by a set of this kind and if c is 
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defined as in (1.1) it is easy to see that f0,cl is s'ill 

tightly generated by the set [xA c ,y^ c \ and hence is a 

homomorphic image of M02. The Boolean algebra r0,c"3 is i 

this case generated by the set { X A c' ,y Ac' ,Z ̂  c') 

satisfying x c' ,y A c' ̂  z c'. From this it follows easilv 

that [0 ,c'] has at most 2 5 elements. We thus obtain that 

5 
L has at most 2 .6 = 192 elements. Again, if P 1 9 P 2 » P 3 » P , » 

5 

are the atoms of 2 and if a,b have the meaning of (1.*) 

it is easy to see that the 192-element OML 2 5 x M02 is 

generated by the set [ ( p 1 v p 2,a),(p^ v P 3 ,b) , (p^ ,1)}, the 

elements of which are in the appropriate position. We thus 

have: 

(1.3) The free OML generated by the poset (1) is 

5 
isomorphic with 2 x M02. 

By a slightly more elaborate argument but using th<-

same method it is easy to determine the OML which is fre-

generated by the poset 

We leave this to the reader. 
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2. The one-Doint extension of an OML 

The problem of determining the structure of an -M" 

L freely generated by a poset P becomes considerably • re 

difficult if P contains elements x,y,z, where x is 

incomparable with both y and z. We are far from beinp ah 

to solve it's word problem. The aim of the rest of this 

paper is to show that every such OML contains an infir. i.te 

chain. 

As a first step towards this goal we describe a 

special extension of an orthocomplemented lattice 

(abbreviated: OCL) which we hope might have other applications 

than the one given in this paper. We start out with a 

definition. 

Definition. A quasi-ideal in an OCL L is a subset A 

of L which satisfies tha following conditions: 

1. 0 € A, 

2. if a c A and b < a then b 4 A , 

3. if a € A then a" <jL A, 

U. if M ç A, if \ / M exists and if V M £ A then ( \/M ) V A , 

5. for every x 4 L: V ( [0»x] n A) exists. 

Note that condition 5 is alwais fulfilled if all chains 

in L have bounded lenght, the only case we are dealing with 

in this paper. 

We want to construct an OCL E which contains L as a 

sub-poset, has the same zero and unit as L, the ortho-

complementation of which extends the orthocomplementation 

of L and which is generated by L and one additional element. 
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We do not know whether our extension can be described by 

some universal property. 

Let A be a quasi-ideal in an OCL L. Define 

A' = [a'j ac A^. Let s,s' be arbitrary elements. In order 

to make our construction set-theoretically sound we have 

to make the somewhat technical assumption that the sets 

L, A x -(s'J and A' x ^ s J are pairwise . dis joint. We then 

define the underlying set of our extension to be 

E = L w(A x is') ) u (A'pc \ s\). 

To avoid confusion we denote the partial ordering of L 

by " < jV' and the join-operation in L by " v^". We now 

define a relation ^ in E by : 

a < b iff one of the following conditions holds: 

1. a,b € L and a ^^b, 

2. a € L, b = (x,s') and a ^ ^ x , 

3. a t A , b = (x,s) and a 

4. a = ( x, s ' ) , b e A' and x < ^b, 

5. a = (x,s'), b = (y,s') and x * ^y, 

6. a = (x,s), b e L and x £ ̂ b, 

7. a = (x,s), b = (y,s) and x s^y. 

It requires some tedious checking that this is indeed a 

partial ordering of E. It is obvious that this partial 

ordering extends the partial ordering of L and that the 

bounds of L are also the bounds of E . We omit the proof 

that this partial ordering makes E a lattice. For the 

convenience of the reader we list explicitely all the 
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joins of elements of E. The meets are obtained dual.v. 

In the following, x and y are elements of L and a,b i w 

elements of E. The joins are then given by: 

x V L y i f a = : x , b = y a n d x v ̂ y é A o r 

i f a = : x , b = y a n d ( x < A o r y $ A) o r 

i f a = : x , b = (y,s') and x v ^ y e A ' or 

i f a = : X £ A and b = (y ,s ) o r 

i f a = : (X >s ) , b = ( v , s ' ) a n d x v y <t A o r 
Li 

i f a = : ( X 
* 

>S ) and b = (y ,s ) , 

( x v L y , s ) i f a = x € A, b = y A and x v y <$ A or 
Li 

i f a ^ = X € A and b = (y ,s ) o r 

if a = (x ,s) and b = (y ,s ) , 

a v b = ( x v L y , s ' ) if a = x , b = ( y , s ' ) and x v ^y A or 

if a = (x,s'), b = (y,s') and x v ^y A , 

a v b = / \ ( [x v ĵ y ,l] n A' ) if a = x , b = (y ,s' ) and x - T v 4- A , 

It is important to note that the join in L of two elements 

x,y e L differs from their join in E iff x,y€A and x v-T y « A , 
Lj 

and dually. 

It is now easy to see that the orthocomplementation 

of L extends to an orthocomplementation of E by the 

definition : 

(x,s)' = (x' ,s') and (x,s' )' = (x',s). 

Since for every x £ A : x v ( 0 , s ' ) = (x,s') and dually for 

every x t A': x ^ ( l , s ) = (x,s) it follows that every 

element of E is the join of an element of L and the element . 

(0,s') or the complement of such join, in particular, that 
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E is generated by the set L y{(l,s)î>. For the applicat ,>n 

we have in mind it is finally important to observe tha* T 

is an OML if L is an OML. The proof of this is again left 

to the reader. 

3. Existence of infinite chains 

In this chapter we sketch a proof of the existence 

of an OML L which is generated by a three-element poset 

P = { x s Y i z i satisfying y < z and which contains an infinite 

chain. As a first step we construct an infinite OML L 

generated by such a poset P , in which all maximal chains 

have four elements. Instead of giving an explicite set-

theoretical construction, we modify Greechie's method [3l 

for graphical representations of OMLs and simply draw a 

"graph" of such an OML L. Here it is: 

V" v 

V V 

y-v T" V 

V V V V V 
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This graph is to be understood in the follwinp way. 'he 

vertices of each triangle represent the atoms of an 

element Boolean algebra. The bounds 0,1 of each of t'iese 

Boolean algebras are "identified" and whenever two vertices 

of two triangles are connected by a line the atoms 

represented by the connected vertices are "identified" 

and so are their complements. Our construction is a sr-cial 

case of "Greechie's paste job" and it follows easily from 

[3l that our graph if interpreted this way represents 

indeed an OML. It is finally easy to see that this OML 

is generated by the elements x ,y,z'indicated in the graph 

and hence also by the elements x,y,z, which are in the 

appropriate position. 

From the graph it is obvious that there exists a 

countably infinite sequence b ,b„ , . ..b ,... of co-atom: J 1 o 1 n 

in L which satisfy the following conditions: 

(Al) If 0 <r a < b • , 0 < b s b • and i i j then a v b = 1, i 3 J 

( A2 ) if 0< b * b. and i i j then bvb'. = 1. 
J 

From (A2) it follows: 

(1) if i i j then b^ ^ b^ 

and from (Al) we obtain: 

(2) if i / j then [0 ,b i]n CO,b^] = {o}. 

Put 

A q = f 0 , b o ] ^ L 0 , b 1 l . 

This is obviously a quasi-ideal. Let 
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L 1 = L u (A Q x u (AQ A { S ^ ) 

be the one-point extension corresponding to it. We ?':~»w 

define recursively a sequence (L ) of OMLs and a r 1
 n n < o 

sequence (A ) where A is the quasi-ideal 1
 n n ̂  n

 M 

A n = [0.(1,s n)j „ [ 0 , b n + 1 ] , 

in L and 
n 

L . = L v (A x { s' ) u (A' x \ s . \) . n • 1 n n n+1 n
 1

 n +1
 ] 

It is easy to prove by induction that these sequences 

have the following properties: 

(Bl) If 0 < T a <•' ( 1 ,s ), 0 < T b < T b . and n+1 j then a . Tt> = 1 
TV V 11

 ""v. I 

( B2 ) if 0 < T b ^ . b. and n+1 < j then b v (0,s' ) = 1, 
L, Li J Lâ n 

( B3 ) if n-+ 1 * j then [0,(l,s )] T n L0,b.] T = ilO1!. n L<*_ J ^ 

It follows from these properties that for every n, A^ is 

indeed a quasi-ideal of L and that for elements a,b € L , n n I 

a vT b i a v T b only holds if a v. . b = 1 and dually 

for meets. This means that every generating set of L is 

also a generating set of every L n , in particular that 

every L^ is generated by P. This then is also true for 

the direct limit of the family (L ) , defined in the J n n 

obvious fashion. But this direct limit contains the 

infinite chain [(l,s )| n < ^ , proving that the OML 

which is freely generated by the poset P contains an 

infinite chain. 
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BREADTH TWO MODULAR LATTICES 

by 

RALPH FREESE 

ABSTRACT: In this paper a character!zation of breadth two 

modular lattices which can be generated by four elements is 

given. Those which are subdirectly irreducible are listed. 

An infinite list of coverings in the free modular lattice on 

four generators is obtained. If V is the variety of 

lattices generated by all breadth two modular lattices and if 

L is a lattice freely generated in V by four generators 

subject to finitely many relations, then the word problem for 

L is shown to be solvable. 

AMS 1970 subject classifications: Primary 06A30; Secondary 

06A20 , 08A10, 08A15. Key words and phrases: breadth two 

modular lattice, coverings, splitting modular lattice. 
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1. INTRODUCTION 

In [3] Day, Hermann, and Wille give a list of 

subdirectly irreducible modular lattices which can be generated 

by four elements. Their list consists of projective planes 

and lattices of breadth two. They ask if their list is com-

plete. In this paper we show that it is complete insofar as 

it contains all the subdirectly irreducible breadth two four-

generated modular lattices. This is done by showing that any 

four-generated breadth two modular lattice is a homomorphic 

image of an explicit set of lattices. It is shown that 

corresponding to all but three of the subdirectly irreducible 

four-generated breadth two modular lattices there is a cover-

ing, u >- v, in the free modular lattice on four generators, 

FM(4), such that if ^ is the unique maximal congruence on 

FM(4) separating u from v, then FM(4)/^ is isomorphic 

to the subdirectly irreducible breadth two lattice. All of 

these lattices correspond!'ng to coverings in F M ( 4 ) are 

splitting modular lattices in the sense of McKenzie (defini-

tions given below). Let V be the variety (equational class) 

of lattices generated by all breadth two modular lattices and 

let FL(V,4) be the free V-lattice on four generators. Then 

every nontrivial quotient (interval) of FL(V , 4) contains a 

covering. Finally it is shown that the word problem for four-

generated lattices in V is solvable. 
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Section 2 gives some basic definitions and gives 

the preliminary reductions. Section 3 gives the main result 

and Section 4 gives the subdirectly irreducibles. Section 5 

presents the coverings and other applications mentioned above. 
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2. PRELIMINARY REDUCTIONS 

Let a _> b in a lattice L. The sublattice 

{x e L | a _> x _> b} is denoted a/b and is called a quotient 

o r quotient sublattice or i nterva1. We say that a/b trans-

poses up to c/d and c/d transposes down to a/b if 

a v d = c and a A d = b. We denote this by a/b c/d and 

c/d \ a/b. Two quotients connected by a sequence of trans-

poses are called projective. If a > b and there is no x 

such that a > x > b, then we say a covers b, and denote 

this a >- b. 

Recall that a lattice has breadth n if the join 

of any n + 1 elements is redundant and there is an irredun-

dant join of n element. 

LEMMA 1 : A modu 1 ar lattice has breadth n j_f and only i f i t 

has a_ sublattice i somorph i c to the lattice of a 11 subsets of 

a n n element set but no sublattice i somorph i c to the lattice 

of a 11 subsets of a n n + 1 element set. 

PROOF : If the join of the elements x-j , ...» x n is ir redun-

dant, then the elements x\ = x-j v . .. v x^ v x^ +-j v ... v 

v x n , i = 1, ..., n generate a sublattice isomorphic to the 

lattice of subsets of an n element set. The lemma follows 

easily from this. 
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and b, which is denoted by \|> ( a ,"b ). Let 6(a,b) denote 

the smallest congruence of L identifying a and b. Then 

G(a ,b) A \p(a ,b) = 0. 

PROOF: It follows from Dilworth's basic result on congruences 

of lattices that e(a,b) >• 0 [2], [4], where 0 is the least 

congruence on L. The lemma follows. 

Suppose u >- v in a free modular lattice F. Let 

(u,v) be the largest congruence separating u from v and 

let K = F/\p(u,v). Now if L is a homomorphic image of F 

in which the images of u and v are different, then L is 

a subdirect product of K and a lattice L' which is a 

homomorphic image of L such that u and v are identified 

in L'. This is, of course, an immediate corollary to Lemma 

2. 

For the rest of the paper, L will denote a breadth 

two modular lattice generated by four distinct generators a, 

b, c, d and not by any three elements. 

LEMMA 3: Ei ther any three elements of the set {a,b,c,d} 

join to the greatest el ement of L, l = a v b v c v d , ojr 

L _i_s à subdi rect product of one or two, • two el ement 1 atti ces 

and a_ four-generated breadth, two modu 1 ar 1 atti ce i n wh i ch any 

three of the four generator join to the greatest element. 

PROOF : Suppose the first statement fails, say b v c v d < 1. 

Since L has breadth two, it follows that b v c v d is the 

413 



join of two of the generators, say c v d = b v c v d . Now 

1 = (a v b) v c v d implies that either c v d = 1 or 

a v b v c = l or a v b v d = 1. The first possibility 

contradicts b v c v d < 1. Suppose a v b v d = 1, and 

that a v b v c < 1. Since c v d = b v c v d , we have 

a v c v d = 1 . 

In the free modular lattice on four generators the 

join of any three generators is covered by the greatest 

element. Hence in L, 1 >- b v c v d and 1 >• a v b v c. 

Let I^I be the largest congruence on L separating 1 from 

b v c v d and ^ the largest congruence separating 1 from 

a v b v c. Let 0-j = 6(1, b v c v d) and 0 2 ~ e O > a v b v c 

and 8 = 9-j v Qg. Since the congruences of lattices distribute 

Lemma 2 implies 6 A A ^ = 0. Hence L is a subdirect 

product of L/Q, L/ip-j and L/ij^. Now L/^-j ^ L/ij^ ^ 2 the 

two element lattice. Furthermore, L/0 has the property that 

any three of its generators join to the greatest element. 

If a v b v c = 1 , then = 0 and 0 = 6-j . In 

this case L is a subdirect product of L/0 and L/iK ^ 2. 

As before, L/0 has the desired properties. The remaining 

cases are handled by symmetry. 

Now we impose the additional condition that any 

three of the four generators of L join to 1 and meet to 

0. Since L has breadth two this implies that any three 

element subset of {a,b,c,d} has a two element subset whose 
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elements join to the top. We shall show that all but at most 

two of the two element subsets of {a,b,c,d} join to 1. 

First we need a lemma. 

LEMMA 4: Let x and y b_e noncomparabl e el ements i n _a 

breadth two modular lattice. Then x v y/x and x v y/y 

are both chains. 

PROOF : Suppose x £ u, V £ X V Y a r e noncomparable elements. 

Then it is not hard to check that the elements u, v, 

y A (u v v) generate a lattice isomorphic to the lattice of 

subsets of a three element set. Now the lemma follows from 

Lemma 1. 

As remarked above, there is a two element subset of 

{a,b,c} joining to 1; say a v b = 1. Also, there is a 

two element subset of {a,c,d} joining to 1. If c v d = 1, 

then we have two complementary pairs, both of which join to 

1. Suppose a v c = 1. Now consider {b,c,d}. If either 

b v d - 1 or c v d = 1 , then there exists two complementary 

pairs, both joining to 1. If b v c = 1, then we have that 

all pairs not containing d join to 1. In conclusion, 

either there are two complementary pairs of generators both 

joining to 1, or there is a generator such that all pairs 

of generators not including that generator join to 1. 

Suppose a v b = 1 = c v d. If a and b were 

comparable, then one of them would equal 1, contradicting 
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our assumption that L is not generated by three elements. 

Hence by Lemma 4 1/a is a chain and thus a v c and a v d 

must be comparable. By symmetry we may assume a v c > a v d. 

Then a v c = a v c v d = l . Now 1/b and 1/d are chains 

by Lemma 4; hence, as above, either a v d = l or b v d = l 

and either b v c = 1 or b v d = 1. Thus either b v d = 1 

or both b v c = 1 and a v d = 1. We conclude that if there 

are two complementary pairs of generators, each pair joining 

to 1, then at least five of the six pairs of generators join 

to 1, or four of the six join to 1 and the two pairs that 

do not join to 1 are complementary. 

Let Mg be the five element length two lattice. 

LEMMA 5: Let L t̂ e a_ breadth two modul ar lattice genera ted 

by a , b ,c ,d , jjl which any three of the generators join to 1 . 

Then one of the fol1owi ng must hold. 

(1) L has the property that at least four of the 

s i x pai rs of generators join to 1 , and i f 

two pairs do not join to 1 , they are comple-

mentary, 

( 1 1 ) L i_s_ a_ subdi rect product of M^ and â  lattice 

havi ng the property descri bed i n (i ) , 

( i i i ) L i_s a_ subdirect product of Mg and £ three 

generated modular 1 attice. 

PROOF : By symmetry and the remarks preceding Lemma 5 we may 

assume that a v b = a v c = b v c = l . In order to apply 
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Lemma 2 we must find elements v ̂  u in the free modular 

lattice on four generators, FM(4), such that if ip is the 

maximum congruence separating v from u, then FM(4)/^ ^ 

Mg. This can easily be done in FM(x,y,z), since it is 

finite. For example, x v (y A Z) -< x v (Z A (x v y)) will 

do. 

Let a,b,c,d be the generators of FM(4). Then 
^ 'Xi % 'V 

a x, b y, c z, and d x A y A z can be extended 
f\j f\j f\, 

to a homomorphism f from FM(4) onto FM(3). It is not 

difficult to see that if f(w) - x v (y A z) then 

w < a v [(b v d) A (c v d)] and if f(w) = x v (z A (x v y)) — a. % a» % Mj 

then w > a v (c A (a v b)). It follows that in FM(4) 
% *\j 'V 

a v t(b v d) A (c v d)]-* [a v ((b v d) A (c v d))] v 

a v (c A (a v b ) ) = a v ((b v d ) A (c v d ) ) v (c A (a v b ) ) fx, fx, r\j f\j I\j ' V ' b 'X/ % *\t f\j r\j 

and if is the largest congruence separating these elements 

then FM(4)/i/> ^ M g . 

Hence in L we have 

a v ((b v d ) A ( c v d ) ) x a v ((b v d ) A (c v d ) ) v (c A (a v b ) ) . 

Now If we have equality in the above inequality, then 

a v (C A (a v b)) < a v ((b v d) A ( C v d)) 

or 

417 



( a v e ) A (a v b) < a v ((b v d) A (c v d)). 

Since a v c = a v b = 1 in L the left hand side of this 

inequality is 1 and hence the right hand side is also. By 

Lemma 4 either a and (b v d) A (c v d) are comparable or 

b v d and c v d are comparable. If a > (b v d) A (c v d), 

then a = a v ((b v d ) A (c v d ) ) = 1. In this case, L is 

generated by b, c, and d contrary to our assumption on 

L. If (b v d) A (c v d) > a, then (b v d) A (c v d) = 1 

and in this case the conclusion of the lemma holds. 

If b v d > c v d, then b v d = b v c v d = l . 

By Lemma 4, a v d and c v d are comparable, and as above 

the larger one must be 1. Thus again the conclusion of the 

lemma holds. 

Now we consider the case 

a v ( ( b v d ) A (c v d)) 

•< a v ((b v d) A (c v d) v (c A (a v b)). 

Let 9 be the smallest congruence on L identifying these 

elements and IJJQ be the unique largest congruence separating 

these elements. By Lemma 2, L is a subdirect product of 

L/0 and L/^Q ^ Mg. Now arguments just as above show that 

the conclusions of the lemma hold. 
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3. MAIN THEOREM 

By Lemma 5 we may assume that a v c = a v d = 

b v c = b v d = l . By the dual of Lemma 5 we may assume four 

of the six pairs of generators meet to 0. We first consider 

the case a A c = a A d = b A c = b A d = 0 . Notice that 

this situation has a large amount of symmetry. If a relation 

holds in L, then the relations obtained from it under the 

permutations (ab), (cd), (ab)(cd), (ac)(bd), (ad)(be) also 

hold in L. The case when L can be generated by three 

elements is of course easy. For now we assume that L can-

not be generated by any three element. This implies that no 

two generators can be comparable. If a < c, for example, 

then a v c = 1 implies c = 1 contradicting the hypothesis 

that L is not generated by three elements. If a < b, 

then since c is a complement of both a and b, modularity 

implies a = b, again contradicting our assumption. The 

other cases are handled by symmetry. 

Let = a 0 - a, b = b° = b, c = c° = c, and 
o o o 

D = d° = d. Define inductively a. = a A (C. T v d. ,), 
o 1 1 - 1 1 - 1 

b. = b A (c._ 1 v d.. _ i ), c i = c A (a._ 1 v b . ^ ) , d . = 

d A (a.. v b..^) and dually a 1 = a v ( c ^ 1 A b i = 

b v ( c 1 - 1 A d 1 " 1 ) , c 1 = c v (a1'"1 A b 1 " 1 ) , d1 = d v (a 1' 1 A 

b 1 " ^ ) . We now derive some formulae concerning these elements 

(1) a Q = a > a-j > a 2 ^ . . • a 0 = a < a 1 < a 2 < ... 

etc. 

(2) a. = a.. _i A (c.^-J v d ^ ^ , a 1 = a 1 " 1 v 

(c 1" 1 A d 1'" 1) 
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(3) a A d 1 = a A c 1 = a A b 1 " 1 

(4) a v d i = a v c i = a v b i _ - j 

i > 1 

i > 1 

(5) ai v d . = a- v c . = b. v c . = b. v d . = 
i i i i l i i 

(a i -1 v V l 5 A ( ci-l v di-l }-

example > (4) can be proved with the aid of (2) and induction: 

d. = a 
i 

V ( d i - 1 A (a i_ 1 v b i _ 1 ) ) 

= a V ( d
i -

•j A [(a A ( c i - 2 v d i - 2 ) ) V (b A (c-_ 2 V d , ^ ) ) ] ) 

= a V [ d i - 1 A ( c i - 2 v A v ( b A ^ C i - 2 V d i _ 2 ) ) ) ] 

= a V [ d i - 1 A (a v (b A ( c i - 2 v d._ 2)))] 

= (a V d. _ ̂ A [a v (b A (c.__2 v d.. _ 2 ) ) ] 

= (a V bi- 2 ) A (a v b._ 1) 

= a V b1-l 
• 

Note that art = a > a, > a 0 > o 1 i 
is a descending 

1 2 

chain in a/0 and 0 = a A d < a A d < a A d < . . . is an 

ascending chain in a/0. By Lemma 4, a/0 is a chain, and 

thus each a A d J must be comparable with each a... Let n 

be the smallest integer such that a A b > a , if such an 

integer exists. Joining both sides of a n + ^ < a A b with c n 

we obtain 

(a A b) v c > [a„ A ( C V d )] v c„ = (a„ v c ) A (c v d j . 
n n n n n n n n n ' 

However, (5) tells us a n v c n = ( a n - 1 v b n - 1 ) A ( c n - 1 v dn_-j) 
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Thus 

(a A b) v c n > (a n. 1 v b ^ ) A (c n v d n ) 

Hence 

a A b = (a A b) v Ce A b) = [(a A b) v c n ] A b > 

b A (c n v d n ) A ( a n - 1 v b n - 1 ) = b n + 1 A ( A N _ 1 v b n - 1 ) = b n + 1 . 

Thus a A b > b It follows that n is the smallest 

integer such that a A b > b . Now observe 

a , = a A (c v d ) < a A b A ( c v d ) = a , T A b , i n + 1 v n n' v n n' n + 1 n+1 

Hence a n + 1 = b n + 1 . Thus 

cn+2 = c A K + l v b n + l> = c A an+l = 

LEMMA 6: Let L be_ breadth two modul ar lattice generated 

by four noncomparab1e generators a,b,c,d satisfying 

a v c = a v d = b v c = b v d = l and a A C = a A d = b A C = 

b A d = 0. J_f a p > a A b > a n + ^ , then b n > a A b > b n + -j 

â M a n + 3 = b n + 3 = cn + 2 = d n + 2 = Furthermore, 

C M > C A d > C m + i and > C A d > dm+-j where M i_s either 

n - 1 , n, or n + 1 . 
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PROOF: If a > a A b > a then c , 0 = 0, as shown n n+1 n + d 

above. Thus m < n + 1. Similarly, n < m + 1. The rest of 

the lemma follows easily from the remarks above. 

We shall require a few additional observations. 

(6) (a A b1' ) v d = (a A d 1 + 1 ) v d = d i + 1 . 

If a- +i > a A b then 

(7) a i / a i + -j ̂  a i v b i / a i + 1 v b ^ d i + 1 / d i + 2 . 

If dq- +1 - c A d then 

(B) d . / d i + 1 ^ d. v c i / d i + 1 v c. a i + 1 / a i + 2 . 

(6) easily follows from (3). To see (7), note that 

since a. > a A b 9 b. > a A b by Lemma 6. From this it 

follows that a-j/a-j+•] ̂  a-j v b-i/ai + i v * Repeatedly using 

(4) with the poles of a and d interchanged we obtain 

di + l v ai + l v bi = 'A ( a i v bi ^ v ai + l v bi 

= (d v a 1 + 1 v b i ) A (ai v b i ) 

= ( d v c . _ 1 ) A ( a . v b i ) 

= ( d v a . v b . ) A ( a . v b.) 

= a . v b . 
i i 

and 

d i + 1 A (a i + 1 v b ̂  ) = d A ( a . v b..) A (a. 

= d A (a. + 1 v b.) 

i+1 v b i } 

= d A [(a A (ci v d^ ) ) v (b A ( c ^ v d^-j) 
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di+l A ( a i + l v b i ' = d A ( c i - l v d i - l ) A ( b v a i + l ) 

= [(d A c ^ - j ) V d ^ - j ] A (b V d . + 2 ) 

= d i + 2 v [b A (d^-j v (d A c i _ 1 ) ) 3 

= d i + 2 

LEMMA 7: Let L sati sf.y the hypotheses of Lemma 6. Suppose, 

also that 

Then 

(9) a n > a A b > a n + 1 and. d p + 1 > c A d > d n + 2 > 

(10) a i > a A b n - i + 1 > a A b""1' > a i + 1 

i = n(mod 2), i < n 

( 1 1 ) d k > d A C N " K + 1 > d A C N " K > . D K + 1 

k s n + 1(mod 2), k < n. 

Furthermore, the images of a A b n " 1 + 1 and a A b under 

the projecti vi ty (7) are d A C*1"1 and d A C " " 1 " 1 . The 

n- k + 1 n—k 
images of d A c and d A c under the projecti vi ty 

(8) a_re a A bn""k and. a A b n " k " 1 . 

PROOF: First we show that 

i \ ^ „ a Kn-i+l ^ ^ . n - i 

(12) a. > a A b > a A b 

i = n(mod 2), i 5 n 

and / n \ A ^ A a ^rt-k+1 ^ , A n-k 

(13) dj, > d A c > d A c 

k 2 n + 1(mod 2), k 5 n. 

We prove these inequalities by induction on n - i and n - k 

First note that the second inequality in both (12) and (13) 
423 



follows immediately from the monotome nature of the b^': 

and cJ" ' s . Now we show that a n > a A b^ . Using (3) we 

have that 

a A [ ( C A d) v (b A a"')] = a A [(d A a"') v (b A a^)] 

= a A a"' A (d v (b A a'')) 

= a A ( d v ( b A a ^ ) ) 

= a A (d v (b A d 2 ) ) 
o 

= a A ( d v b ) A d 

= a A d 2 

= a A b 1 

Now, since a^ = a v (c A d) < a v d n + -j , we have 

1 1 
a -A b = a A [ ( c A d ) v ( b A a ) ] 

— a A [ d n + 1 v (b A (a v d n + 1 ) ) ] 

= a A [ d n + 1 v (a A (b v d n + 1 ) ) ] 

= (a A D N + 1 ) v [a A (b v D N + ] ) ] 

= a A (b v d n + 1 ) 

= a A (b v a n ) 

= (a A b) v a n 

= an 

i 

Thus , a A b 5 A N . 

Now suppose we have shown that a. > a A 

We shall show that d._.| > d A c n " 1 + 2 . Observe that 
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d A [(a A b n " i + 1 ) V (c A d n " i + 2 ) ] 

^ d A [ ( a A d ) v ( C A d )J 

, , n - i + 2 r ! 
= d A d A La v (c v d )J 

= d A [a v (c A a
 n
 ~

1 +
 ° ) ] 

• , % n - i + 3 
= d A ( a v c ] A a 

= d A A N - I + 3 

= d A C
n
"

i + 2
. 

H e n c e , s i n c e d n " 1 + 2 = d v (a A b n ~ 1 + 1 ) < d v a . , 

, n - i + 2 , A r / A , n - i + "k , , n - i + 2 N 1 d A c = d A L ( a A b ) v ( c A d ) j 

< d A [a^ v ( C A (d v a.. ) ) ] 

= d A [ a i v (d A (c v a i ) ) ] 

= (d A a . ) v [d A (c v a . ) ] 

= d A ( c v a . ) 

= d A ( c v d . __ -j ) 

= ( c A d ) v d . _ -j 

= d i - r 

T h u s d A C
n ~ 1 + 2 < d . 

T h u s i f j i s e i t h e r n - i + 1 o r n - i t h e n 

a . > a A b J a n d > d A C ^ " 1 . B y w a y o f i n d u c t i o n s u p p o s e 

t h a t d . + 1 > d A c
J _ 1

 > d i + 2 f o r j as a b o v e . T h e n t h e i m a g e 

o f a A b
J
 u n d e r t h e p r o j e c t i v i t y ( 7 ) is 

d i + 1 A [(a A b J ) v a . + 1 v b . ] = d i + 1 A [(a A ( b J v a i + 1 ) ) v b . ] 

= d i + 1 A (a v b . ) A ( a i + 1 v b J ) 
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d i + 1 A [(a A b J ) v a i + 1 v b ^ = d i + 1 A v b J ) 

= d
1 + 1 A ( a i + 1 v b v b J ) 

= d i + 1 A ( d i + 2 V b J ) 

= d . + 2 V ( d i + 1 A d A b j ) 

= d i + 2 v (d. + 1 A d A c J " ) 

= d i + 2 V (d A C J _ 1 ) 

= d A c J - 1 

This shows that a. > a A b J > a. + -j , which completes the 

proof of the lemma. 

Arguments similar to these prove the following lemma. 

LEMMA 8: Let L s a t i s fy the hypotheses of Lemma 6. Suppose 

also that 

(14) a. > a A b > a n + -j and d n > c A d > d n + ̂  

Then 

(15) a . > a A b"" 1
 > a . + 1 

(16) d . > d A c"" 1
 > d . + 1 

Furthermore, the I mage of a A b n _ 1 under the p r o j e c t iv ity 

( 7 ) j_s d A c " " 1 " 1 . The image of d A c n ~ u n d e r the 

pro j ecti vi ty ( 8 ) a A b n ~ ~ . 

Let L n be the modular lattice freely generated by 

a s b s c , d subject to the relations a v c = a v d = b v c = 

b v d = 1 , a A C = a A d = b A C = b A d = 0, a „ > a A b > a 
n + 1 » 

and d^ > c A d > d -j . By the above lemma 

(17) a > a A b n > a n > a A b" ' > 

n n+1 n+2 
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(18) d > d A c" > d 1 î d A c 1 1" 1
 > . . . 

2 d n > c a d > d n + 1 > d n + 2 = 0. 

For notâti o n a 1 convenience define 

(19) e Q = 0, â i = e2n + 3-2i 0 ~ 1 " n + 1 

a A b 3 = E2j + 2 0 < j < n.-

Then the chain (17) becomes 

( 2 0 ) e2n + 3 2 e2n + 2 " • • 2 e 1 " e o = 0 " 

Similarly, using (18) we define h.. , i = 0, 2n+3. 

Moreover, we define f. to be the element obtained from e^ 

by interchanging a and b, and- g^ to be the element 

obtained from h^ by interchanging c and d. Let U be 

the following subset of L n : 

U = {e 1 v f. | 2 < i,j < 2n + 3} U {g. v,h . | 2 < i ,j < 2n + 3} 

U {e. v h. | 0 < i,j < 2n+3 and |i-j| < 2} 
• \J 

We shall show that U is closed under joins and meets and 

hence U = L n . In addition, we shal1 evaluate all joins and 

meets of elements of U thereby describing the lattice L n > 

First we require a lemma. 

LEMMA 9: The following formulae hold in L„. i — n 

(21) 3 i v a. v c j + 1 = 3 i v i < j 

(22) (a A b 1 ) v (b A a j ) = (a A b 1 ) v (c A d J'" ]) 

= (a A b 1 ) v (d A C ^ "
1 ) 

n > i > j 
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(23) a . v (b A a J ) = a i v (c A d J _ 1 ) 

= a. v (d A c-3""1) 

i < n - j , j s n 

(24) (a A b 1 ) v bj = (a A b 1 ) v c j + 1 

= (a A b 1 ) v 

i > n + 1 - j 

The second equa 1 i t.y i n (21) also holds for i < j + 2 and 

the second equa1i ty i n (23) also holds for i $ n + 1 - j, 

j < n + 1 . 

PROOF : We prove (21) using (4) and induction on i. Thus 

assume (21) holds when the subscript of a is less than 

and assume also that the correspond!' ng formula obtained by 

interchanging a and d, and b and c holds when the 

subscript of d is less than i. 

a i A b. = [a A ( o i _ v c L ^ ) ] v b. 

= [a A (b i v d i _ 1 ) ] v b. 

= (a v b.) A ( b . v d^-j ) 

= (a v d . + 1 ) A ( a ^ v d i _ 1 ) 

= a i v [d i_ 1 A (a v d . + 1 )] 

= a i v d j + 1 

To prove (22) note that since i,j < n we have 

(a A b 1 ) v (b A a J ) = aJ' A b 1 . Since b 1 > b J > d A b J = 

d A a J
 , 
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( A A B 1 ) v (d A c j " ] ) = (a A b 1 ) v (d A a J ) 

= b 1
 A [a v (d A a j ) ] 

= b 1
 A a . 

To prove (23) note that i < n - j and j < n imply that 

b. > b A a J and a J < a v b. Thus 

a. v (b A a J ) = [a A (c i_ 1 v d^-,)] v (b A a J ) 

= [a A (b . v d^-j )] v (b A a J ) 

= (b i v d ) A [a v (b A a J ) ] 

= (b . v d._-| ) A a J 

=
 ( C I _ I

 v D
I - I ) A [a v (d A a J ) ] 

= (c i_ 1 v d _ -j ) A [a v (d A c*3'"1)] 

= a. v (d A c 3'" 1) 

Since i > n + 1 - j, b 1 > d A b n + 1 _ J* = d A c n" J' 

dj + -j . Thus 

(a A b 1 ) v b. « (a v b.) A b 1 

j j 

= (a v d j + 1 ) A b 1 

= (a A b 1 ) v d j + 1 . 

The proof of the last statement of the lemma is 

similar to above proofs. 

The previous lemma can be put into a more compact 

form. 

> 
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COROLLARY: The following holds in L . a. n 

(25) e i v fj = e i v 9 j _ z = e i v hj_ 2 i 2 j 

The joins in U are given by the following. 

(26) ( e i v f j ) v (e k v f 4 ) - e p v f g 

p = max{i,k}, q = max{j,£} 

( 9 i v h d ) v (g k V h A ) - g p v h q 

( e i v V v ( e k v V = e p v hq 

If i > j and £ > k and 2 < i , j , k , £ < 2 n + 3 and 

r = max{£+2,j} s. s = max{i+2 sk} then 

e i v h^ if |i- £| < 2 

(27) ( e i v f ) v (g k v h,) = ' e i v f if i > £ + 2 

9 s v h £ l f 1 ~ 1 + 2 

If j > i and £ > k then (e^ v "f" j ) v (g k v.h^) is as 

above except the roles of e and f are interchanged. The 

cases j > i and k > £, and i > j and k > £ are 

handled similarly. 

If i > j then 

f e v h , if | p-q B | < 2 
(28) e. v f. v e. v h = p q 

3 • 1 e p v f q ' + 2
 i f P " + 2 

where p = max{i,k} and q' = max{j-2,£}. All other joins 

in U are similar. 

The meet operation is given by 

(29) ( e i v V A (e k v f,) = e r v f s 

r = min{i,k}> s = min{i,£} 

(9i V H J ) A ( g k V ht) = g r V H S 

(e. v hj) A (e k v h £ ) - e r v h $ 
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and 

(30) (e. v f.) A (g k v H £ ) = (e p v f q ) v (g r v h $ ) 

where p = min{i,k-2,Z-2}, q = min{j , k-2 , i-2} 

r = min{k , i-2 , j-2}, and s = {£,i-2,j-2}. 

If \k-l\ < 2 then 

(31) (e. v f . ) A (e k v h £ ) = (e , v f ,) v (g r, v h g , ) 

where p' = min{i,k}, q l = min{j,k}, r 1 = s' = mi n H , i-2 , j-2} . 

THEOREM 1 : The set U together wi th the join and meet g i yen 

i_n (26) - (31) is the lattice L . 

PROOF : (26) follows from modularity. The other equations 

follow easily from the Corollary. 

(FIGURE 1) 

The lattices L Q , L-j , l_2 are diagrammed in 

Figure 1. If we let L^ be the modular lattice generated by 

a , b , c , d with a v c = a v d = b v c = b v d = l, 

A A C = A A D = B A C = B A D = 0, a n > a A b > a n + -j , and 

d n + -| > c A d > D N + 2 then an analysis similar to that of L n 

can be carried out. The lattices L ^ , L-J , L 2 are 

diagrammed in Figure 2. 

(FI.GURE 2) 

Now let l œ be the modular lattice generated by 

a , b , c , d with a v c = a v d = b v c = b v d = l, 

a A c = a A d = b A C = b A d = 0, a. > a A b , i = 0 , 1 , 2 
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It follows that a. > a A b
J
 and d.. > d A C

j
 for all 

i .j 2: 0. 

It remains to consider the case when L is 

generated by a,b sc,d with a v c = a v d = b v c = b v d = 

and all pairs of generators meeting to 0 except for two 

complementary pairs. By symmetry we may assume a A b = 

a A C = b A d = C A d = 0 . Call this lattice L'. We define oo 

a., b.. , c., d.. as before. However we now define 

a 1 = a v (b 1" 1 A c 1"" 1), b 1 = b v ( a 1 - 1 A d 1 " 1 ) , 

C 1 = C v (a 1" 1 A d 1 " 1 ) , d 1 = d v (b1'"1 A C 1 " 1 ) . We shall 

show that for all i and j 

(32) a. > a A dJ' , c. > c A bJ' 

We need two equations. The proofs of these are left to the 

reader. 

(33) a.j = a A (d v c . _-j ) 

(34) c A b 1 = c A d 1 + l 

To prove (32) it is sufficient to prove that 

a. > a A d 1 and c. > c A b 1 for all i. This is obvious 

for i = 0. Assume the equations hold for i = 1, n. 

Then 

an+l = ^ A (d v c n ) 

> a A (d v (c A b n ) ) 

= a A (d v (c A d n + 1 ) ) 

= a A d 
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n + 1 

The last step uses that fact that d < d v c 3 which is 

easily proved by induction. Hence the following chain of 

elements lies below a. 

2 1 
a > A | > A 2 I ... Ï a A d > a A d > a A d > 0 

With this information an analysis similar to that for L 

can be carried out. 

Combining the above information we obtain the 

following theorem. 

THEOREM 2: rf L j_s_ a_ breadth two four-generated modul ar 

lattice then L i_s_ _a homomorph i c image of a_ subdirect 

product of four copies of 2, two copies of M,- and either 

A three-generated modular lattice or l_n o_r L^ for some 

n, 0 < n < o®. 

Not all four-generated subdirect products of l_n 

or L^ with four copies of 2 and two copies of M^ are 

breadth two. However, it is possible to make a list of 

lattices such that L is a breadth two four-generated modular 

lattice if and only if L is a homomorphic image of a lattice 

from this list. This shall not be done here. In Figure 3 

we give an example of a breadth two four-generated modular 

lattice which is maximal in the sense that it is not a 
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homomorphic image of a properly larger breadth two, four-

generated modular lattice. 

(FIGURE 3) 
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4. SUBDIRECTLV IRREDUCIBLES 

The utility of Theorem 2 is that the lattices in 

that theorem have only finitely many homomorphic images. With 

the aid of this fact we shall now characterize all subdirectly 

irreducible, four-generated breadth two modular lattices by 

actually listing them. Let L be such a lattice. Then it 

follows from Theorem 2 and the dis tributivity of congruence 

lattices of lattices that L is either 2, M c , or a homo-
% s 

morphic image of L n or L^ for some n, 0 < n < «>. The 

following lemma shows each and L', 1 < n < 00 is the 3 n n » 

subdirect product of four subdirectly irreducible lattices. 

LEMMA 10: lf_ u/v i_s_ a_ prime quotient JJl L n £r L^, 

1 5 n < » , then u/v i_s pro j ecti ve to a_ subquoti ent of a/a 2 

PROOF : Since L„ and L' are finite dimensional lattices 
n n 

every prime quotient is projective with a subquotient of 

either a/0 or of 1/a. Hence it suffices to show that every 

prime quotient of a/0 and of 1/a is projective to a sub-

quotient of a / a 2 . Suppose u/v is a subquotient for 

a,/a i + 1 with i < n. By (7) and (8) a-j/ai+i 1 s projective 

t o ai-2k / / ai-2k + l • ^ = 1, Hence the lemma holds 

in this case. If u/v is a subquotient of a/0 but not of 

a i ^ a i + l f o r a 1 1 1 - n t b e n u = a n + l a n d v = I n t h l s 

case, since n > 1, 

u/v c n v d n / c n \ d n / C A d ^ a
n _ i

 v b
n - i /

b
n - i

 v ( C A d ) ^ a
n . - | /

a A b l 
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Si nee a
n _ - | /

a A ^ is a subquotient of a n -| / a
 n > u/v is 

projective to a subquotient of a/a 2 by the above remarks. 

By the dual argument every prime subquotient of 1/a is 

2 
projective to a subquotient of a /a. Now if n > 2 then 

o 
the duals of (7) and (8) tell us that a /a is projective 

3 1 3 1 2 
to d /d which transposes down to aAd /aAd = aAb /aAb. 

Now we may argue as above. The case n = 1 has to be 

argued separately and is left to the reader. Arguments 

similar to the above prove the lemma for L^. 

Lemma 10 has the corollary that L n and L^ are 

each subdirect products of four subdirectly irreducible 

lattices, i < n < «>. More specifically, let Ln-j = 

L n / 0 (
a , a A b n " ^ ) , L n 2 = L n/e ( a,a 1 ) v e(aAb n , a 2 ) , 

L n 3 = L n / e ( a , a A b
n ) v e ( a 1 , a 2 ) , L n 4 = LJè(a , a A b n " 1 ) . Since 

L n is the modular lattice freely generated by a,b,c,d 

satisfying the relations a v c = a v d = b v c = b v d = l , 

a A C = a A d = b A C = b A d = 0 , a^ > a A b > a ,, , n n +1 

d^ > c A d > d n + ^ , L n l is the modular lattice freely 

generated by a,b,c,d satisfying the above relations and 

also satisfying a = a A b n = a-j = a A b n ~ ^ . Similarly, 

L n 2
 l s modular lattice freely generated by a,b,c,d 

subject to the relations of L n and to the additional 

relations a = a A b n = a 1 , a A b n _ 1 = a 2 , L n 3 to the 

additional relations a = a A b n , a-j = a A b n~^ = a 2 , L n 4 

to the additional relations a A b n = a-j = a A b n"^ = a 2-
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Since the permutation (ad)(bc) generates an automorphism 

of L n and since a A b n ~ V a 2 is projective to dAcn/a-j we 

have that Ln-j is isomorphic to L ^ . Similarly L n 2 and 

L ^ are isomorphic. Furthermore, L ^ is isomorphic to 

L J_1 t . To see this, one shows that L 0 satisfies the 
n + 1 ,1 n2 

defining relations of + ^ -j and vice versa. This can be 

done with the use of Lemma 8, and is left to the reader. 

Similar arguments give that L^ is a subdirect product of 

L n l ,
 L

n + 2 j >
 a n d t w o c°P i es of + 

It follows from (17) that L n has length 4n + 6. 

Using Lemma 8 it follows that L ^ has length n + 1 and 

L n 2 has length n + 2. Let S 1 = 2 S 2 = and S n + 1 = L n l 

n > 2. 
2 1 

In L^ a > a > a > a-j > a 2 and by (7) and (8) 

and their duals every prime quotient of L^ is projective to 

? 
a nontrivial subquotient of a /a or a / a 2 . If we identify 

2 

a with a and a-j with a 2 then we get the modular 

lattice freely generated by a,b,c,d subject to these 

relations and the relations of L . These relations are 
oo 

equivalent to a v b = a v c = a v d = b v c = b v d = l, 

a A b = a A c = a A d = b A C = b A d = C A d = 0 . This is 

the lattice studied in [3]. We denote it by S^. Examining 

the other congruences on L^ yield that L^ is a subdirect 

product of two copies of S œ and two copies of S d , its 

dual. The same statement holds for L'. These facts 
oo together imply that L n and L^, 0 < n < «>, are each a 
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subdireet product of four subdirectly irreducibles chosen 

from {S„ 1 < n < <»} v It follows from the distribu-n 1 oo 

tivity of lattice congruences that any subdirectly irreducible, 

breadth two, four-generated modular lattice is a homomorphic 

image of one of the or S . For n<°°, S is finite 3 n » n 

and hence simple. Thus S n , n < » has no nontrivial homo-

morphic images. S^ and S^ have only one nontrivial homo-

morphic image: the six element length two lattice, Mg 

[3]. Consequently 

THEOREM 3: The subdirectly i rreduci ble , breadth two , four-

generated modular lattices are precisely the set 

{S n | 1 5 n < oo} v {S^, M 6 } . 

In [3] the word problem for S^ is solved. If 

one takes the sublattice K n of S œ generated by 

a v d n > b v d , c v a , d v a n if n is even and by 

a v d n_i , b v d n -j , c v + 1 , d v a n + 1 if n is odd, 

then using the above mentioned solution to the word problem 

in S œ , one can show that K n satisfies the relations 

defining S^. Since S n is simple it follows that K n is 

isomorphic to S n . This shows that the lattices of Theorem 3 

are precisely the breadth two lattices considered in [3]. 

See Figures 4 and 5. 

(FIGURE 4) 

(FIGURE 5) 
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5. COVERINGS IN FM(4) 

It is apparent from Lemma 2 that coverings in free 

modular lattices have important consequences in the study of 

the structure of modular lattices. Moreover, McKenzie has 

investigated the connections of coverings in a free lattice 

to the theory of lattice varieties. In view of these 

applications we give some examples of coverings in FM(4). 

In particular, we give an infinite list of covering in FM(4), 

u i > v.. inequivalent in the strong sense that if ^(u^, v..) 

is the unique maximal congruence separating u^ from v. 

then the FM(4)/\|>(u • » v ̂  ) 1 s are pairwise noni somorphi c . In 

fact, there is a covering correspond!" ng to each S , 

1 < n < oo. 

Let f map FM(n) homomorphically onto L. 

Then" f is called upper bounded if for each x e L there is 

an element u e FM(4) such that f(u) = x and f(v) = x 

implies v < u. If the dual property holds then f is 

lower bounded. If f is both upper and lower bounded then 

f is bounded. If u is as above we call u the maximal 

inverse image of x. The minimal inverse image is defined 

dually. Note that if f : FM(n) L is bounded and y >• x 

in L, and if u is the maximum inverse image of x and v 

is the minimal inverse image of y , then u v v >~ u and 

u A v •< v in FM(n). These concepts were defined and 

studied by R. McKenzie [6]. When L is finite McKenzie gives 

the following process for deciding if f is bounded. For 
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each x e L define M(x) to be the family of two elements 

subsets (y, z} of L such that x > y A Z, x £ y , x £ z 

and if y « £'y » Z - and x > y ̂  A z ̂  then y = y 
^ o o o o o J o 

and z^ = z. Choose a : L + FM(n) such that a is mono-
o o o 

tine and f(a (x)) = x for all x e L, and such that 
o 

a < a r tf(a) for each generator of FM(n). Now define 
f\j 0 r\, 

(35) a. ( x ) = a. ,(x) v V (a. Ay) A a. ^ z 
1 1 - 1 (x, y} e M(x) 1 - 1 1 - 1 

Now if f(u) = x then u < a..(x) for some i [6]. Thus f 

is upper bounded if and only if a.. = a. + -j for some i. 

Let FM(4) be freely generated by a,b,c,d. Let 
Oj <\j Of 

S2n + 1 = L2n 1 b e t h e ^ a t t l * c e defined above. Let the generators 

of S £ n + -j be a ,b ,c,d . Let f : FM( 4) S 2 n + 1 be the unique 

extension of the map f(a) = a, f(b) = b, f(c) = c, f(d) = d. 
% % i» 

Note that since the maximal inverse image function, when it 

exists, preserves meets and S2n + 1 h a s breadth t w o w e m a y re-

strict our attention to the meet irreducibles in S2n + 1 1 n c a 1 ~ 

culating the a.'s. The meet irreducibles of S 0 t , consist of 

a < a 1 - a 2 < a 3 - a 4 < ... < a 2 " " 3 - a 2 n " 2 <. a v b 

b < b 1 - b 2 5 b 3 = b 4 < ... < b 2 n ~ 3 = b 2 n " 2 < a v b 

c - c 1 < c 2 = c 3 < ... < c 2 n - 2 - c 2 " " 1 

d « d 1 < d 2 - d 3 < ... < d 2 n " 2 - d 2 " " 1 

Now M ( a ) = {{b, c ' }, {b , d'}}, M ( a 2 i ) = {{b 

ib , d }, ic , d }}, i = 1 , ... , n-1 . 

2i 2i + 1 
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M(a v b) - H e 2 " " 1 , d 2 " " 1 } ) , M ( c 2 i + 1 ) - { { d 2 i + 1 , a 2 i + 2 } , 

{d 2 i + 1 , b 2 i + 2 } , ( a 2 1 , b 2 1 } } , i - 0, n-2, 

M ( c 2 n " ] ) = {{a v b, d 2 n - 1 } } . The definition of M ( b 2 1 ) is 

similar to M ( a 2 1 ) and M ( d 2 i + 1J to M ( c 2 1 + 1 ) . 

With these definitions one can choose an appropriate 

definition of a Q and compute a k by (35). For large enough 

k s a k = . We shall only give this final function. In 

FM(4) with generators a,b,c,d let 
% f\j 

(36) a 1 = a v ( C 1 ' 1 A d 1 " 1 ) b 1 » b v ( C 1 " 1 v d 1 " 1 ) 
% % O» 

c 1 = c V (a 1" 1 v b i _ 1 ) d 1 = d V (a 1" 1 v b 1 " 1 ) 

Define g : S^ n + -j + FM(4) inductively as follows 

g(a v b ) = a v b v (c 2"" 1 A d 2 " ' 1 ) 

g C c 2 " " 1 ) = c ^ - ' v t d ^ ^ A t a v b ) ) g C d 2 " " 1 ) = d 2 " " 1 vfc 2"' 1 A(avb) ) 

g(a 2 1) - A(b21Ag(c21+1)r g (b 2 1) = b 2 i v ( a 2 i A g ( c ^ + 1 ) ) 

g ( c 2 1 + l ) = c 2 i + l v ( d 2 1 + l A g ( a 2 i + 2 ) ) g ( d 2 i + 1 ) = d 2 i + 1 v ( c 2 i + 1 A g ( a 2 i + 2 

To see that g is the final function we must show 

that if we let a Q = g in (35) then a 1 = g. The following 

identities in FM(4) may be proved by induction, starting 

with i » n - 1 and working down. 

g ( a
2 1
) = a

2 i
 v ( b

2 1
 A g ( c

2 i + 1
) ) = a

2 1
 v ( b

2 1
 A g ( d

2 i + 1
) ) 

g t c
2 1
"

1
) = c

2 1
"

1
 v V

1
'

1
 A g ( a

2 1
) ) - c

2 1
' ^ ( d

2 1
"

1
 A g ( b

2 1
) ) 

Let a Q = g we have 
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a l ( a 2 i ) = a 2 i v ( b 2 i A 9 ( c 2 l " + 1 ) ) 

v { [ b 2 i v ( a 2 i
A g ( c 2 i + 1

) ) ] A [ c 2 i + 1 v ( d
2 i + 1

A g ( a 2 i + 2 ) ) ] } 

v { [ b 2 i v ( a 2 1 A g ( c 2 i + 1 ) ) ] A [ d 2 i + 1 v ( c 2 i + 1Ag(a 2 l' + 2))]} 

v { [ c 2 i - 1 v ( d 2 i - 1 A g ( a 2 l ' ) ) ] A [ d 2 l ' - 1 v ( c 2 i - 1 A g ( a 2 i ) ) ] } 

Observe that 

[ b 2 i v ( a 2 i A g ( c 2 i + 1 ) ) ] A [ d 2 i + 1
V ( c 2 i + 1 A g ( a 2 i + 2 ) ) ] 

- [ b 2 i v ( a 2 i A g ( d 2 l " + 1 ) ) ] A [ d 2 l " + 1 v ( c 2 i + 1 A g ( a 2 i + 2 ) ) ] 

- [ b 2 i v ( a 2 i A ( d 2 i + 1 v ( c 2 i + 1 A g ( a 2 ^ 2 ) ) ) ) ] A [ d 2 i + 1 v ( c 2 i + 1 A g ( a 2 i + 2 ) ) ] 
tXj f\j <\j *\t 1» 

r 2 i / , 2 i +1 v -, / ,2 i r ,2i + l , 21+1 , 2i+2 Nx-n = [a Ag(d )]v(b A[d v(c Ag(a ))]). 

With the use of this identity, the modular law and the fact 

that c2"1""1 A d 2 1 " 1 < a 2 1 " 1 it is easy to show that 
% a» o» 

ct-j (a 2 1 ) = g ( a 2 1 ). Similar argument show that a-j = g. If we 

extend g to all of $2n + l by letting g(x A y) = g(x) A g(y) 

then g is well-defined and is the maximum inverse image 

function. Since $2n + l is isomorphic to its dual we can 

calculate the minimal inverse limit function h as well. 

Then since a^ > a in S2n+1 w e b a v e the following covering 

in FM(4). 

g ( a ) v h(c A d) = g ( a ) v h ( a ) v h(c A d) = g (a) v h ( a 1 ) >- g ( a ) 

Letting a. and b. be the elements dual to a 1 and b 1 

i>» o»' a» % 

442 



in FM(4) , we have h(c A d) = c A d A ( A G N - L v ^ n - l * ' 

1 1 2 2 
Also, g(a) = a v (b A (c v (d A (a v (b A ... 

'X» f\, f\j % <\j <\/ 

(c
2
"-

1
 v ( d

2 n
~

]
 A (a v b)...). Thus we have proved the 

r\j r\, % % 

following theorem. 

Theorem 4 : For n = 1, 2, ... w£ have the fol 1owi ng 

coverings i n FM(4). 

[cAdA(a 9„ ,vb 9 r > , ) ] v a v ( b A ( c 1 v ( d 1 . . . ( c 2 n " 1 v ( d 2 n ~ 1 A ( a v b ) . . . ) 

a v f b A U M d 1 . . . A ( c 2 n " 1 v ( d 2 n ' 1 A ( a v b ) . . .) 

Furthermore, JjF ij/ ijs the unique maximal congruence 

separati ng this coveri ng then F M ( 4 ) / ^ n +1 " 

Similarly one obtains coverings in FM(4) 

corresponding to each of the ^ n ' 5 . 

Following McKenzie, call a modular lattice L a 

splitting modular 1attice if there exists an equation e 

such that for any variety V of modular lattices either 

all members of V satisfy e or L e V. By the above, 

S n , n = 0 , 1, 2, ... is a splitting modular lattice. 

COROLLARY: L j_s a breadth two , four-generated spl i tti ng 

modular 1atti ce i f and only i f L i i i somorphi c to S n for 

some n, 1 < n < 

PROOF: It was shown in [3] that M c , S , and S d are not 
0 00 °° 

splitting modular lattices. The corollary follows from the 
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fact that a splitting modular lattice must be subdirectly 

irreducible. 

Now let V be the variety of modular lattices 

generated by all breadth two modular lattices and let 

FL(V, 4) be the free V-lattice on four generators. A 

lattice L is called weakly atomic if for x > y in L 

there exists u, v e L such that x > u >- v > y. 

COROLLARY: FL(V, 4) is a unique irredundant subdirect 

product of 14 copies of S-j , 14 copies of S 2 , and 6 

copies of S , n = 3, 4, .... Moreover, FL(V, 4) i s 

weakly atomi c. 

PROOF : In [3] it is shown that V is generated by 

{S n | 1 < n < oo}. Hence FL(V, 4) is a subdirect product 

of S , n = 1, 2, .... It is easy to check that there are 

14 distinct congruence relations \p on FL ( V, 4) such that 

FL(V, 4)/\p S-j , 14 congruences giving $ 2 > and 6 congruences 

giving S n , n = 3, 4, .... With the aid of Lemma 2 and 

Theorem 4 it can be shown that none of these lattices can be 

removed from a subdirect representation of FL(V, 4). 

If x > y in FL(V, 4) then by the above there 

exists a homomorphism f from FL(V, 4) onto S n , for some 

n < oo, such that f(x) > f(y). Since f is bounded there 

exists u, v e FL(V, 4) with u ^ v and f(x) > f(u) > f(v) 

f(y). Now it is easy to see that u/v is projective to a 
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subquotient u ' / V of x/y in two or less steps. By 

modularity x > u1 v ' > y , proving the corollary. 

The above corollary implies that the word problem 

for FL(V, 4) is solvable. However, by Jtfnsson's theorem 

[5] the four-generated subdirectly irreducible members of V 

are precisely the lattices listed in Theorem 3 (see also [1]). 

Hence we have the following corollary. ^ 

COROLLARY: _I_f L i_s_ th_e V-l atti ce freely generated by four 

gene rators subject to finitely many relati on s, then the word 

prob 1 em f o r L ij5_ sol vabl e . 

With the aid of the results of this paper, 

C. Herrmann has been able to list all subdirectly irreducible 

four-generated modular lattices in the class C of all lat-

tices embeddable in a complemented modular lattice. From this 

it foil ows that the word problem for four-generated lattices 

in C is solvable. This contrasts the result of G. Hutchinson 

that the word problem for nine-gene rated lattices in C is 

not solvable. An easy modification of Hutchinson's argument 

yields that the word problem for seven-generated lattices in 

C is not solvable. 
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STONE DUALITY FOR VARIETIES GENERATED BY QUASI PRIMAL ALGEBRAS 

by 

K . Keimel and H. Werner 

One of the most famous representation theorems is that of M.H. Stone 

(1937) which says that for every Boolean algebra B there is a Boolean space 

X such that B is isomorphic to the Boolean algebra of closed-and-open sets of X 

This representation theorem leads to a duality between the category of Boolean 

algebras and the category of Boolean spaces. In 1969 Tah Kai Hu proved that this 

representation and duality works for any variety generated by a primal algebra. 

We want to extend this representation and duality to varieties generated by a weakly 

independent set of quasi primal algebras, i.e. a finite set 81 of finite algebras 

f x if y «• 
having a ternary polynomial d(x, y, z) which satisfies d(x, y, z) « < 

I z if y ^ 

on every algebra A € 81 . From now on 81 will always denote a weakly independent 

set of quasi primal algebras. Examples are any finite set of finite fields 

or any finite set of finite chains, regarded as lattices 

with relative pseudocomplementation and dual relative pseudocomplementation. The 

existence of d(x, y, z) shows that any algebra in the variety V81 generated by 

81 has permutable and distributive congruences and therefor every R € V8J is a sub 

direct product of subalgebras of algebras in 81 . For R € V81 let Hom(R, 81) : • 

[cp: R A| cp homomorphism, A € 81) and Spec(R): - {Ker cp| cp € Hora(R, 81)}. The 

"equalizer topology" on Spec(R) is the topology with the basis [E(r, s), D(r, s)| 

r, s € R}, where D(r, s) - {e| (r, s) f 8 ) , E(r, s) - £e| (r, s) € 9}. Let S be 

the finite) discrete space S - (J8I . 
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THM 1 : (1) Spec(R) with the equalizer topology is a Boolean space, 

R 

(2) Hom(R, 91) with the topology induced by Hom(R, 21) £ S is a Boolean 

space. 
Our first representation and duality will be by means of sheaves, therefor we used the 

standard construction of sheaves from a subdirect representation of a algebra. Let be 

R £ TT B a subdirect product of algebras and let T be a topology on X such that 
x€X X 

for r, s € R the set [x € x| r(x) = s(x)} is open, then there is a sheaf Q with 

base space X and stalks B (x € X) such that R G F Q , T Q is the algebra of 

all global sections of Q . This standard construction gives us a sheaf Q(R) for 

every algebra R € V21 with base space Spec(R) and subalgebras of algebras in 21 

as stalks. 

THM 2: ( l S t representation theorem) For any R € V21 R ^ T Q ( R ) holds 

s t 

THM 3: (1 duality theorem) Let @ be the category of sheaves Q satisfying 

(1) the base space X is Boolean, (2) Every stalk is a subalgebra of 

some A € 91, (3) If some A € 21 contains a 1-element subalgebra, then 

Q has exactly one one-element s 

tiâlR » 

Then T: © V2i and Q: V2I -*• @ established a duality. We also can 

give a representation by continuous functions. Let H be the set of all isomorphisms 

between subalgebras of algebras in 21 . Then H with the relational product is an 

inverse semigroup and acts as an inverse semigroup of partial homeomorphisms on each Hom(R, 21) and on S . If X , Y are Boolean H-spaces (i.e. Boolean spaces with H acting on them) then we denote by C (X, Y) the set of all continuous H-preserving H 

maps cp: X Y . 

THM 4: ( 2 n d representation theorem) For any R € V2I R a C (Horn (R, 21), S) holds. 
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nd 
THM 5: (2 duality theorem) Let 8 denote the category of Boolean H-spaces. 

H 

Then C u ( , S) : -> V21 and Hom( , 21): V2I <8U establish a 
H ri H 

duality 

COR, 4.1.: (AHRENS-KAPLANSKI): Let K be a field of characteristic p . For every 

ring R € V K there is a Boolean space X together with 

(i) a closed subset L of X for every subring L of K 

(ii) a homeomorphism a: X + X leaving all £ invariant 

such that R is isomorphic to the ring of all continuous functions f: X K 

satisfying (1) f(x) € L for all x € L 

(2) f ( a x ) - f(x) p for all x € X 

COR. 4.2.: (AHRENS-KAPLANSKI): The category of all p-rings is dual to the category 

of pointed Boolean spaces. 

COR. 4.3.: (HU): The variety generated by a primal algebra is dual to the category 

of Boolean spaces. 

COR. 4.4.: (STONE): The category of Boolean algebras is dual to the category of Boolean 

spaces. 
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Isomorphic Embedding of the Lattice of all 

Subgroups of a Group 

by 

L. M . Chawla and L. E . Fuller 

Let G be any group. Let (G x G, o) be the semigroup of all ordered 

pairs (x, y), x , y e G , the multiplication o being defined by 

yx) ° (K2> = ylX2y2^ * 

Our main tool to achieve an isomorphic embedding of the lattice of 

all subgroups of G into the lattice of all sub-semigroups of (G X G , O ) 

is the concept of a semigroup table S(A) of a subgroup A g G , intro-

duced in section 2. S(A) is a certain sub-semigroup of (G x G , such 

that the mapping a : (x,y) = xy e A is an epimorphism of S(A) onto A . 

W e arrive at the concept of a semigroup table S(A) of a subgroup A via 

its three particular cases P(A), Q(A) and R(A) , respectively called the 

inner, outer and complete tables of a subgroup A . The main results of 

the paper can now be stated as follows: 

(A) The lattice of all subgroups of a group G can be isomorphically 

embedded into the lattice of all sub-semigroups of x G , , 

the isomorphism being y : A R(A). (Theorem 3.4) 

Using (A) above, Birkhoff 1s [1] and Whitman's f3] well known theorems, 

we prove that 

(B) Any arbitrary lattice can be isomorphically embedded into the lattice 

of all sub-semigroups of (g X G, O ) , for a suitable group G . (Theorem 3.5) 

(C) For any semigroup table S(A) of a subgroup A G G, the quotient set 

S(A) / Ker a is a group ismorphic to A . (Theorem 2.2) 
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We begin by defining: 

P(A) = {(x,y) | x , y , xy € A ) , 

Q(A) = {(x,y) | x , y e A ' , xy e A] , 

R(A) = {(x, y) | x , y G G , xy € A) , 

where A 1 is the complement of A in G . 

The follçwing basic Lemma will be required. 

Lemma 1.1. 

(a) For any x , y e G and any subgroup A of G, if xy e A , then 

either x, y e A or x , y e A 1 . 

(b) If x e A ' , y e A , then xy and yx are both in A ' . 

(c); If x e " A 1 , then x ^ e A 1 . 

-1 
Let xy = z where z e A . Since x = zy , it follows that if 

-1 -1 

y e A , y e A and so x e A . But if y e A 1 , then since y F x z, it 

follows that x e A 1 . This proves (a). 

To prove (b) let x e A*, y e A and xy = z then z i A , since 

otherwise x = zy e A , a contradiction. By symmetry yx e A.' . 

Part (c) follows directly from (a). 

Because G is a group, there is a natural mapping a of G x G into 

G defined by 
(_x 

(x,y) -4 xy or a(x,y) = xy . 

This basic mapping has an important property that is given in the next 

Lemma 1.2. The restriction of a to P(A), fQ(A), R(A)] is onto A . 

Let a £ A , then for any fixed y e G , there is a unique x - ay ^ e G 

so that xy = a e A . Hence if y e A , then x e A and (x, y) e P(A) . 

If y € A 1 , then by Lemma 1.1, x e A r ; and so (x,y) 6 Q(A) . Similarly 

if y e G , then x e G and (x,y) e R(A) . This proves the Lemma. 456 



It is easily verified that the set G x G is a semigroup under each 

of the two multiplications defined as follows 

and 
( X l ' y i } X (Xg.yg) - ( x l 7 l x y ^ 

Since the two semigroups ^ G x G , and ^G x G , x ^ have similar proper-

ties, we shall restrict ourselves to ( G x • 

Lemma 1.3. 

(a) Each of the tables P(A), Q(A) and R(A) is a sub-semigroup of 

(G X G , o > . 

OL 

(b) The mapping (x,y) —• xy is an epimorphism from each of the 

sub-semigroups ( P ( A ) , o y , ^ Q ( A ) , o ^ , (R(A), o ) onto the 

underlying semigroup of A . 

(c) If (x,y) belongs to any of the three sub-semigroups, so does 

(y , x ) . 

To prove (a), let ( x ^ y ^ , ( x 2 ' y 2 ^ € P ( A ) o r e o r € » 

then it must be shown that (x^, y^) o ( x ^ y ^ ) ~ ^ x l , y l x 2 y 2 ^ belongs to 

P(A) or Q(A) or R(A) . In all cases x 1 ( y 1 x ^ ) = (XjYj)(XgYg) e A • 

In the first instance if x ^ , y^'e A then y i ( x 2 y 2 ^ € A by Lemma 1.1, 

so (x^, y i X 2 X 2 ^ € • l n second case if x ^ , y^ e A' , then 

yl ( X2 y2^ 6 A ' b y L e m m a 1' 1» s o (xi» yi x2 y2^ € ' F i n a l l y > i f 

x x , y l £ G , then and y ^ e G so ( x ^ YjXgYg) e R(A) • 

CX 

From Lemma 1.2, the mapping (x,y) —> = xy e A is an onto 

mapping from either of the three sub-semigroups to the set A . That a 

is an epimorphism from any of the sub-semigroups to the underlying semigroup 

of A is proved as follows: 
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Let a ( x 1 , y 1 ) = = e A 

a(x 2,y 2) = x 2y 2 = a 2 € A 

then a f x 1 , y 1 ) o ( x 2 , y 2 ) ] = a ^ ^ x ^ ) 

= xx(yi x
2
y2^ = ( x l y p ( X2 Y2 ) 

= (a x) (a g) = a ( x 1 , y 1 ) . a ( * 2 > y 2 ) 

This proves (b). 

To prove (c) , let (x,y) e P(A) , then x , y, xy e A , and 

hence y \ x ^ , y ^ x * " ç A and hence (y \ x = P(A) . Let 

- 1 -1 
(x,y) e Q(A) , then x,y e A' and xy € A . Hence by Lemma 1*1, y , x e 

-1 -1 -1 -1 
and y x e A and thus (y , x ) e Q(A) . Similarly 

(x,y) e R(A) (y" 1, x " 1 ) e R(A) . 

Section 2. 

In this section, we generalize the concept of a table of a subgroup 

so that it includes the above three tables as particular examples. The 

following definition of a semigroup table of a non-empty subset A of a 

group G is motivated by Lemmas 1.2 and 1.3 above. 

Définit ion. 

A non-empty subset A of a group G is said to have a non-empty subset 

S(A) of G x G as its semigroup table if 

1) a(S(A)) = A , 

2) a e A , (x,y) G S(A) imply (x, ya) e S(A), 

- 1 - 1 
3) (x,y) £ S (A) implies (y , x ) e S(A) . 

Note 1. Using 1) and 3), it is easy to see that 2) is also equivalent to 

2') a e A , (x,y) e S(A) imply (ax, y) e S(A) . 

Note 2 . From 2) and 2'), it is immediate that (x^, y ^ e S(A), ( X
2 > Y 2 )

 6 S 

imply ( x ^ y ^ ° (x 2 , y 2 ) = ( x ^ y ^ y g ) e S (A) and 

( xi> yi> x (x2>y2)
 = < xiyi x

2> y 2}
 e S< A> • 
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Hence, if A has a semigroup table S(A), then S(A) is a sub-semigroup 

of ^G x G , o ^ as well as that of ( G x G , x ) . In this paper we restrict 

ourselves to sub-semigroups of (G X G , O ^ . We finally note that each of 

the three tables P(A), Q(A) and R(A) is a semigroup table of A . However, 

every semigroup table of A need not coincide with P(A) or Q(A) or R(A) 

as illustrated below: 

Let G be the permutation group P^ with elements written as mLq~' , 

2 3 2 
where m = q = 1 and qm = mq . If A is the subgroup generated by m , 

then two semigroup tables for A would be 

2 2 
S X ( A ) = {(q, q ) , (mq, mq) , (q, mq), (mq, q ) ) 

2 2 2 2 2 2 
S 2 ( A ) = {(q , q) , (mq , mq ) , (q , mq ) , (mq , q)} . 

It is easy to verify that these satisfy the conditions for S(A) and 

that their union is Q(A) . 

We now prove the following theorem: 

Theorem 2.1. 

A subset A of G has a semigroup table S(A), if and only if A is a 

subgroup of G. 

To prove that the condition is necessary, let S(A) be a semigroup 

table of A . Let a^ s A^ G A . Since A is onto A , a^ = « ( x ^ , y^) for 

some (x ̂ , y^) e S(A) . By 2), (x^, y^a^) G S(A) so that 

X l y l a 2 = a l a 2 e A " F u r t h e r by 3), if (x,y) G S(A) so that xy ® a G A , 

then (y , x ) G S(A) and y x = a 6 A . It follows that A is 

a subgroup of G . 

Conversely it was shown in note 2 above that every subgroup has a 

semigroup table. 

Theorem 2.2. 

(a) Let ^ S ( A ) , be any semigroup table of a subgroup A . Then the 
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Q; 

mapping (x;,y) xy from S (A) onto A is an epimorphism from the semi-

group ^ S ( A ) 5 onto the underlying semigroup <^A, • ^ . 

(b) Further the quotient set S(A)/ker Ct of equivalence classes 

S a ( A ) = {(x, y) e S(A) | xy = a e A ] 

is a group under the induced multiplication S f l(A) o S^(A) = S ^(A) . 

Finally S (A)/ ker OL is isomorphic to A. 

(a) follows on the same lines as part (b) of Lemma 1.3. 

By definition of a , the equivalence classes of the quotient set S(A)/Ker 

are determined by 

S (A) = {(x,y) e S(A) | xy = a e A ) . 

Since S (A)^-*a is a one-to-one correspondence between the quotient cl 

set S(A)/ker a and the group A , it follows immediately that 

S(A)/ker OL is a group under the multiplication S a ( A ) o S^(A) = S ^(A) 

and is isomorphic to A . 

The above theorem is a generalization of Theorem 2.1 in [1"|. 

Corollary 2.3. 

Each of the quotient sets P(A)/ker a , Q(A)/ker a and R(A)/ker OL 

arising respectively from the epimorphism a of ^P(A), ,<fi(A) , °y 

(RCA), ° ) onto (A, • y , is a group isomorphic to the subgroup A . 

Section 3. 

In this section we establish an isomorphic embedding of the lattice of 

all subgroups of a group into the lattice of all sub-semigroups of 

(g x G , . To this end, we need the following concept and the subsequent 

Lemmas. 

If S(C) is any arbitrary semigroup table of a subgroup C and A 

is any subgroup of C, then let S(A, C) be the subset of elements of 

S(C) which are mapped by OL onto,the elements of A or explicitly 
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S(A, C) = {(X,y) | (x,y) € S(C), a(x,y) = xy € A] . 

In fact if a be the restriction of a to C, then S(A,C) = a " 1 ( A ) . 
C t» 

Lemma 3.1. 

S(A, C) is a sub-semigroup of S(C) and in fact is a semigroup table 

of A . 

- -1 

Since S(A,C) =0ù (A), it is the inverse image of a sub-semigroup 

A of C, and hence is a sub-semigroup of S(C). Further it is easily veri-

fied that S(A, C) satisfies the three conditions of being a semigroup 

table of A . 

Lemma 3.2. 

If A , B are subgroups of G and S(C) is any semigroup table of 

C = A V B , then 

(i) S(C) = S(A, C) V S(B, C) 

(ii) S(A flB, C) = S(A, C) H S ( B , C) . 
-1 -1 -1 

Part (ii) follows immediately from the fact that a (A f| B) = Ci (A) fl OL 
C C O 

For part (i) , it follows from Lemma 3.1 that S(C) o S*(A,C) y S ( B , C) . 

To prove inclusion in the other order let (x,y) € S(C). Then xy e C so 

there exists some elements g^, ..., g^ € G such that xy = ê^gg • • • 8 r 

and that either g. e A or g. e B . Since xy e C, e C so that by 

conditions 2) and 2 1 ) in the definition of a semigroup table, we have 
-1 -1 -1 

(x, x ) = (x, y (y x )) e S(C) 

-1 -1 -1 
(y > y) = (y > x xy) e s(c) 

Applying again 2) and 2') , the pairs 

-1 -1 -1 -1 
(X, x g x ) , ( g 2 y , y ) , ( g 3 y , y ) , . . . , ( g ^ y , y ) 

belong to S(C) . It is easy to see that in fact these pairs belong 
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either to S(A, C) or to S(B, C) . Then by definition of 

S~(A, C) V S ( B , C) , the product 

(x, x 1 g 1 ) o ( g 2 y "
X , y) ° (g 3y

 1 , y) o . . . o ( g ^ " 1 , y) 

= (x, x 1 g 1 • g 2 g r ) = (x, x~lxy) = ( x , y) 

€ S(A, C) V S(B, C) . 

This completes the proof. 

Lemma 3.3. 

For any arbitrary subgroups A , B and C = A v B of a group G , 

(i) R(C) = R(A,C) v R ( B , C ) = R(A) V R(B) 

(ii) R(A H B) = R(A) H R(B) • 

The first equality in (i)follows from Lemma 3.2 (i). For the second 

equality we have by definition that 

R(C) - {(x,y)| x , y e G , xy e C = A v B } 

and 

R(A,C) = {(x,y) |(x,y) e R(C), xy e A } 

= {(x,y) | x , y e G , xy e A} 

- R(A) . 

Part (ii) follows from this result and Lemma 3.2 (ii). 

We now prove 

Theorem 3.4. 

The lattice M of all subgroups of a group G can be isomorphically 

embedded in the lattice L of all sub-semigroups of the semigroup ^ G x G , . 

Consider the mapping 

Y 

A R(A) where A e M and R(A) e L . 

By definition of R(A), if A ^ B , R(A) ^ R(B) and if A c B , then 
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R(A) ç R(B) . Further, we have 

A V B \ R(A V B) = R(A) V R(B) , 

Y 

A n B R(A 0 B) = R(A) 0 R(B) by Lemma 3.3. 

This completes the proof. 

Theorem 3.5. 

Any arbitrary lattice can be isomorphically embedded in the lattice 

L of all sub-semigroups of ( G X G , o for a suitable group G . 

By Whitman's Theorem [3] every lattice can be isomorphically embedded 

in the lattice of all equivalence relations on a suitable set. By 

Birkhoff 1s Theorem [1], the lattice of all equivalence relations defined 

on an arbitrarily given set can be isomorphically embedded in the lattice 

of all subgroups of a suitable group G. But the lattice of all subgroups 

of any group G can be isomorphically embedded in the lattice L of all 

sub-semigroups of. the semigroup ^ G x G , o ^ by our Theorem 3.4 above. 

This proves the assertation. 

Some of the properties of R of Lemma 3.3 are not shared by P or Q . 

The final theorem indicates this difference. 

Theorem 3.6. 

For any arbitrary subgroup A and B of a group G 

(i) P(A v B) = P(A) V P(B) if and only if A ç B or B c A . 

(ii) Q(A V B) - Q(A) v Q(B) if and only if A = B . 

(iii) Q(A, A V B) c Q(A) 

(iv) P(A, A y B) ^ P(A) 

(v) Q(A n B) = [Q(A) p Q(B)] U [Q(A) fl P(B) ] U [P(A) fl Q(B) ] 

To prove (i) note that the first components of pairs in P(A) v P(B) are in 

i 
A y B while for P(A v B ) , they are in A v B , In both cases the second 
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components are in A V B . Thus, the equality can occur if and only if 

A (J B = A V B . This in turn is equivalent to having A s B or B c A . 

For part (ii) the first components of elements in Q(A v B) are in 

(A V B) ' while for Q(A) V Q(B) , they are in A' (J B' = (A n B) ' . Hence 

equality occurs if and only if A fl B = A V B . But this is equivalent 

to A = B . 

For part (iii) note that by definition 

Q ( A , A v B) = {(x,y) | x,y e Q(A V B),xy e A ] 

= {(x,y) | x,y e (A v B)' , xy e A ] 

c {(x,y) j x,y e A ' , xy e A ) 

= Q(A) . 

The last two parts follow directly from the definitions of P and Q and the iden-

tity (A fl B) 1 = A 1 (J B 1 . 

The authors are grateful to Dr. M . P. Grillet for her comments on 

an earlier draft of this paper. 
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SPLITTING ALGEBRAS AND A WEAK NOTION OF PROJECTIVITY 

by 

Alan Day* 

1. Introduction: 

The classical results in Lattice Theory by Dedekind and 

Brikhoff that a lattice is modular (distributive) if and only if 

it does not contain the pentagon, N 5 , (resp. N5 and the 3-

diamond, M 3) as a sublattice have been generalized by McKenzie 

in [13] to the notion of a splitting algebra. That is: a finite 

subdirectly irreducible algebra is splitting in a variety (= equa-

tional class) if there is a largest subvariety of this variety not 

containing it. In [3], McKenzie characterized the splitting lat-

tices as the bounded homomorphic images of finitely generated free 

lattices. In [9], Jônsson showed that M a ^ is a splitting modu-

lar lattice. 

AS McKenzie noted, his results do not supply necessary 

and sufficient conditions for a splitting algebra in proper sub-

varieties of lattices. In this paper, we develop a weak notion of 

projectivity for a finite algebra in a variety and show that given 

reasonable restrictions on the variety, every finite subdirectly 

irreducible satisfying this weak projectivity conditions is a split-

ting algebra. The reasonable restrictions alluded to are congru-

ence distributivity. Therefore all of the usual lattice-like 

* This research was supported in part by an NRC Operating Grant A8190. 
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varieties are included (e-g- Lattices, Heyting algebras, Pseudo 

complemented lattices, Implication semilattices, and Hilbert Alg-

ebras) . « 

After developing the general theory, we provide examples 

in the above varieties and in the last section describe a large 

class of splitting modular lattices. 

We wish to thank Professor R. Wille for his many valu-

able comments which led to this revised version of these results. 

2. Preliminaries 

Most of the relevant definitions and results in univer-

sal algebra can be found in Gratzer [5]; in lattice theory, Szasz 

[14] and McKenzie [13]. 

Let K be a variety of algebras. We will consider (as 

is usual) K as a category whose maps are all K-homomorphisms. 

For A and B in K, a surfjective map f : A B is called 

a cover (with respect to sur j ective maps) if for all g : C A 

in K g is sur^ective if f-g is. Equivalently, f : A B 

is a cover if A is the only subalgebra of A whose image under 

f is B. 

P e K is called projective (with respect to surjective 

maps) if for any sur j ective g : A B and any f : P B, there 

exists a lifting £ : P -*• A with g-f = f. It is well known (or 

easily seen) that any variety has enough projectives (i.e. every 
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algebra is the homomorphic image of a projective) and that an 

algebra in K is projective if and only if it is a retract of a 

K-free algebra. '» 

A cover f : A B is called a projective (finite) 

cover according to whether A is projective or finite respectively. 

If an algebra B in K has a projective cover, then this cover 

is essentially unique. The general theory of projective covers in 

an arbitrary category can be found in Banaschewski [2]. 

We will use the following notations 

A < B: A is a subalgebra of B 
f 

A B: f is an injective homomorphism 

AJ B: f is a surjective homomorphism. 

Also since the precise operations of the algebras considered will 

play no role, we use upper case Latin letter instead of upper case 

German letters. 

3. Finitely Projective Algebras 

Let K « be a variety of algebras. An algebra A in K 

is called finitely projected if for any sur j ective f : B A in 

K, there is a finite subalgebra of B whose image under f is 

A. Thus a finitely projected algebra is necessarily finite and 

clearly every homomorphic image of a finite projective algebra in 

K is finitely projected. 

(3.1) Lemma. Let A e K be finitely projected. Then for any 
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B e K and surjective f : B A there exists a finite subalge-

bra C < B with f|c : C A a cover. Moreover if B is pro-

jective, so is C. * 

Proof : Given f : B A, there is a finite subalgebra D < B 

with f[D] = A since A is finitely projected. Since D is 

finite, D has only finitely many subalgebras. Therefore we can 

take C to be minimal in the set {E < D : f[E] = A}. 

If B is projective there exists g : B C with 

(f|C).g = f therefore (f|C).(g|C) = ((f|C).g)|C = (f|C). 

Since f|C is a cover, g|C is surjective and since 

C is finite, g|c is bijective, hence an isomorphism. There-

fore C, as a retract of a projective is projective. 

Let us note that this lemma shows that the concept of 

being finitely projected has no content when K is the variety of 

all groups or all Abelian groups as free (abelian) groups have no 

subgroups of finite order save the trivial one. 

It alsç gives the following characterization of finitely * 

projected algebras. 

(3.2) Theorem : Let K be a variety of algebras; then for any 

A in K, t.f.a.e.: 

(1) A is finitely proj ected 

(2) A has a finite proj ective cover 

(3) A is the homomorphic image of a finite projective alge-

bra in K. 
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Ç4) For all projectives P in K and all surjectives f : 

P A, there exists a finite subalgebra Q < P with f [Q] = A. 

(3.3) Corollary: Every Cfinite) cover of a finitely projected 

algebra is finitely projected. 

(3.4) Corollary: Every homomorphic image of a finitely pro-

jected algebra is finitely projected. 

Examples of finitely projected algebras in different 

varieties will appear in subsequent sections. Our main concern 

now will be with subdirectly irreducible finitely projected al-

gebras and the role of their projective covers. 

(3.5) Lemma: Let P be a projective algebra in a variety K 

y p 

and let P ** P be any retract. Then for any a,b e P 

and v : P F^(X), (\>(a),y(b)) is in the fully-invariant con-

gruence relation on F^(X) generated by (y(a),u(b)). 

Proof: Consider the endomorphism \>.p of F^(X). (v*p)(y(p)) = 

VCCP-y)(p)) = V(P) FOR all p E P. Therefore the statement of 

the lemma holds. 

Although the above lemma is extremely trivial, it has 

many interesting applications in the determination of conjugate 

equations for splitting algebras as we shall presently see. Of 

immediate consequence is the following generalization of Wille 

[15; Corollary 10]. 
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(3.6) Lemma: Let S be a subdirectly irreducible in a variety 

K whose least congruence is generated by (u,v). Furthermore 

assume there is a surjection f : P -»- S with a,b e P satisfying 

(!) f Ca) = u and f(b) = v 

(2) 6^(a,b) is strictly-join-prime. 

y p 
Then S is a splitting algebra in K . Moreover if P F (X) P 

K. 

is any retraction, (y(a),y(b)) determine the conjugate equation. 

Proof: Take F K(X) P for a suitable set X. Since P is 

projective, there is indeed a y : P FV(X) with p-y = 1 . 
K p 

We show that S is a splitting algebra by demonstrating that 

(y (a)>y(b)) is indeed its splitting equation. 

Since e (a,b) is strictly-join-prime, and S is 
P 

subdirectly irreducible, Ker f is strictly-meet-prime and for 

all congruences Q on P, either e c. Ker f or 6p(a,b) <r_ Q . 

Let V be the subvariety of K given by the equation 

(y(a),y(b)) with « : F^(X) F^(X) the canonical homomorphism. 

That is, Ker < is. the fully invariant congruence generated by 

(y (a) ,y (b) ) . If S were in V then as f-p : F^(X) ->- S is 

sur j ective, there would be a sur j ective morphism h : Fy (X) ->-*- S. 

As P is projective in K, there exists v : P F K(X) with 

f = (h-K).v. Now (a,b) { Ker f = Ker(h.K-v) . But by (3.5) 

(v (a) ,v (b) ) e Ker K whence f(a) « h(ic (v(a))) « h(K (v(b))) = f (b) , 

a contradiction. 

Now if £ is a subvariety of K not containing S and 
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X : Fj^(X) FfQO is the cononical surjection, then if 

Ker X we have Ker(X.y) Ker f- Therefore by the 

homomorphism theorem we have: S e , a contradiction. i' 

Therefore (p(a),u(b)) e Ker X. 

These last two lemmas give us the connection between 

finitely projected subdirectly irreducibles and splitting algebras 

in congruence distributive varieties. 

C3.7) Theorem: In a congruence distributive variety, every fin-

itely projected subdirectly irreducible algebra is splitting. 

Proof: Let f : P S be the finite projective cover of the 

subdirectly irreducible S in a congruence distributive variety 

K. Since S and P are finite, and the congruence lattice of 

P is distributive, Ker f is (strictly)-meet-prime. Therefore 

there exists a smallest congruence on P not contained in Ker f 

which is (strictly)-join-prime and hence principal. That is, 

there exists a,b e P such that for all Q e Q(P), Ker f or * 

9p(a,b) c 0 . It is trivial to see that the pair (f(a),f(b)) 

generates the least congruence on S. Therefore (3.6) applies 

and S is splitting. 

(3.8) Corollary: Let K be a congruence distributive variety 

in which the finitely generated algebras are finite. Then every 

finite subdirectly irreducible in K is finitely projected hence 
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a splitting algebra. Moreover, the lattice of subvarieties is 

infinitely distributive. 

Proof: The first statement is immediate from C3.2) and the fact
 ; 

that finitely generated K-free algebras are finite. 

The second part comes from the first since every sub-

variety will be generated by its finite subdirectly irreducible 

members and the variety (or theory) generated by one of these is 

strictly-join-prime (resp. strictly-meet prime) (see [13] for 

terminology). 

Before proceeding to examples, let us note that if the 

finite projective cover of a finitely projected subdirectly irredu 

cible can be constructed in a suitable finitely generated free 

algebra by some algorithmic methods, we can determine a conjugate 

equation by inspection. This procedure perhaps could be more 

easily applied than McKenzie's limit tables, 

4. Examples: 
* 

(A) Heyting Algebras 

A Heyting algebra is bounded relatively pseudo-comple-

mented lattice in which relative-pseudo-complementation is taken 

as an operation. Balbes and Horn, [1], have sufficient algebraic 

details for what we need. 

By Jankov [7], every finite subdirectly irreducible Hey-

ting algebra is a splitting algebra. However from [1], the finite 
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projective Heyting algebras are precisely the finite horizontal 

sums (see [1] for terminology) of £ and B 2 , the four element 

Boolean algebra, with a copy of 2 on top. Homomorphic images of 

these are just the finite horizontal sums of £ and B and there-

fore the subdirectly irreducible homomorphic images (1 is join-

irreducible) are precisely the projective Heyting âlgebras again. 

We have shown: 

(4.1) Theorem: The finitely projected Heyting algebras are pre-

cisely the finite horizontal sums of copies of £ and B 2 . A fin-

ite Heyting algebra is projective if and only if it is a finitely-

projected subdirectly irreducible. 

(B) Implication semi-lattices, Hilbert algebras and Distributive 

pseduo-complemented lattices 

In each of these three varieties, the finitely generated 

algebras are finite. (See [12], [4] and [11] respectively.) There-

fore the finitely projected algebras are precisely the finite ones, 

every finitè subdirectly irreducible is splitting and the lattices 

of subvarieties are infinitely distributive. 

(C) Lattices 

While we have no characterization of the finitely pro-

jected lattices other than (3.2), we do have the fact that the sub-

directly irreducible finitely projected lattices are a proper sub-

class of the splitting lattices. 

(4.2) Theorem: Let L be a finite lattice that has a generating 

set X of more than two elements which satisfies: 
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0 ) 0 + Y, Z <c.X and A ï < ^ Z imply Y O Z =)= 0 

then L is not finitely projected. 

» 

Proof: Take (j> : FL(X) -»*• L extending the identity function on 

the generators. Then for any subset, X, of FL(X) given by a 

choice function on n (cj)"1 [x] : x e X) , X also satisfies (*) . By 

J6nsson [10: lemma 3], the sublattice of FL(X) generated by X 

satisfies Whitman's first three conditions and since it must also 

satisfy the fourth, it is isomorphic to FL(X) which is infinite. 

By (3.1) then, L is not finitely projected. 

(4.3) Corollary: There is a splitting lattice which is not fin-

itely projected. 

Proof: The lattice Q in diagram (i) is splitting from [13] but 

its generating set {a,b,c} satisfies (*). 

5. Finitely Projected Modular Lattices 

Let M, be the variety of modular lattices. We wish to 

construct a large class of finitely projected subdirectly irredu-

cible (hence splitting) modular lattices. 

By D(u < a,b,c, < v), we mean a non-degenerate 3-

diamond as in diagram (ii), T^ (n £ 1) is the modular lattice 

1 ,n 
V D(u. < a. ,b. ,c. < v.) with v. = a. and c. = u. . for 
i ^ i i' i* i i/ i x+i i i+l 

each i • 1,...,n-l. P R (n > 1) is the modular lattice given by 

I n — — „ 
the disjoint union £ D(u. <; â.jb.,^ < v^) with v.Au^,^ = c^ 
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and v. v u. , = a. , for each î = l,2,...,n-l. Thus P is 
i 1+1 1+1 » » » n 

obtained from T n by pulling apart all coincident diamond edges; 

and there exists a unique surjectîon f : P^ T ^ by collapsing1 

these pulled-apart edges. (See diagram Ciii)0 

(5.1) Theorem: For every n >. 1, T is a finitely projected 
n • 

simple modular lattice with f : P T n its projective cover. 

(5.2) Corollary: Every T , n 1, is a splitting modular lattice 

Before proving this theorem we should note that the 

corollary for n = 2 was shown in Jônsson [9]. It must be noted 

however that Jônsson1s result is stronger in that he explicitly 

described the splitting variety by describing its subdirectly ir-

reducible members. This does not seem to be an easy task for 

n > 4, however Hong [6] has some interesting partial results. 

Also, explicit descriptions of P^ as a sublattice of 

FM(n+2) can be obtained via the method of proof and therefore 

conjugate equations (see [13]) can be obtained. 
» 
* 

Proof: Let S(n) be the statement "For any sur j ective map 

g : A -H- T , there exists a sublattice C < A with C = \|>n 

* n* n n V 
i 

D(p. < r.,s.,t. < q.) with p../\ q. = t. and p . , v q. = r. , v ti i' i' i ri+l * n i i *x+i nl 1+1 

for i = 1,... ,n-l such that g(p i) = u ^ g(r^ = a.., gCs^ = b ^ 

g(t i) = c and g(qi)= v i for i = l,...,n." 

S(l) is trivially true as Ti » M3 » Pi is a finite 

projective modular lattice. Therefore assume S(n) for n » 1 

and consider a sur j ective map g : A T n + . 
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Since T < T by considering only the first n 
n n+i 

diamonds, we have by inductive assumption a sublattice 

C n < g
 1[T ] satisfying the conditions of S(n). Moreover since 

g is surjective and SCl) holds, there is a diamond 

Dn +1
 = D ( V i " W W V i < W t v t h e s u b l a « i c e 

of all elements of A greater than or equal to t which is 

mapped isomorphically onto the (n+l)t^ |diamond of . We 

will show that our desired C is a sublattice of the sublat-
n+i 

tice of A generated by C O D 6 3 n n+i 

Let z » q_A r _ and w = q A p Then we have 
n ^n n+i n nn rn+l 

t < w < z < q_ with the strict in equality holding between 
n n n ~ n n n & 

w and z since gfw ) » c < v = gCz ). By Hong's extension 
n n n n n IK

 J * 

([6; sec. 3.2]) of a result of Jônsson, the sublattice of A gen-

erated by C U {z ,w } is of the form 

n n n 

1 w 
0 Efe-.q.) 

where each E(p.,q.) is a homomorphic image of Q, the lattice in 

diagram (iv) with" the edges [t. ,q.] and [p. ,r. ] transposed 
i i l+i 

and at most z = q and w * t. This give a sublattice C^ of 

A satisfying the statement S(n) where 
1 ,n 

C = M Dtp < r. ,s. ,t. < q.) . 
n i i i i ni 

Now consider 

V l = w n " V i = £n v V i 
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yn+i zn v pn+i %. v pn+i 

Again we have < x ^ < y < r and the sublattice of 
""n+l - n+i n+i ' n+i > 

A generated by D . U ,y ,} is as described above. It 
n+i n+l n+i 

l,n+l 
follows easily that C = V D(p. < r.,s.,t. < q.) satisfies J n+l i i i' i 

the conditions of the statement S(n+1). 

Let us note that if S (n>l) is defined by a "snake" 
n 

of n diamonds and Cn>l) is defined analogously to P^ 

(see diagram 0 0 ) , then the proof is completely analogous and we 

have: 

C5.3) Theorem: For every n > 1, S n is a finitely projected 

simple modular lattice with projective cover : Q^ """S^. 

05.4) Corollary: Every S n , n > 1, is a splitting modular lattice. 

We should note at this time the existence of non fin-

itely-projected modular lattices. From [3], M^ is not a split-

ting modular lattice and therefore is not finitely projected. 

Our class of finitely projected modular lattices can be 

enlarged greatly by a slightly different procedure. 

(5.5) Lemma: Every modular lattice that is the subdirect pro-

duct of two finite chains is finitely projected. 

Proof: This is an immediate consequence of the fact that the 

free modular lattice generated by two chains is both finite and 
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projective. 

Now suppose we judiciously insert elements in such a 

finite lattice to make some of the B 2 boxes into diamonds 

(see diagram (vi)). It is clear by inspection (and easy to prove) 

that A and B are finitely projected by firstly pulling back 

the lattice without the diamond points and then inserting these 

one at a time. This procedure does not seem to work for C for, 

having pulled back three diamond points of C along f : L -»C, 

we have as a sublattice of L at lattice whose isomorphism type 

is determined by D in diagram (vii) • However in attempting to 

insert an inverse image point of the last diamond point in the 

proper B 2 box, we seem to generate a ring around the rosy sys-

tem of elements on all the other diamond edges, with no conviction 

as to whether this procedure stops. We conjecture however that 

given a subdirect product of two finite chains if diamond points 

are inserted such that there is no sequence of transposes start-

ing at one edge of a diamond and returning to another edge of this 

diamond without paving had to transpose through, this diamond then 

such a modular lattice is finitely projected. 
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Equational classes of Foulis semigroups and 

orthomodular lattices 

Donald H. Adams 

I. Introduction. This paper follows on from our work 

exhibiting Baer semigroups as an equational class and investi-

gating the connection between equational classes of lattices 

and equational classes of Baer semigroups [1]. Here we consider 

the particular case of Foulis semigroups and orthomodular 

lattices and, as is usual when one particularizes, we are 

rewarded with more specific results. This paper does not 

depend on [1] and may be read separately. However, a fair 

knowledge of Foulis semigroups and orthomodular lattices is 

assumed and we refer to Blyth and danowitz [2] for the basic 

theory and further references. 

In this paper we show that Foulis semigroups from an 

equational class when they are regarded as algebras of type 

<2,1,1,0> where the two unary operations are the involution 

and the focal map. We show that the class of Foulis semi-

groups coordinatizing the members of an equational class of 

orthomodular lattices is equational. Conversely, the class of 

orthomodular lattices coordinatized by the members of an 

equational class of Foulis semigroups is also equational. 

We exhibit a homomorphism from the lattice of equational 

classes of Foulis semigroups onto the lattice of equational 

classes of orthomodular lattices. 
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We generally follow the conventions of Gratzer [4], 

except that we rarely bother to distinguish between an algebra 

and its base set. We are ambidextrous in the way we write 

maps: homomorphisms are on the left and residuated maps 

on the right. We feel that this tends to clarify rather 

than confuse the situation. We skip over foundational 

difficulties, especially when dealing with the lattice of 

equational classes, because all these can be handled by 

standard tricks - see Gratzer [4] for details. 

2. Foulis semigroups. We fol 1ow Blyth and Janowi tz [2] in 

using the term Fouli s semi group for what was originally called 

a Baer *-semi group by Foulis [3]. We refer the reader to 

these two sources for the proofs of any assertions that we 

leave unproven. 

Definition 1. A Fouli s semi group is an algebra <F;•,*, 1,0> 

of type <2,1 ,1 ,0> such that 

(i) < F ; • ,0> i s a semi group with zero ; 

(ii) * is an involution, i.e. for any x,y e F, 

x** = x and (xy)* = y*x*. If x = x* then 

x i s self-adjoi nt. 

(iii) for each x e F the element x' is a 

self-adjoint idempotent or projection. 

(i v) for each x e F 

r(x) = (y|xy = 0} = x'F. 

In other words , the right anni h i1ator of x 

is a principal right ideal generated by a projection. 
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The elements of F of the form x 1 are called cl osed 

projecti ons . The map defined by x x ' is called the 

focal map, 1 = 0 ' is an identity in F and 1' = 0. 

Proposition 2. Condi ti on (iv) of_ Def i n i ti on 1_ i_s_ equivalent 

to 

( i v ) 1 x 'y ( xy ) ' = y ( xy ) 1 for al 1 x ,y e F. 

Proof. Since x 1 is idempotent, (iv) is equivalent to: 

xy = 0 if and only if x'y = y. 

Suppose that (iv) holds. Then 

(xy)'F = {t|xyt = 0} 

= {11x 1 yt = yt} 

and since (xy)' e (xy)'F, we get x'y(xy)' = y(xy)'. 

If, on the other hand, (iv)' holds, then substituting 

x = 1 in the formula gives us the identity yy' = 0. Hence, 

if x'y = y , then xy = xx'y = 0. If xy = 0, then substi-

tution in the formula gives us x'y = y. We have shown that 

xy = 0 if and only if x'y = y and so (iv) holds. 

Notice that (iv) was the only one of the defining 

properties of a Foulis semigroup that could not readily be 

expressed as an identity. Proposition 2 shows us that it can 

be so expressed and we have the following result. 

Corol 1 ary 3 . The cl ass of all Foul i s semi groups i s agitational . 

488 



Foulis semigroups are of interest mainly because, if 

F is a Foulis semigroup, then the set of closed projections 

in F, P'(F), is an orthomodular lattice where the operations 

are given by the formulas: 

( 1 ) e A f = ( f
1
 e ) ' e ; 

(2) e
1
 = e' ; 

(3) 0 = 0 

We denote the equational class of Foulis semigroups by s 

and the equational class of orthomodular lattices by&C. From 

the formul as (1) (3) the following i s clear. 

Proposition 4. (i) I_f h: F^ F 2 i_s_ â  Foul i s semi group 

homomorph ism, then h 1 : P'(F-j) P'(F 2) , the res tri cti on of 

h to. the closed projecti ons , i s an orthomodul ar 1 att i ce 

homomorph i sm. I_f h i_s_ onto, then h ' also onto . 

(ii) I_f F-j ls_ £ s ubal gebra of F 2 where 

F-| and F 2 are Foulis semigroups, then P ' ( F-j ) i s a 

subal gebra of P ' ( F 2 ) as_ am orthomodul ar lattice. 

We denote the direct product of a family of algebras 

(A . |i eI) by n(A ̂ |i eI). It is straightforward to prove the 

following result. 

Proposition 5. Let (F.|iel) be a family of Foulis semigroups. 

Then n(P'(F^)|ieI) i_s_ i somorph i c as an orthomodul ar Tatti ce to 

P'(n(F i|1eI)). 
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These two propositions will give us an immediate proof 

of our first main result. But first we observe that the 

mapping given by h h ' in Proposition 4 (i) is a functor 

from the category of Foulis semigroups to the category of 

orthomodular lattices. By Proposition 5 it is product-

preserving and in this situation one always gets a result 

of the following type. 

i s an equational class of Fouli s semi groups. 

Proof. It follows immediately from Propositions 4 and 5 

that b ( ^ ) is closed under the taking of homomorphic images, 

subalgebras and direct products. 

Actually, formulas (l)-(3) give us an immediate technique 

for translating orthomodular lattice identities into Foulis 

semigroup identities. This means that, given an equational base 

for the equational class o ^ , we can in principle calculate an 

equational base for the corresponding equational class of Foulis 

semigroups b(<^). If afj is the equational class of 

Boolean lattices, then b(d^) is the class of all Foulis 

semigroups satisfying the identity x'y' = y'x'. This follows 

from the standard result [2, p. 201] that P'(F) is Boolean 

if and only if ef = fe for all e,f e P'(F). 

Theorem 6. equati onal class of orthomodular 

lattices. Then 

b ( ^ ) = {F | F e ( 3 , P'(F) e ^ } 
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Foulis [3] showed that any orthomodular lattice is 

isomorphic to the lattice of closed projections of the Foulis 

semigroup S(L) of residuated maps on L (see also [2]). 

The involution is given by x<J>* = (x^4")*4" where <J>+ denotes 

the residual of <j> and x e L. The closed projections 

are precisely the Sasaki projections defined by 

x (j) y = (xVy L)Ay for x,y e L and the focal map is given by 

cj)1 = (j)g where g = (ltj))A. We say that a Foulis semigroup 

F coordi nati zes L if L is isomorphic to P'(F) . 

Proposition 7. Let F b_e a. Foul i s semigroup and let 

L = P ' ( F) . TJh_e_ ma]3 h : F -> S(L) défi ned b ^ h(x) = cb 
J\ 

where <j>v: P'(F) P'(F) is defined by e4>__ = (ex) 1 ' x ——_ — x 

for e e L i_s_ a Foulis semi group homomorph i sm of F into 

S ( L) . Moreover, i f e ,f e L , then e<J>f = ( eVf A )Af. 

Proof. Foulis [3] proved all this except the fact that 

h preserves the local map. Observe that (<{>„)' = <}>_ where 
x g 

g = ( H x ) ' = (lx)'" = x' to get h ( x 1 ) = [h(x)]' . 

3. Small Foulis semigroups. If F i s a Foulis semi g roup 

and if x e F is the product of closed projections i.e. 

x = e~i e 2 ' ' ' en w h e r e ej e P ' ( F) for i = 1 ,2 ,. . . n , then 

x* = e n e n _ -j . . . e-j is also a product of closed projections 

and x 1 is a closed projection. Therefore F , the 

s ubsemi group of F generated by P'(F), is a subalgebra 

of F and is a Foulis semigroup coordinatizing P'(F). 

We call a Foulis semigroup small when it is generated by its 
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closed projections. Clearly any Foulis semigroup F has 

a unique small subalgebra F q coordinatizing P'(F). If 

L is an orthomodular lattice we denote by S
0 ( L ) the small 

Foulis semigroup of products of Sasaki projections on L. 

Proposition 8. S
0 ( L ) ij5_ â  homomorph i c image of any smal 1 

Fouli s semi group coordi natizi ng L. 

Proof. The homomorphism in Proposition 7 carries closed 

projections onto closed projections. 

We can now prove some partial converses to Proposition 4. 

Proposition 9. Let h: L-j + L^ b_e cU]_ orthomodul ar 1 a tti ce 

homomorph i sm onto L 2 • There exists â  unique Fouli s semi group 

homomorph i sm k: S Q ( L - j ) + O N T 0 S T*1 A T the 

restri cti on of k to the closed projecti on s i n S Q ( L ^ ) coi ncides 

wi th h . 

Proof. Let (f)-j(x) denote the Sasaki projection on L-j 

generated by x e L ] and let <j>2(y) denote the Sasaki 

projection on L 2 generated by y e L 2 . A typical element 

of S Q ( L-j ) is of the form Jl.^ ^ ( x ^ ) and we define the 

map k by 

k ( n i 2 1 4»! (x 1 ) ) = n . ^ 4> 2(h( X i)). 

Suppose that n^-j ^(x..) = n 4> -j ( yj ) as maps on L^ . 

If u e L 2 there exists u e L-j such that h(v) = u and 

u n i 2 1 <|>2 (b(x . ) ) 

= h(v) n . ^ 4> 2(h(x 1)) 

= h[v n ^ (x i ) ] 
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since this expression is just an orthomodular lattice polynomial. 

Th i s calculation shows that Il^-j <f>2(h(x.)) = Il^-j <J>2 ( h (y j ) ) 

and hence the map k is well-defined. 

The map k is clearly a semigroup homomorphism preserving 

the zero and the involution. To prove that k preserves 

the focal map remember that 4>-| ( x . ) ] ' = <J>-|(y) where 

y = [1 n i = 1 <|>-j(x.)] . Since this expression i s an orth omodul ar 

1 atti ce polynomi al it follows that h (y) = [1 Il^-j <J>2 ( h ( x . ) ) 3
1 

and so we get 

M C n . ^ 4» l(x 1)3
i) = k ( ^ ( y ) ) 

= <J>2(h (y)) 

= [ M n . ^ 4> l(x 1))3-

This completes the proof. 

Proposi tion 10. Let L-j be_ a_ subal gebra of Lp as 

orthomodular 1 atti ces . There i s a_ smal l Foul i s semi group 

F-j coordinatizing L-j and F-j is a subalgebra of S Q( L 2 ) . 

Proof. I f x e l_2 let <j>( x) denote the Sasaki pro jecti on on 

l_2 generated by x. Form the set 

F-j = (f> C x i ) | x. e L-j , n > 1} , 

i.e. F-j is the set of all products of Sasaki pro jecti ons 

on L 2 generated by elements of L-j . F-j is clearly a 

subsemi group of S Q ( L 2 ) closed under i nvoluti on and containing 

the zero . I f x. e L-j for i = 1 ,2 ,. . . ,n, then 
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y = 1 n ^ i (x 1 ) e L^ since it is just an orthomodular 

lattice polynomial. Since [n^-j <J>(x.)]' = ^(y 1) we get 

that F-j is closed under the focal map and is hence a 

s ubal gebra of S Q ( L ) . Since [ n ^ ] ^ ( x -j ) ] 1 1 = 4> (y ) , it 

follows that the closed projections of F^ are exactly 

those generated by elements of L-j and L-j is isomorphic 

to P'(F-j) since the lattice operations can be expressed 

in terms of Foulis semigroup operations. 

Note that it is, in general, not true that S
0 (

L ] ) 

is isomorphic to a subalgebra of S (L^)- This is because 

products of Sasaki projections generated by elements of 

L-j may be equal as mappings on L^ but not when they are 

regarded as mappings on L^. However, S Q(L^) is a 

homomorphic image of F^. 

4. Equational classes. We are now ready to prove our second 

main result, the converse to theorem 6. 

Theorem 11. If i_s_ aj^ equational class of Fou 1 is semi-

groups , then 

= {L|L e < < S 0(L) e 

is an equational class of orthomodular lattices. 

Proof. Proposition 9 implies that is closed under 

the taking of homomorphic images and Propositions 8 and 10 

imply that is closed under the formation of 

subalgebras. If ( L ^ i e l ) is a family of members of 
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then Proposition 8 implies that S (n(L^|ieI)) is a homo-

morphic image of the unique small subalgebra of 

n(S o(L 1 ) | i d ) and therefore n ( L i | i e I ) i s in ) . This 

proves that I ) is an equational class. 

In this case it is not as easy to see how identities 

may be carried over, but it i s again possible in principle. 

The general idea i s to take the Fouli s semi group i denti ty 

and write it as an orthomodular lattice i denti ty in terms 

of products of Sasaki projections . For example , the Fouli s 

semi group i denti ty xy = yx goes over to the orthomodular 

lattice i den ti ty etp^cp =
 e

 ^ g ^ -p ( 1 t i s equivalent to ass ume 

that only two Sasaki projections commute). It is not 

immedi ately trans parent that this determi nes the equational 

class of Boolean lattices. 

Note that if ^ is an equational class of Fouli s 

s emi g ro ups , then S (L) e if and only if L i s 
o j 

coordi nati zed by F for some F e Therefore 

A ) = { L | L. « C L i s i somorphi c to P 1 ( F) for some 

F e d^ }. 

Let B_, I denote the 1 atti ces of equational classes of 

F o u1i s semi groups and orthomodular lattices respectively. 

Then I : B_ ^ L. and b : L_ B_ are monotone maps and we can 

readily prove the following. 

Propos i ti on 12. ( i 

for any e L ; 

(ii) b U ( # j ) ) for any <2^ e B. 
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The inclusion in part (ii) may be strict, i.e. one 

equational class of orthomodular lattices may be coordinatized 

by many different equational classes of Foulis semigroups. 

As an example of this observe that the class of Boolean lattices 

is coordinatized by each of the following equational classes 

of Foulis semigroups: 

(i) Boolean lattices themselves; 

(ii) pseudo-complemented semilattices; 

(iii) commutative Foulis semigroups. 

Corollary 13. The map I i_s_ res i duated and b i t s res i dual . 

It follows from this that £ preserves joins and 

it is straightforward to check that it also preserves meets 

since the meet in the lattice of equational classes is inter-

section (there are some foundational difficulties here). 

Theorem 14. The map i: B̂  + I is_ complete lattice 

homomorphi sm. 

This result illustrates the main point of this paper: 

that a study of B̂  should give information about the 

structure of L. 
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O r t h o m o d u l a r L o g i c 

by 

G u d r u n K a l m b a c h 

In this paper I d e v e l o p an " o r t h o m o d u l a r (OM) l o g i c " , a p r o p o s i t i o n a l 

l o g i c , the m o d e l s of w h i c h are o r t h o m o d u l a r l a t t i c e s . S i n c e B o o l e a n 

a l g e b r a s are s p e c i a l o r t h o m o d u l a r l a t t i c e s , this locic c o n t a i n s the 

c l a s s i c a l p r o p o s i t i o n a l c a l c u l u s as a m a x i m a l e x t e n s i o n . The O M - l o g i c 

is i n c o m p a r a b l e w i t h the o t h e r g e n e r a l i z a t i o n s of c l a s s i c a l logic like 

i n t u i t i o n i s t i c , L u k a s i e w i c z - and P o s t - t y p e l o g i c s . In f a c t , the o n l y 

c o m m o n e x t e n s i o n of each of these w i t h the O M - l o g i c is the c l a s s i c a l 

l o g i c . 

A m a i n c o n c e r n in this paper is t<o g i v e a d e f i n i t i o n of i m p l i c a t i o n 

w h i c h o n the one h a n d has the p r o p e r t y , that the m o d u s ponens formu-

lated w i t h it gives a finite a x i o m a t i z a t i o n of the O M - l o g i c and w h i c h , 

on the o t h e r h a n d s a t i s f i e s the n a t u r a l r e q u i r e m e n t that ex — p is a 

t a u t o l o g y iff v(o/) < v ( p ) h o l d s for e v e r y v a l u a t i o n v in an 

O M - l a t t i c e . A m o n g the five d e f i n i t i o n s of an i m p l i c a t i o n s a t i s f y i n g 

the second of these r e q u i r e m e n t s o n l y one of them has the p r o p e r t y that 

it gives the c o m p l e t e n e s s t h e o r e m . It is s h o w n that the i n t e r m e d i a t e 

O M - l o g i c s c o r r e s p o n d to the e q u a t i o n a l c l a s s e s of O M - l a t t i c e s and that 

the d e d u c t i o n t h e o r e m does n o t h o l d in the O M - l o g i c . This a n s w e r s a 

q u e s t i o n p o s e d by W . F e l s c h e r . 

1. W e d e t e r m i n e all t w o - v a r i a b l e p o l y n o m i a l s p w i t h the p r o p e r t y 

(*) p(a,b> = 1 iff a < b 

holds in e v e r y O M L . 
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L e t M O 2 b e the O M L 

a r 

0 

4 
E v e r y e l e m e n t of the free OML 2 X M 0 2 (see G . Bruns and G . K a l m b a c h 

in the same P r o c e e d i n g s ) o n two g e n e r a t o r s gives rise in the 

o b v i o u s and w e l l - k n o w n f a s h i o n to a p o l y n o m i a l in two v a r i a b l e s . W e 

i n t r o d u c e a s p e c i a l n o t a t i o n " (i = 1, . . . ,5) for some of these 

p o l y n o m i a l s and w e w r i t e "a b M for the v a l u e of at (a,b) . 

The p o l y n o m i a l s -». are d e f i n e d by : 

a b = (a ' A b) V (a ' A b ') V (a A (a'vb)) 

a b = (a ' A b ) V (a A b ) V ((a ' V b ) A b ') 

a = a ' V (a A b ) 

a -» b = b V(a ' A b ') 

a - b = ( a ' A b ) V (a A b ) V ( a ' A b ' ) 

T h e o r e m : The p o l y n o m i a l s p in two v a r i a b l e s s a t i s f y i n g (*) are 

e x a c t l y the p o l y n o m i a l s (i = 1, . . . ,5) . The p o l y n o m i a l s ^ h a v e 

the a d d i t i o n a l p r o p e r t y that (1 - \ b ) = 1 implies b = 1 in every 

O M - l a t t i c e . 

2 . W e d e f i n e the algebra 3 = (F;V,A,—i) of formulae of our o r t h o m o d u l a r 

( p r o p o s i t i o n a l ) logic as an algebra w i t h two b i n a r y o p e r a t i o n s V,A and 
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a unary o p e r a t i o n —i which is absolutely freely generated by a co un ta ble 

infinite set V , the p r o p o s i t i o n a l v a r i a b l e s . 

A v a l u a t i o n is a m a p v of F into some O M - l a t t i c e L satisfying 

for all 

(*,p<cF : v ( a V p ) = v ( c * ) V v ( p ) ; 

v(a A p) = v(cO A v ( p ) 

and 

v(—ioO = (v(aO ) ' . 

A formula F is valid in L iff for every v a l u a t i o n v: F -* L 

it is v(CK') = 1 . A tautology is a formula <26 F w h i c h is v a l i d in 

every O M L . Let T be the set of t a u t o l o g i e s . 

For n o t a t i o n a l c o n v e n i e n c e w e introduce a b i n a r y o p e r a t i o n R in 

F by 

ffRp = (a A p) V( 1 ex A i p) . 

It is 

Ck'RP € T iff v ( a ) = v ( p ) 

for every v a l u a t i o n v . 

We also consider the rules of inference 

oi a 
R n : -iff V p and R . : 01 p ( 1 < i < 5) 

P 1 ~T~ 

These are "correct" rules of inference in the sense that if a and 

—lffVp (cf-'ip) are v a l i d in an OML M then p is v a l i d in M . 

For all formulae c^pj-y the following formulae Al to A13 are 

t a u t o l o g i e s . 

Al -i(c*Rp) V ( n o V p) 
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A2 (ffRp)R(pRff) 

A3 -i(ffRp) V (-i(pRv) V (ffRy)) 

A4 QfR(-i(—iff) ) 

A5 (ffRp)R(~nff R-i p) 

A6 ~n(ffRp) V (( a A v)R(p A y) 

A7 (ff A p ) R ( p A ff) 

A8 -i(ck V p)R(-i»A-i p) 

A9 (ff A (oi V p))Rff 

A10 («y A (p A -y))R((a A p) A y) 

All (ff V ( - , a A ( a V p))R(a V p) 

A12 (-IFF A a ) R ( ( n a A ff) A p ) 

A13 (-iff V p) -^(ff-^ (ff - +
1 P ) ) 

Let Bq be the set of tautologies of the form Al to A13. 

Lemma: A set of formulae containing Bq is closed under R^ iff it is 

closed under R . 

3. Using the well-known technique of Lindenbaum-Tarski algebras we 

prove that the tautologies Al to A13 together with the rule of 

inference R^ give an axiomatization of our logic. 

For an arbitrary set M ^ F let P . M be the smallest set S c F 
— 1 — 

containing M and closed under R^, i.e. satisfying: if ff(E S 

and —iff Vp€ S resp . ff ~\p€ S then p € S. 

We define a relation p in F by ffpp iff ffRp^r^BQ. 

In the following Lemma ff/p is the equivalence class of ff modulo 

p for Q£F. 

Lemma: p is a congruence relation in ÏF. The quotient 2r/p is an 
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OML. For every formula c*€f it is 

o^FqBq iff or/p = 1. 

By the Lemma of 2. and the preceeding Lemma we have 

Theorem: = T = 

4 . For a set A of formulae define mod A to be the class of all 

orthomodular lattices L in which all formulae Q€A are valid. For 

a class ft of OML define form ft to be the set of all formulae 

a which are valid in all L^ft. Then the pair (mod, form) is a 

Galois-correspondence, i.e. the following rules hold: 

if A^ Ç A^ then mod k^ ^ mod A^ 

if c= ft2 then form ft2 c form 

A ^ form (mod A) 

ft c mod (form ft) 

We define an intermediate OM-logic to be a set A of formulae 

which is closed under this Galois-correspondence, i.e. satisfies 

A = form(mod A). 

Theorem: A set M of formulae is in intermediate logic iff it contains 

Bq and is closed under substitution and the rule R^ or R^. 

Corollary: For every set A of formulae: 

r 0 ( B Q U A ) = form (mod A) = r (B U Â ) . 

Here A is the set of formulae (3 for which there exists a formula 
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a£A and an endomorphism cp of p such that (Ï = cp(a') . 

To determine the closed classes $ of orthomodular lattices 

under the Galois-correspondence above we note first that all classes 

Jl of the form $ = mod A form some set A C F are obviously 

equational classes. Using standard techniques of universal algebra 

it is not difficult to prove the converse. Thus our theory of inter-

mediate logics is equivalent with the equational theory of orthomodular 

lattices. 

With respect to the other possible rules of inference we can prove 

Theorem: There exists a set of formulae A which is closed under 

substitution, under F . ( 2 < i ^ 5) and which contains T, but for 

which A form(mod A) . 

The deduction theorem fails to hold in the OM-logic: 

Theorem: There exist formulae a , (3 in F such that p6F^ (TUf a] ), 

but (o> - T and T. 

Department of Mathematics 

Pennsylvania State University 

University Park, Pa. 16802 
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P r o c . U n i v . of H o u s t o n 
L a t t i c e Theory C o n f . . H o u s t o n 1973 

O R D E R I N G U N I F O R M C O M P L E T I O N S OF P A R T I A L L Y 

O R D E R E D SETS 

R . H . R e d f i e l d 

W e give h e r e a d i s c u s s i o n and s u m m a r y of results w h o s e p r o o f s w i l l 

a p p e a r e l s e w h e r e [6]. 

The f a m i l i a r c o n s t r u c t i o n of the r e a l n u m b e r s from the r a t i o n a l 

n u m b e r s via C a u c h y s e q u e n c e s w a s p u t i n t o its f i n a l form b y C a n t o r [ 2 ] . 

In the 1930's,. W e i l [8] - an a l t e r n a t e view is T u k e y ' s [7] - s h o w e d that 

the e s s e n c e of this p r o c e s s w a s a certain s i m i l a r i t y b e t w e e n n e i g h b o u r h o o d 

systems of d i f f e r e n t p o i n t s . In p a r t i c u l a r , a H a u s d o r f f u n i f o r m space in 

the sense of [l] can be "completed" by a p r o c e s s w h i c h m i m i c s the C a u c h y 

s e q u e n c e c o n s t r u c t i o n m e n t i o n e d a b o v e , of the reals from the r a t i o n a l s . 

B o t h the real n u m b e r s and the r a t i o n a l n u m b e r s are (additive) g r o u p s , 

a n d , in f a c t , the r a t i o n a l n u m b e r s are u s u a l l y c o n s i d e r e d as a s u b g r o u p of 

the real n u m b e r s . It is w e l l known (see, for e x a m p l e , [4]) t h a t this 

e x t e n s i o n of the g r o u p o p e r a t i o n can b e done in the m o r e g e n e r a l case of 

H a u s d o r f f u n i f o r m s p a c e s , p r o v i d e d that the u n i f o r m s t r u c t u r e and the g r o u p 

s t r u c t u r e are s u f f i c i e n t l y i n t e r t w i n e d . S p e c i f i c a l l y , o n ' a n y H a u s d o r f f 

g r o u p w i t h continuous g r o u p o p e r a t i o n s , there are s e v e r a l n a t u r a l u n i f o r m i -

t i e s , at least one of w h o s e c o m p l e t i o n s can always b e e n d o w e d w i t h a g r o u p 

m u l t i p l i c a t i o n w h i c h e x t e n d s the o r i g i n a l o p e r a t i o n . 

Now the real n u m b e r s and the r a t i o n a l n u m b e r s are n o t only g r o u p s , 

b u t totally o r d e r e d groups as w e l l . It seems r e a s o n a b l e , t h e r e f o r e , to ask 

for c o n d i t i o n s w h e r e b y the order s t r u c t u r e of a p a r t i a l l y o r d e r e d set w i t h 
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H a u s d o r f f u n i f o r m i t y m a y b e e x t e n d e d t o the u n i f o r m c o m p l e t i o n of t h e s e t . 

A s in the c a s e of g r o u p s , i t s e e m s i n t u i t i v e l y c l e a r t h a t s o m e s o r t of 

c o n n e c t i o n b e t w e e n the o r d e r s t r u c t u r e a n d the u n i f o r m s t r u c t u r e m u s t b e 

a s s u m e d t o e n s u r e a s a t i s f a c t o r y e x t e n s i o n . T h a t c o n n e c t i o n is p r o v i d e d 

b y the i d e a of a u n i f o r m o r d e r e d s p a c e . This c o n c e p t w a s i n t r o d u c e d b y 

N a c h b i n [5] w h o u s e d i t t o i n v e s t i g a t e the r a m i f i c a t i o n s of c o m p l e t e 

r e g u l a r i t y on o r d e r e d s e t s w i t h u n i f o r m i t i e s . 

T o d e f i n e u n i f o r m o r d e r e d s p a c e s , w e n e e d a little n o t a t i o n a n d a 

d e f i n i t i o n : L e t X b e a s e t ; as u s u a l , l e t 

A ( X ) = {(x,x) € x x x | x ( X } 

b e the d i a g o n a l o f X . A s e m i - u n i f o r m s t r u c t u r e on X is a f i l t e r 3 on 

X X X s u c h t h a t 

(i) for a l l V € 7, A (X) £ V ; 

(ii) for a l l V € J", t h e r e e x i s t s U € 7 s u c h t h a t U°U £ V . 

T h u s a s e m i - u n i f o r m s t r u c t u r e is a l m o s t a u n i f o r m i t y : i t l a c k s o n l y a 

s y m m e t r i c b a s e . T h i s r e q u i r e m e n t m a y b e a d d e d b y c o n s i d e r i n g 

7 * = {u fl v " 1 | u , v f J } . 

I t is e a s y t o s e e t h a t 7* is a u n i f o r m i t y , w h i c h w e c a l l t h e u n i f o r m i t y 

g e n e r a t e d b y 3 . 

L e t (P, 5) b e a p a r t i a l l y o r d e r e d s e t . L e t 

G ( < ) = {(x,y) £ P x p | x < y } 

b e the g r a p h o f A n e a r l y u n i f o r m o r d e r e d s p a c e is a p a r t i a l l y o r d e r e d 
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set (P, "S) with Hausdorff uniformity U such that there exists a semi-

uniform structure J on P satisfying J* = U and fl 3 £ G(5) . A 

uniform ordered space [5] is a nearly uniform ordered space with a semi-

uniform structure 3 satisfying the conditions for a nearly uniform 

ordered space (7* = U, fl G(<)) and additionally fl Jc G(5) . 

Every nearly uniform ordered space is locally convex, and there exist 

nearly uniform ordered spaces which are not uniform ordered spaces. Thus 

the concepts of partially ordered set with Hausdorff uniformity, nearly 

uniform ordered space, and uniform ordered space are distinct. In the 

totally ordered case, however, nearly uniform ordered spaces and uniform 

ordered spaces are the same. 

Since nets are usually easier than filters to use where relations on 

sets are concerned, we will express our ideas and results in terms of nets 

rather than filters. This convention will be simplified by restricting 

ourselves to a single domain as follows: Let (Y, U) be a Hausdorff 

uniform space. Let (Y, U) be the completion of (Y, U) at U. Let 

y Ç Y and let { y r | 6 € A } c y be a Cauchy net converging to y. If 
o ~~ 

IJS is the set of symmetric entourages of U directed downwards, then there 

I s s 
exists a Cauchy net {x y | U € U } £ Y , with domain U , such that (Xy) 

converges to y and such that, as subsets of Y , (Xjj) £ 

Let (P, U) be a nearly uniform ordered space, with completion 

rv <v 
(P, U) at U. We might reasonably expect the following definition to 

extend the order on P to P ; x < y if and only if for each Cauchy 

net {Xy} £ p converging to x, there exists a Cauchy net {y^j} £ p 

^ S 
converging to y such that x y < for all U Ç U . However, this 

f>* 
relation, which we call the strong order on P , does not necessarily 
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e x t e n d t h e o r i g i n a l o r d e r : the c o n d i t i o n t h a t x ^ < is t o o r e s t r i c t i v e . 

T h u s w e are l e d t o w e a k e n t h i s d e f i n i t i o n as f o l l o w s : L e t 7 b e a s e m i -

u n i f o r m s t r u c t u r e for P s u c h t h a t J * = U and fl J" ^ G (S) . T h e n x y 

i f a n d o n l y if for e a c h C a u c h y n e t fey} £ p c o n v e r g i n g to x , a n d for 

e a c h V £ J , t h e r e e x i s t s a C a u c h y n e t { y ^ £ p c o n v e r g i n g to y s u c h 

g 

t h a t (x , y ) € V for a l l U ( U . (We c a l l t h i s r e l a t i o n the J - o r d e r 

on P.) T h u s , if (P, U , 5) is a u n i f o r m o r d e r e d s p a c e , and if 1 is a 

s e m i - u n i f o r m s t r u c t u r e for P s u c h t h a t J* = U a n d 0 7 = G(5) , t h e n 

x y m e a n s t h a t f o r e v e r y n e t { x ^ } £ P c o n v e r g i n g to x , w e can find 

n e t s { y ^ } £ P c o n v e r g i n g t o y w h i c h are as c l o s e as w e w a n t t o b e i n g 

(pointwise) g r e a t e r t h a n o r e q u a l to { x ^ } . 

F o r e v e r y n e a r l y u n i f o r m o r d e r e d s p a c e , t h e s t r o n g o r d e r a n d t h e 

o r d e r s are p a r t i a l o r d e r s on P . C l e a r l y G « ) £ G . F u r t h e r m o r e , 

if (P, U , <) is a u n i f o r m o r d e r e d s p a c e , then G(5) = GiSj) fl (P><P) 

for a n y J - o r d e r 5 j . A l s o , any «7-order m a k e s the u n i f o r m c o m p l e t i o n 

o f a n e a r l y u n i f o r m o r d e r e d space i n t o a u n i f o r m o r d e r e d s p a c e . 

N o w t h e u n i f o r m c o m p l e t i o n of a H a u s d o r f f u n i f o r m s p a c e (X, (J) is "free" 

in the s e n s e t h a t i t s a t i s f i e s the f o l l o w i n g u n i v e r s a l m a p p i n g p r o p e r t y [l]: 

If (Y, 10 is any c o m p l e t e H a u s d o r f f u n i f o r m s p a c e , a n d i f f is a n y 

u n i f o r m l y c o n t i n u o u s f u n c t i o n from (X, U) to (Y, V), then t h e r e e x i s t s 

a u n i q u e u n i f o r m l y c o n t i n u o u s f u n c t i o n f from the u n i f o r m c o m p l e t i o n 

(X, U) of (X, U), to (Y, V) such that the diagram 

(X, U) > ( X , 0) 
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c o m m u t e s , w h e r e i is the c a n o n i c a l e m b e d d i n g of X i n t o X . In o t h e r 

w o r d s , the u n i f o r m c o m p l e t i o n p r o v i d e s an a d j o i n t to the f u n c t o r w h i c h 

e m b e d s the c a t e g o r y of c o m p l e t e H a u s d o r f f u n i f o r m s p a c e s in t h e c a t e g o r y 

of H a u s d o r f f u n i f o r m s p a c e s . 

If w e h o p e to a c h i e v e a s i m i l a r p r o p e r t y for t h e o r d e r e d c a s e , w e 

m u s t b e a b l e to p i c k o u t a p a r t i c u l a r s e m i - u n i f o r m s t r u c t u r e w i t h w h i c h 

t o d e f i n e an J'-order. W e can d o t h i s as f o l l o w s : L e t U b e a H a u s d o r f f 

u n i f o r m i t y on a p a r t i a l l y o r d e r e d s e t (P, 5 ) . L e t 

y ( U ) = {V Ç U | t h e r e e x i s t V ^ V 2 , . . . € U 

s u c h t h a t V = a n d for a l l n , 

V => G C S ) a n d V °V ^ c v } . 
n — n + 1 n + 1 — n 

T h u s U) c o n s i s t s of a l l t h o s e e n t o u r a g e s w h i c h c o u l d c o n c e i v a b l y b e 

m e m b e r s o f a s e m i - u n i f o r m s t r u c t u r e w h i c h g e n e r a t e s U a n d w h o s e i n t e r -

s e c t i o n c o n t a i n s t h e g r a p h o f T h e n for e v e r y (nearly) u n i f o r m o r d e r e d 

s p a c e , J"(U) i s the u n i q u e m a x i m a l s e m i - u n i f o r m s t r u c t u r e s a t i s f y i n g 

(D J(U) £ G(<) ) H J(U) = G ( < ) a n d 7(M) * = U . F u r t h e r m o r e , i f e is t h e 

e m b e d d i n g f u n c t o r of the c a t e g o r y o f c o m p l e t e u n i f o r m o r d e r e d s p a c e s i n t o 

the c a t e g o r y o f u n i f o r m o r d e r e d s p a c e s , b o t h w i t h u n i f o r m l y c o n t i n u o u s 

o r d e r - p r e s e r v i n g f u n c t i o n s , t h e n the f u n c t o r ê , w h i c h t a k e s a u n i f o r m 

'V 'Y 

o r d e r e d s p a c e (P, U f <) t o (P, U , S j ^ ) a n d a u n i f o r m l y c o n t i n u o u s 

f u n c t i o n to its u n i q u e u n i f o r m l y c o n t i n u o u s e x t e n s i o n , is a d j o i n t t o e . 

T h e s t r o n g o r d e r is c l e a r l y e a s i e r t o w o r k w i t h t h a n any o f t h e X -

o r d e r s ; so it is o f i n t e r e s t t o e n q u i r e w h e n the s t r o n g o r d e r is e q u i v a l e n t 

to s o m e b o r d e r (and thus t o the J i U ) - o r d e r ) . It t u r n s o u t t h a t i f 
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(P, U, <) is a nearly uniform ordered space which satisfies 

(M) for all V Ç U, there exists W € U 

such that W°G(<) £ G (5)OV , 

then the strong order is equivalent to the 7(11)-order. This condition (M) 

will in fact be satisfied for certain semilattices, lattices, and ^-groups. 

We would hope that the extension procedure outlined thus far would take 

lattices to lattices and ^-groups to ^-groups. As long as the various opera-

tions are sufficiently well-behaved with respect to the uniform structure, 

this does indeed happen. Specifically, we say that a join-semilattice 

(L, V) with Hausdorff uniformity (J is a j-uni form semilattice in case V 

is uniformly continuous with respect to U. A uniform lattice (L, V, A, LI) 

is defined similarly, with both operations uniformly continuous. Then a 

j-uniform semilattice (L, V, U) is a uniform ordered space satisfying 

condition (M), and furthermore, the strong order on its uniform completion 

iv /v rv 

L is the unique partial order on L such that L is a join-semilattice, 

L is a join-subsemilattice of L , and the join on L is uniformly continu-

ous. A similar result holds for uniform lattices. 

The case for ^-groups answers most of a question raised by Conrad in 

[3]. (It was this question which led the present author to consider the 

general problem in the first place.) Consider an abelian £-group with Hausdorff 

group and lattice topology 3 . Is the strong order on the completion B 

of B at the usual uniformity the minimal lattice order on B such that 

B is an abelian £-group, the positive cone of B contains the positive 

cone of B , and the lattice operations on B are continuous? With one 
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assumption, some of our previous results may be used to give an affirmative 

answer in the following more general situation: Let B be an £-group with 

Hausdorff group and lattice topology 3". Let B be its completion at one of 

the usual uniformities associated with if a t least one of the lattice 

«V 

operations on B is uniformly continuous, then the strong order on B is 

the minimal lattice order on B whose graph contains that of < and whose 

join is continuous. Furthermore, if B is a group (at least one of whose 

lattice operations is uniformly continuous) , then ( B , 0 is an &-group. 

The assumption of uniform continuity of at least one of the lattice 

operations is not at all stringent. In fact, for an &-group B with group 

and lattice topology 3>, the following statements are equivalent: 

(i) V is uniformly continuous with respect to the right, left or 

two-sided uniformity; 

(ii) A is uniformly continuous with respect to the right, left or 

two-sided uniformity; 

(iii) the topology on B is locally convex. 

In the non-locally convex case, it is difficult to see intuitively how to 

order the completion, and thus a requirement of local convexity does not 

really restrict the cases that one might expect to consider. 
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P L A N A R L A T T I C E S 

R o b e r t W . Q u a c k e n b u s h ^ 

T h i s paper p r e s e n t s a b r i e f survey of r e s u l t s a b o u t f i n i t e p l a n a r 

l a t t i c e s . U n l e s s o t h e r w i s e s t a t e d , all l a t t i c e s in this paper are f i n i t e . 

A n y o n e b e g i n n i n g the study of lattice t h e o r y q u i c k l y learns that 

it is i m p o r t a n t to be a b l e to draw a p i c t u r e of a l a t t i c e ; i.e. the H a s s e 

d i a g r a m of a l a t t i c e . O n c e h e h a s b e c o m e s k i l l e d in d r a w i n g l a t t i c e d i a g r a m s 

h e soon n o t i c e s that w h e n e v e r the d i a g r a m is p l a n a r h e h a s indeed d r a w n a 

lattice. T h a t is, he does n o t h a v e to c h e c k that all l . u . b . ' s and g . X . b . ' s 

e x i s t . T h i s h e u r i s t i c p r i n c i p l e can be f o r m a l i z e d as a t h e o r e m . T h e 

f o l l o w i n g f o r m u l a t i o n is due to H a r r y L a k s e r . 

F i r s t w e give a formal d e f i n i t i o n of the d i a g r a m of a p o s e t . L e t 

P be a p o s e t on the n e l e m e n t set [ p ^ , P n ] • A d i a g r a m of P is 

a set of n p o i n t s in the (x, y)-plane,, (x^, y ^ ) , ( x
nJ> y R ) ? t o g e t h e r 

w i t h c e r t a i n arcs b e t w e e n these p o i n t s such that: 

a) If p . c o v e r s p . then y. > y . and there is an a r c , a . . , 
i J i J Ji 

w h i c h is the g r a p h of a c o n t i n u o u s f u n c t i o n of y w i t h d o m a i n [y^, y^] , 

w i t h a . . ( y . ) = x. and a . . ( y . ) = x . and w i t h n o other p o i n t , (x. , y, ) , 
ji i i ji j j * • ' v k ' J W * 

lying on a . . . 
Ji 

b ) T h e r e are no other arcs than those of c o n d i t i o n a). 

P is p l a n a r if it h a s a p l a n a r d i a g r a m (i.e. any two arcs i n t e r s e c t o n l y at 

'c 

T h e p r e p a r a t i o n of this paper w a s s u p p o r t e d b y a g r a n t f r o m the N a t i o n a l 

R e s e a r c h C o u n c i l of C a n a d a . 
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an e n d p o i n t ) . E a c h arc can be thought of as d i r e c t e d from its b o t t o m end 

p o i n t to its top e n d p o i n t . A path is an a s c e n d i n g s e q u e n c e of c o n n e c t e d a r c s , 

i.e. a set of arcs f o r m i n g the graph of a c o n t i n u o u s f u n c t i o n of y . T h u s 

p . < p . if and o n l y if there is a p a t h from (x., y.) to (x., y.) . 
J J J 

T h i s d e f i n i t i o n of the d i a g r a m of a p o s e t is a r e a s o n a b l e approxi-

m a t i o n to the w a y one d r a w s p o s e t s . It h a s the a d v a n t a g e that the proof of 

the t h e o r e m u s e s o n l y the i n t e r m e d i a t e v a l u e theorem for c o n t i n u o u s f u n c t i o n s 

r a t h e r than some v e r s i o n of the J o r d a n curve theorem. W h e n d r a w i n g the d i a g r a m 

of w h a t one h o p e s is a l a t t i c e , there is an o b v i o u s c o n d i t i o n to be satisfied: 

a v o i d d a n g l i n g p o i n t s . M o r e p r e c i s e l y , there m u s t be e x a c t l y one p o i n t w h i c h 

is n o t the lower e n d p o i n t of an arc (the u n i t ) and e x a c t l y one p o i n t w h i c h is 

n o t the upper e n d p o i n t of an arc (the z e r o ) . L a k s e r ' s t h e o r e m states that if 

the d i a g r a m is p l a n a r then this n e c e s s a r y c o n d i t i o n is s u f f i c i e n t for the 

p o s e t to be a l a t t i c e . 

T h e o r e m : L e t P be a finite p o s e t w i t h a p l a n a r d i a g r a m ; if there 

is at m o s t one e l e m e n t of P w h i c h h a s no cover and at m o s t one e l e m e n t w h i c h 

c o v e r s no p o i n t then P is a l a t t i c e . 

S k e t c h of the p r o o f : Since P is finite the "at most" in the state-

m e n t is e q u i v a l e n t to " e x a c t l y " ; these p o i n t s are n e c e s s a r i l y the unit and zero 

of the p o s e t . N o w let p ^ , p ^ , P ^ J P ^ be four p o i n t s of P such that 

< P 3 ' < P 4 ' P 2 < < ' T ° thât ^ is a lattice it is 

s u f f i c i e n t to show that there is a p o i n t p,. of P w i t h p^ ^ p,_ , p ^ ^ p ^ , 

PJ. ^ p ^ , p,. ^ p ^ (and so w e m a y as w e l l a s s u m e that p^ is not c o m p a r a b l e to 
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p^ and p^ is not comparable to p^) . Thus we have paths 

V A> a2 3•> /, (where a. # goes from (x , y ) to (x , y )) . We 

can also find points p ? such that p & < p ^ p 6 < p 2 , p 3 < p ? , p 4 < p ? 

and such that the paths a' and a 0 intersect only at (x , y ) and 
6,1 6,2 6 6 

the paths o1- 7 and cv, 7 intersect only at (x , y ) . Using planarity and 
J ̂  / H ̂  / / / 

the intermediate value theorem for continuous functions, a case by case analysis 

shows that such an element p,. must exist. 

Now let us turn to the problem of characterizing planar lattices. 

For distributive lattices this characterization is well-known. A distributive 

lattice is planar iff it is a sublattice of a direct product of two chains iff 

it does not contain the eight element boolean lattice as a sublattice iff no 

element covers more than two other elements iff no element is covered by more 

than two other elements iff it does not contain the poset of figure 1 as a sub-

poset. For modular lattices the following characterization is due to 

Rudolf Wille [1]. Recall that an element of a lattice is doubly irreducible if 

it cannot be written as a proper meet or a proper join. 

Theorem: A modular lattice FU is planar iff ftï - {d 6 Hï|d is 

doubly irreducible} is a planar distributive lattice iff ÎTl does not contain 

any of the posets of figures 1 and 2 as a subposet. 

For lattices in general there is no finite set of posets which can be 

used to test planarity. In fact, planarity for lattices is not a first order 

property. This result is due to K. Baker, P. Fishburn, and F. Roberts [2] . 

To see this, consider the fence posets of figure 3 and the crown posets of 
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figure 4. Adding a zero and unit to each turns them into lattices. Notice 

that the fence lattices are planar but that the crown lattices are not planar. 

In [2] it is pointed out that an appropriate ultraproduct of fence lattices 

is isomorphic to an appropriate ultraproduct of crown lattices. Since ultra-

products preserve first order properties, planarity cannot be a first order 

property. In particular, there is no finite list of posets such that planar 

lattices are characterized by the absence of these posets as subposets. 

Problem 1: Is there a finite list of posets which test planarity 

in the variety generated by N ^ ? 

Problem 2: Is there a finite list of families of posets which tests 

planarity for all lattices? (The set of crowns would likely be a family in 

this list). 

It seems clear that there ought to be some nice connection between 

planar lattices and planar graphs. Such a connection has been found by 

Craig Piatt [4]. If £ is a lattice (with 0 as zero and 1 as unit) then 

G(£) , the graph of £ , has the same points as £ and has a directed edge 

from x to y if and only if x is covered by y ; G*(<£) , the augmented 

graph of £ , is G(£) together with a directed edge from 1 to 0 . 

Theorem (C.R. Piatt): £ is a planar lattice iff G* (£) is a planar 

graph. 

Sketch of the proof: If £ is a planar lattice then clearly 

G*(<£) is a planar graph. Conversely suppose GVf(<£) is a planar graph. N o t e 

that we may assume that the edge from 1 to 0 is on the outside of the graph. 
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Consider the other outside path from 0 to 1 : 0, x- . . . . . x , 1 . An 
1 n 

induction argument proves that the path is directed in the order given; that 

is, in Z x^ covers 0 , x ^ + covers x^ for i = 1, n - 1 , and 1 

covers x
n • Another induction argument shows that one of the x^'s is doubly-

irreducible. Finally an induction on the size of Z is made using the 

statement: If |<£ \ = m , G*(Z) is planar with 0, x^, x , 1 an outside 

path from 0 to 1 then Z is planar and can be drawn with straight lines so 

that 0, x^, x^, 1 is an outside path in the diagram of Z . 

Corollary: Every planar lattice has a planar diagram in which all 

arcs are straight lines. 

Planar lattices form a subclass of the class of dismantlable lattices. 

A lattice is dismantlable if every sublattice contains a doubly irreducible 

element. More picturesquely, a lattice is dismantlable if one can keep throwing 

away doubly irreducible elements until nothing is left. Every planar lattice 

has a doubly irreducible element (see [2]) and a sublattice of a planar lattice 

is planar. Hence planar lattices are dismantlable. A recent result of David 

Kelly and Ivan Rival proves that dismantlable lattices are characterized by 

the absence of crowns. 

Theorem [3]: A lattice is dismantlable if and only if it contains 

no crown poset as a subposet. A modular lattice is dismantlable if and only 

if it does not contain the crown of order 3 (i.e. figure 1) as a subposet. 

A distributive lattice is dismantlable if and only if it is planar. 
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All the material above refers to finite lattices; however it is often 

the case that one needs an infinite lattice for a particular problem. Thus it 

would be useful to have analogs of the above results (especially Lakser's 

theorem) for infinite planar lattices. 

Problem 3: Develop a theory of infinite planar lattices. 

Figure 4: The crown of order m (m ^ 3) 
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P r o c . U n i v . of H o u s t o n 

L a t t i c e T h e o r y C o n f . . H o u s t o n 1 9 7 3 

TIGHT R E S I D U A T E D M A P P I N G S 

by Erik A . S c h r e i n e r 

1. I n t r o d u c t i o n . In this note we examine the c o n n e c t i o n 

b e t w e e n certain residuated m a p p i n g s on a complete lattice 

and the p r o p e r t y of complete d i s t r i b u t i v i t y . A map T:L >M 

is residuated with T + as its residual if and only if the 
+ & 

p a i r (T,T ) forms a Galois connection b e t w e e n L and M , the 

dual of M . With this in mind we consider tight r e s i d u a t e d 

mappings which c o r r e s p o n d w i t h the tight Galois connections 

introduced by G. N . Raney [7]. Since Res(L) is a semigroup 

and a complete l a t t i c e , we are able to compose and join 

tight r e s i d u a t e d maps to extend the result of R a n e y . 

In p a r t i c u l a r , we are able to characterize all complete 

h o m o m o r p h i s m s with completely d i s t r i b u t i v e i m a g e s . I n d e e d , 

for any l a t t i c e , we p r e s e n t a m e t h o d for finding the largest 

such complete h o m o m o r p h i s m . 

Tight residuated mappings a b o u n d . They are the p o i n t w i s e 

join in Res(L,M) of certain b a s i c tight m a p p i n g s w h i c h , by 

their s i m p l i c i t y , help to illuminate w h a t is o c c u r i n g . In 

view of the fact that it is p o s s i b l e to construct a tight 

r e s i d u a t e d map on an atomic B o o l e a n lattice w h o s e image is 

n o n m o d u l a r , it is n e c e s s a r y to ask w h i c h tight m a p p i n g s lead 

to a connection with complete d i s t r i b u t i v i t y and w h i c h b a s i c 

tight mappings are the key o n e s . The answers a r e , r e s p e c t i v e l y , 

idempotent tight maps and decreasing b a s i c tight m a p s . 
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The image of an idempotent tight residuated map is com-

p l e t e l y d i s t r i b u t i v e . C o n v e r s e l y , if the image of an ar-

b i t r a r y r e s i d u a t e d map is completely distributive then one 

may find a tight idempotent w i t h the same image. This is 

used to show that the completely distributive lattices are 

b o t h injective and p r o j e c t i v e in the category of complete 

lattices with residuated m a p p i n g s . F i n a l l y , the consider-

ation of idempotent basic tight maps leads to some simple 

p r o o f s of certain w e l l - k n o w n results concerning atomic 

B o o l e a n l a t t i c e s . 

2. B a s i c tight r e s i d u a t e d m a p s . In this paper we consider 

only complete l a t t i c e s . A map T:L >M is called residuated 

if the inverse image of every p r i n c i p a l ideal is a p r i n c i p a l 

ideal. With complete l a t t i c e s , this is equivalent to b e i n g 

a complete join h o m o m o r p h i s m . The b a s i c properties and 

facts concerning residuated maps may be found in the book of 

Blyth and Janowitz [1]. Let Res(L,M) denote the set of all 

r e s i d u a t e d maps from L to M and Res(L) = R e s ( L , L ) . Both 

are complete lattices under p o i n t w i s e order while the latter 

is also a Baer s e m i g r o u p . 

Z. Shmuely [8] has e s t a b l i s h e d a one-one correspondence 

b e t w e e n R e s ( L , M ) and relations y G LxM which satisfy: 

(1) (a,b) £ y , x £ a, y >_ b implies (x.y) € y . 

(2) y is a complete sublattice of L * M . 
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For such a y (called a G - r e l a t i o n ) the map T(a) = A ^ b | (a,b) € 

is the associated residuated m a p . For a given T € R e s ( L , M ) , 

The set a(T) = ^ ( a , b ) | T ( a ) < b ^ i s the c o r r e s p o n d i n g G - r e l a t i o n . 

T h e n 9 + 

Let 9 s LxM and define 

6 + = ^ ( x , y ) | for each (a,b) € e, x £ a or y >_ b ^ . 

is a G - r e l a t i o n . R a n e y [7] defined his tight Galois con-

nections in terms of relations of the form 0 + . (We h a v e ad-

justed for the n e c e s s a r y d u a l i z a t i o n . ) 

D e f i n i t i o n 1. A map T £ Res(L,M) is tight if there exists a 

6 a LxM such that a(T) = 0 + . 

Let 0 = . Then the tight map E ^ o b t a i n e d from 0 + is 

called a b a s i c tight map and is defined by: 

o (o x < g 
E ^ (x) = 

(h otherwise 

These maps are either n i l p o t e n t (if h ;< g) or idempotent 

(if h I g) . 

T h e o r e m 2 (Shmuely) . T € Res(L , M ) _is tight if and only if 

T = V ^ E ^ | (g,h) € for gome 0 c L x M . 

Proof: a(T) = 0 £ a( Ej>) | (g,h) € e J = a ( V | ( g > h ) 6 ^ ) , 

+ 
w h e r e T is defined by 0 . 

Thus we focus our attention on b a s i c tight m a p s . The 

set of b a s i c tight m a p s . The set of b a s i c tight maps and 
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the set of all tight maps both form two sided ideals of 

the semigroup R e s ( L ) . H e n c e (ii) and (iii) are equivalent 

in the following theorem [7, Theorem 4]. 

T h e o r e m 3 (Raney). The following conditions are m u t u a l l y 

e q u i v a l e n t : 

(i) L is^ completely d i s t r i b u t i v e . 

(ii) The identity map in Res (L) i_s tight. 

(iii) A l l T in Res(L) are t i g h t . 

It has come to my attention that I). M o w a t [4] in his thesis 

c o n s i d e r e d b a s i c tight maps (under the name "two point 

s.p. maps") and derived a similar result. 

3. D e c r e a s i n g basic tight m a p s . A map T € Res(L) is decreas ing 

if T(x) £ x for all x € L. A b a s i c tight map E^ is decreasing 

if and only if the ordered pair (a,b) satisfies the condition; 

x j_ a implies x >_ b . Call such a pair (a ,b) a decreas ing 

p a i r . Pairs of the form (1,b) and (a,0) are always trivial 

decreasing p a i r s . The map E^ = 0 iff ( a ,b) is trivial. Let 

= 32 CL) = j ^ ( a , b ) (a,b) a n o n t r i v i a l decreasing pair on L ^ 

A central role in our study is p l a y e d by maps of the form: 

F = (a,b) € B 2 ] . 

As u s u a l , if is empty F is the zero m a p . Note that F 

is a tight decreasing map in R e s ( L ) . 
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In terms of our b a s i c tight decreasing maps we have the 

following critical result of Raney [7, T h e o r e m 5], 

Lemma 4. L is completely distributive if and only if 

x i. y implies there exists a decreasing E^" in Res(L) w i t h 

b ( x ) = b > E b E ? (x) = b , E ^ (y) = 0 and b { y . 

Theorem 5. L is completely distributive if and only if 

the map F = v^E* | (a,b) € = i L in_ Res (L) . 

Proof: S u f f i c i e n c y follows from T h e o r e m 3. N e c e s s i t y is 

e s t a b l i s h e d using Lemma 4. 

As we are interested in maps of the form of F a b o v e , the 

relation $ 2 may contain surplus p a i r s . If^(a^,b)| i £ s $ 2 

and a = A a ^ , then (a,b) € B 2 and E ^ dominates the other as-

sociated b a s i c m a p s . S i m i l a r l y , if^Çajb^) | i € $ 2 and 

b = v b i , then (a,b) € 3 2 w i t h E ^ again an upper b o u n d . The 

resulting pair (a,b) in either case m a y be called a m i n i m a x 

p a i r . Let 3 X = 3-^CL) = ^ ( a , b ) € J (a,b) is minimax^ . N o t e 

that v j ^ | ( a , b ) e = v | (a,b) € 3 ^ . The m a p p i n g s 

e l i m i n a t e d in our transition from 1 : 0 $1 w e r e all n i l p o t e n t maps 

We are p r i m a r i l y interested in maps of the form 

v ^ E ^ | (a,b) € 0 £ $ ^ w h i c h are i d e m p o t e n t . This w i l l always 

be the case if all the E ^ are i d e m p o t e n t . H o w e v e r , the 

elimination of all n i l p o t e n t s is too drastic a step in the 
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q u e s t for an i d e m p o t e n t j o i n . For if L is the c l o s e d 

u n i t i n t e r v a l [0,1] of the r e a l n u m b e r s u n d e r the u s u a l 

o r d e r , then L is c o m p l e t e l y d i s t r i b u t i v e . The m i n i m a x 

d e c r e a s i n g p a i r s are all of the form (b,b) w h e r e b € (0,1 ) . 

is 
r D ' r J 

the i d e n t i t y map on L . 

uci-icaoiJig JJCII i J dit; a. JL <J jl UJIC i ui m y u f u j iviici t; u — ̂  

T h u s a l l m a p s E ^ are n i l p o t e n t y e t V ^ b € (0,l)^j i 

In o r d e r to e l i m i n a t e the p r o b l e m s p r e s e n t e d b y i s o l a t e d 

n i l p o t e n t s in our s t u d y of i d e m p o t e n t tight m a p s we m a k e 

one f i n a l a d j u s t m e n t to our r e l a t i o n . Let 

F = v I (a,b) € . D e f i n e 3 = 3(L) = £ ( a , b ) € ̂  | F(b) 

a 

N o t e that if there are n o n i l p o t e n t d e c r e a s i n g m a p s E ^ , then 

3 = 3-^ b u t n o t c o n v e r s e l y . For the r e m a i n d e r of the p a p e r 

we s h a l l u s e the n o t a t i o n : 

E = V (a,b) 6 3 

W e m a y then r e s t a t e T h e o r e m 5 as : 

L i_s c o m p l e t e l y d i s t r i b u t i v e iff E i_s the i d e n t i t y in Res (L) . 

4. I d e m p o t e n t t i g h t r e s i d u a t e d m a p s . 

L e m m a 6 . For any c o m p l e t e lattice L , E is an d d e m p o t e n t 

d e c r e a s i n g t i g h t m a p in R e s ( L ) . 

F o r an a r b i t r a r y m a p T £ R e s ( L ) , the image T(L) = M has the 

f o l l o w i n g p r o p e r t i e s : 
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(1) 0 ^ M . 

(2) (M,<) is a complete l a t t i c e . 

(3) The join in (M,<)_ is the same as the join in L . 

In general M is not a sublattice of L due to differing m e e t 

o p e r a t i o n s . Given a subset M of L satisfying the above 

p r o p e r t i e s , w h e t h e r one can always find a T € Res(L) w i t h 

T(L) = M is an open q u e s t i o n . The following theorem p r e s e n t s 

a p a r t i a l a n s w e r . (See also M o w a t [4, T h e o r e m 1 7 , page 42] 

for a related result.) 

T h e o r e m 7. Let M be a subset of L s a t i s f y i n g (1), (2) and (3) 

Then there exists an idempotent tight map T € Res(L) w i t h 

T (L) = M if and only if (M,<) is completely d i s t r i b u t i v e . 

Proof: Given a tight idempotent T , the restriction of T to M 

is the identity map and may be shown to be tight as a map 

in R e s ( M ) . Thus (M,<) is completely distributive b y T h e o r e m 3 

C o n v e r s e l y , if (M,<) is completely d i s t r i b u t i v e , the identity 

(a,b) £ 3(M) | . Since each E^ m a y 

trivially be extended to a map in R e s ( L ) , the desired idem-

(a,b) € 3 CM) 

map on M is E ^ = v J E ^ 

p o t e n t in Res(L) is T = v E^ 

1 -

To see that the idempotency of T is e s s e n t i a l , consider 

3 

the Boolean lattice 2_ w i t h atoms a,b,c and respective com-

plements d = a ' , e = b ' , f = c'. The image of the tight map 

T = E ^ v E j v E r is n o n m o d u l a r . 
c a t 
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In the next theorem we combine the fact that the residual 

T + sets up an isomorphism b e t w e e n the image of T and the 

image of T + , appropriate duality and the extension of the 

identity used in T h e o r e m 7. 

T h e o r e m 8. Let T £ Res(L,M) be an onto m a p . If M is 

completely d i s t r i b u t i v e , then T = S'P where P i s a tight 

idempotent in Res(L) and S is_ an i s o m o r p h i s m . 

Proof: The following commutative diagram may be obtained: 

P(L) 

V 

= N-

T 

N 

->M 
/N 

W 

->W = T (M) 

The r e s t r i c t e d maps P 
N 

and T 
W are i s o m o r p h i s m s . 

C o r o l l a r y 9 (Crown [2]) . A completely distributive lattice 

is both inj ective and proj ective in the category of complete 

lattices with residuated m a p s . 

P r o o f : It is enough to show that if M is completely dis-

t r i b u t i v e , for every m o n o m o r p h i s m P € Res(M,L) there is a 

T € Res (L,M) such that T'P = I M . This follows easily from 
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9 

T h e o r e m 7. Thus M is i n f e c t i v e . D u a l l y , or by use of 

T h e o r e m 8, M is p r o j e c t i v e . 

Theorem 10. The map E is_ a complete h o m o m o r p h i s m of L 

onto a completely distributive image. M o r e o v e r , E is_ the 

largest complete h o m o m o r p h i s m w i t h a completely dis -

tributive image. 

Proof: E is a decreasing i d e m p o t e n t , thus a complete homo-

m o r p h i s m by [3, T h e o r e m 3 . 6 ] . Since E is also t i g h t , E(L) 

is completely d i s t r i b u t i v e . 

For any complete h o m o m o r p h i s m onto a completely d i s t r i b u t i v e 

i m a g e , consider the complete congruence © g e n e r a t e d and the 

a s s o c i a t e d lattice L / ^ . The identity map on L/q is g e n e r a t e d 

from pairs (a,b) in 6 ( L / 0 ) . These m a y be p u l l e d back to 

obtain pairs (a,b) in $ ( L ) . The given h o m o m o r p h i s m thus 

was of the form E^ 

E in R e s ( L ) . 
! (a,b) £ 8 c 3(L) { w h i c h is less than 

f a » ) 
I E^ (a,b) c e | is i d e m p o t e n t Thus for each 8 c £ such that v 

w e obtain a complete h o m o m o r p h i s m with c o m p l e t e l y distributive 

i m a g e , and all such h o m o m o r p h i s m s are of this f o r m . If dis-

tinct subrelations of 3 give rise to distinct m a p s , as w i l l 

be the case if there are no n i l p o t e n t s a s s o c i a t e d with 3, 

we have a means of e n u m e r a t i n g such h o m o m o r p h i s m s . 
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We now turn our attention to idempotent basic decreasing 

m a p s . An element b is the image of an idempotent decreasing 

a 

E^ if and only if [b,l] is a completely prime dual i d e a l , 

that is, in Raney's t e r m s , b is a completely j o i n - i r r e d u c i b l e 

e l e m e n t . His result [5, T h e o r e m 2] may thus be stated in 

terms of decreasing m a p s . 

T h e o r e m 11. L is_ isomorphic to a complete ring of sets if 

and only if = E and B(L) contains no n i l p o t e n t p a i r s . 

a 

If L is (dual) s e m i c o m p l e m e n t e d , all decreasing E^ are 

i d e m p o t e n t s . They may be c h a r a c t e r i z e d by the conditions: 

b is an a t o m , a is a dual a t o m , a and b are c o m p l e m e n t s , 

and a is a distributive e l e m e n t . Combining this with the 

p r o p e r t i e s of the map E provides simple proofs of the 

following w e l l - k n o w n r e s u l t s . 

12. A (dual) s e m i c o m p l e m e n t e d completely distributive 

is an atomic Boolean lattice. 

T h e o r e m 13. Any two of the following conditions on a 

complete lattice imply the t h i r d . 

(i) L is_ a t o m i s t i c . 

(ii) L is completely d i s t r i b u t i v e . 

(iii) L is a Boolean lattice. 

T h e o r e m 

lattice 

F i n a l l y , we combine these observations with the remark fol-

lowing T h e o r e m 10. 
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T h e o r e m 14, Let L b̂ e a complete (dual) s emi c o m p l e m e n t e d 

l a t t i c e . Then every c o m p l e t e l y d i s t r i b u t i v e complete 

h o m o m o r p h i c image of L is an atomic Boolean l a t t i c e . 
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Proc. Univ. of Houston 
Lattice Theory Conf..Houston 1973 

On Subalgebras of Partial Universal Algebras 

by A . A . Iskander 

For a partial universal algebra, the projection of a closed subalgebra of 

th th 
its n direct power onto its k diredt power (1 < k < n) is not always a closed 

subalgebra. Partial universal algebras for which this projection of a closed sub-

algebra is always a closed subalgebra are called here (n, k) correct. A similar 

notion of (2, 1) correctness was introduced in [2]. Given any set A , the sub-

algebra systems of (A ;F) n for any set F of partial operations on A was 

described in [4]. In this note w e describe the subalgebra systems for (n, k) 

correct partial universal algebras. Some of the results were announced in [3]. 

By algebras w e shall m e a n partial universal algebras. By a subalgebra 

will always be meant a closed subalgebra. 

Let k, n be integers such that l < k < n . A n algebra A = <(A;F^ is said 

to be (n, k) correct if for any f e F, a...... a s A n such that f(a... ..., a .) v ' ' J ' r ' m v li' ' mi' 

is defined for all 1 < i < k (a . is the i ^ component of a ), there is an m-place 
si s 

polynomial p in F such that p(a^,..., a ) is defined, and P(
a
^ 5 ...»

 a
m j ) 

= f(a, , . „., a .) for all 1 < i < k. A n algebra will be called n-correct if it is x li m i — — 

(n, k) correct for all 1 < k < n. 

It is clear that full algebras are n-correct for all n. Every full [1] homo-

morphic image of an (n, k) correct algebra is also (n, k) correct. The same is 

true for all quotient algebras. Given an (n, k) correct algebra <(A;F), if p is 
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an r-place polynomial in F and a^, ..., a^ e A such that p(a ..., a .) is 

defined for all l < i < . k , then there is an r-place polynomial q in F such that 

q(a 1, ..., a p is defined, and moreover qfa^, ..., a^.) = pfa^, ..., a^.) for all 

1 £ i < k. A n algebra is (n, k) correct iff the projection of any subalgebra of its 

n'*1 direct power is again a subalgebra; it is also sufficient to consider only 

finitely generated subalgebras. It is also evident that any subalgebra of an (n, k) 

correct algebra is also (n, k) correct. A n (n, k) correct algebra is also (n, m ) 

correct for all k < m < n. 

If 1 < k < m < n, then every (n, m ) correct algebra is (n, k) correct. 

In fact if B is a subalgebra of <Â;F,) n and C is the projection of B onto A ^ 

k+1 
(first k components) and D is the projection of B onto A (first k + 1 

components), then A X C is the projection of A X D X A ( n " k - 2 ) onto A k + 1 ; 

k+1 k 
A X C is a subalgebra of A iff C is a subalgebra of A . 

For every k > 0 there is an algebra which is (n, k) correct for all n > k 

and not (n, k+1) correct for any n > k + 1. 

Let A be the set of all positive integers. Set F = {f, g^, g^ where 

all elements of F are unary and all g^,..., gĵ  ^ a r e a n c* domain of defini-

tion is {1,..., k+1) = K . 

f(j)=j if l < j < k 

f (k + 1) = k + 2. 

Denote by K . the complement of {i} in K, 
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g ^ m ) = 

f(m) if m e K . 

1 < i < k + 1. 

ffminK.) if m 
L. x i i 

It is obvious that ^ A j F ^ is (n, k) correct for all n > k. If A were 

(k+2, k+1) correct then there would exist a polynomial p = h • • » h (h .., h s F) 
-1- S X s 

with p((l, 2,..., k, k+1, k+2)) = (1, 2,..., k, k+2, x), (since f((l, 2,..., k, k+1)) is 

defined). Since f is not defined at k + 2 then h = g. for s o m e i. So 
S 1 

(l,2,...,k,k+2,x)= h1(h2(...hs_1(gi«l,2,...,k,k+l,k+2))))...)). But g. identi-

fies two of the first k + 1 components of the tuple and the application of 

h ,..., h will leave these two components equal. Yet 1, ..., k, k+2 are all 
S —• -L X 

distinct. So there is no such p and A is not (k+2, k+1) correct. 

To say that (A;F^> is (n, k) correct is the same as to say that 

is (2n, 2k) correct. Hence direct products of (n, k) correct algebras are not 

always (n, k) correct. 

k n 
A can be injected into A (for n > k) in such a way that the image of 

k n 
A is always a subalgebra of A (e. g., ..., a ^ — (a ..., a ^ ..., a ^ 

k 

is such an injection). Under such an injection every subalgebra of A appears 

as a subalgebra of A n . Thus in an (n, k) correct algebra the injection of the 

projection (onto A k ) of a subalgebra of A n is again a subalgebra of A n . Such 

a condition turns out to be sufficient. This is m o r e precisely m a d e in the following 

definition and l e m m a . 

If a is a nonvoid subset of {1,..., n} and i = min a define [4] : 

n n 
B a = {a : a e A , aj = bj i f 3 4 a, a = b. if j £ a, for some b e B } B A . 
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N JL 

If C<E A denote by [C] the subalgebra of <^A;F} generated by C. 

L e m m a ; <(A;F) is (n, k) correct iff [C]CY = [CA] for all finite nonvoid 
n C e A and for all a { 1, ..., n} with cardinality n - k + 1. 

If s is a permutation on { 1, . .., n} define [4] : 

n n 
B s - { a : a E A , a. = b .. , 1 < i < n for some b e B j . B ^ A . l i -1 . _ _ 

s (i) 

If A is an algebra S (A) is the family of all subalgebras of A . 

Theorem: Let Sçz P(A n). S = S (<A;Fj>n) for some (n, k) correct 

algebra <^A iff: 

n 
(a) S is an algebraic closure system on A 

(b) if B e S , 1 < i < j < n then B(ij) e S 

(d) [C] { 1, 2}c [C{ 1, 2}] for all finite nonvoid C c A n 

o b 

(e) if (jy e S then <p = f> { B : B s S, B 4= (p) 

(f) [Cl {1, . n - k + 1 } = [C{ 1, ..., n-k+1} ] for ail nonvoid finite C ci A*1, 

where [C] is the intersection of all elements of S containing C . 
D 

n 
In [4] it was shown that S = S ) for s o m e partial algebra <^A;F) 

n-2 
iff S satisfies conditions (a), (b), (c), (d), (e), where (c) is a o X A e S is 

A ci 
2 

the diagonal in A ). So the necessity of (a), (b), (d), (e) and (f) follows from this 

result and the l e m m a . The sufficiency will be established once w e show 

Claim: Let r be an integer such that 1 < r < n. If S satisfies (a), (b), (d) 

and 
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(f) [C]s{l,...,r-}= [C{l,...,r}] g 

for all finite nonvoid C <= A N , then A * A*1 2 E S. 
Ci 

By (a) S satisfies (f') for all C c A n . Thus 

[ A 2 X A n ~ 2 ] g { 2 , 3 , . . . , r } ç [ & 2 y A n " 2 ) { 2 , . . . , r } ] g = [ A r x A n ~ r ] g 

But 

[A r X A " ] s{l,...,r}= [ < £ r x A " ){ 1,..., r} ] g = x A n"" r] 

by (f'). Also 

An-r r - > A n r , . ,n-r 
[A r X A ] g{l r } ç A {l,...,r} = A r x A . 

Henee 

An-r An-r ,n-2 
A r X A c [A r x A ] g < E A r

 x A > 

* n-r i.e., A ^ x A e S. So 

[A2 X
 A N

~
2
] S {

2 R
) E [ A R X A

N
~

R
] S = A R X A

N
"

R
. 

n—2 n—2 n—2 
F r o m which w e deduce [a X A ] ç a x A , i. e., a 0 X A e S. 

A o A A 

Corollary: Let Sc=P(A n). S == S (<^A;F>n) for some n-correct algebra 

<A;F> iff S satisfies (a), (b), (e) and 

[C]c{l, 2} = [C{ 1, 2} 1 for all nonvoid finite C c: A n . 
o o — 
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This follows from the theorem since n-correctness is equivalent to (n, n-1) 

correctness and in this case condition (f) implies condition (d). 

2 

There are 2-correct partial algebras <(A;FX for which S (<(A;F^ ) 

2 4 S ( ̂ A;G) ) for any set of full operations G on À . Thus problem 19 of [1] 

for full universal algebras remains open, 

n 

If S cr P(A ) satisfies (a), (b) and (c);then S satisfies (d) iff S satisfies 

(g) if B E S , B Ç A X A N " 2 then A X P R B e S, 
' Là LA • • • XI where pr n B is the projection of B onto the last n-1 components. 

In other words,conditions (a), (b), (c), (e) and (g) give another characterization 

for S « A ; F > n ) . 

Let S satisfy (d). By (a), [C] { 1, 2} <= [C{ 1, 2}] for all C c A ® Let 
S 

n-2 
now B & S , B c A ^ x A 

[(A X pr B)(12)l {l,2}c= [((A X pr B)(12)){ 1, 2}] = [B] Q
 = B. 

Hence 

A X pr B E [ A * P r 2 . . . n B ] s E A x pr B 

i . e . , 

A X prrt B = [A X pr B] E S . 
2* • • n L 2- • • n S 

Conversely, let S satisfy (g) and ^ C c A n . Then 

[C]g{l, 2 } c = A 2 X A
n 2

 e S . 
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Hence 

B - [C{1,2}] C A 0 x A n ~ 2 , E = A X pr B & S and G = E ( 1 2 ) e S . 
o 2 2* * * n 

But C £ G & S. Hence [C] cr G. Thus 
o 

[ C ] s { 1 , 2 } C G ( 1 , 2 } = ((Ax pr 2_ < n[C{l,2}] s)(12)){l,2}= [C{l,2}J s. 

A homomorphism h of a join semilattice L onto a join semilattice L ' 

is said to be correct [2] if for any a s L, b T s L', b f < ah, there is b E L 

such that b < a and b h = b\ h is correct iff h m a p s ideals of X. onto ideals 

of L'. The mapping B — [pr^ ^B] is a complete semilattice h o m o m o r p h i s m 

of the join semilattices of all subalgebras of <A;F]> n onto that of If 

A is (n, k) correct this homomorphism is correct; restricted to finitely generated 

subalgebras, this mapping remains correct. 
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Proc. Univ. of Houston 
Lattice Theory Conf..Houston 1973 

Free products and reduced free products of Lattices 

by 

G. Gratzer * . 

1. The purpose of this lecture** is to direct your attention to 

a series of papers dealing with the structure of free products of lattices 

and its applications. Some of the basic ideas go back to P.M. Whitman [17] 

and R.P. Dilworth [ 2 ]. The structure theorem is due to G. Gratzer, 

11. Lakser, and C.R. Piatt [10] and it was to some extent extended by 

B. Jonsson [14]. Some applications use reduced free products which again 

go back to R.P. Dilworth [2], and were developed in C.C. Chen and 

G. Gratzer [ 1 ], G. Gratzer [ 7] and further applied in G. Gratzer and 

J. Sichler [11] and [12] . 

In view of the fact that a full proof of the structure theorem 

has never been given I will state and prove the structure theorem in full 

detail in §2. Some applications are given without proof in §3. A new 

approach to reduced free products is given in §4 again with full proofs in 

view of the fact that the result presented is more general than the one in 

G. Gratzer [7 ]. Mostly without proofs, applications are given in §5. 

2. For this whole section, let L , i € I, be a fixed family of 

lattices; we assume that L^ and L^ are disjoint for i, j € I, i ^ j . 

We set Q = U(L., i € I) and we consider Q a poset under the following 

partial ordering: 

* Work supported by the National Research Council of Canada. 

** This lecture is based on Chapter 4 of the forthcoming book [6]. 
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for a , b Ç Q let a s b iff a , b ç for sorae i Ç I and a * b in 

A free product L of the L ^ i Ç I, is a free lattice generated 

by Q, F(Q) («* FL(Q)) (in the sense of Definition 5.2 of [ 5 ] ) . 

Or, equivalently, 

Definition 1. The lattice L is a free product of the lattices L ^ , 

i ç I , iff the following conditions are satisfied: 

(i) 

(ii) 

(iii) 

The next definition is a slight adaptation of Definition 4.1 of [ 5 ] . 

Definition 2. Let X be an arbitrary set. The set P(X) of polynomials in 

X is the smallest set satisfying (i) and (ii): 

(i) X c P(X). 
) 

(ii) If P , q € P Q O , then (p A q), (p V q) € P(X) . 

The reader should keep in mind that a polynomial is a sequence of 

symbols and equality means formal equality. As before, parentheses will be 

dropped whenever there is no danger of confusion. 

each L^ is a sublattice of L and for i, j Ç I, i / j, 

and L^ are disjoint. 

L is generated by i Ç I) . 

for any lattice A , for any family of homomorphisms 

cp^: L^ A, there exists a homomorphism L A such that 

cp on L . agrees with m for all i Ç I . 
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In what follows, we shall deal with polynomials in Q « i £ I) . 

Let a , b , c £ L ^ , a v b = c. Observe, that as polynomials in Q , 

a v b (which stands for (a v b)) and c are distinct. 

For a lattice A , we define A*5 A y { 0 b , l b ] , where 0 b , l b ^ A; 

we order A by the rules: 

0 b < x < l b for all x £ A . 

b b 
x £ y in A iff x ^ y in A , for x , y Ç A . Thus A 

is a bounded lattice (§6 of [ 5 ]). Note, however, that A^ ^ A even if A 

b 
was itself bounded. It is important to observe that 0 is meet-irreducible 

and l b is join-irreducible. Thus if a A b = 0 b then either a or b 
jj 

is 0 , and dually. This will be quite important in subsequent computations. 

Definition 3. Let p ç P(Q) and i ç I. The upper i-cover of p , in ______________ ^^ —__—. 

notation, p ^ , is an element of (L^) b defined as follows: 

(i) for a ç Q we have a ç L^ for exactly one j; if j • i , 

then a ( i ) «= a; if j ^ i, then a ( i ) -= l b . 

(ii) (p A q ) ( i ) » p ( 1 ) A q ( i ) and (p v q ) ( i > - p ( i > V q C ± ) where 

A and y on the right hand side of these equations is to be 
jj 

taken in (L^) . 

The definition of the lower i-cover of p , In notation, i s 

analogous, with 0 b replacing l b in (i). 

b b 
An upper cover or a lower cover is proper if it is not 0 or 1 . 

b b Observe that, however, no upper cover is 0 and no lover cover is 1 . 
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Corollary 4 . For any p c P(Q) and 1 £ I we have that 

(i) 
P ( 1 ) * P > 

and if a n t* P ^ are proper and P ^ ) 5 then i *= j . 

Proof. If p Ç X , then p «=» P ^ ° P ^ ^ so the first statement is true. 

If the first statement holds for p and q, then 

f n A nï - n A n ^ J l ) A «<*> c= a 
(P A q)(i) P ( t ) A q ^ i p A q (P A q) , 

and so the first statement holds for p A q and similarly for p v q. To 

prove the second statement it is sufficient to verify that If p , v is 

(1) 

proper, then p J is not proper for any j ^ i. This is obvious for 

P f Q by 3(1) . If p œ q A r, and P(^) is proper, then both q ^ ^ and 

r ^ are proper, hence q ^ » r ^ » and so p ^ » l b . Finally, if 

p • q V r and i s proper, then q ^ or r ^ is proper, hence 

q(J) „ or r ^ ^ « 1^, ensuring p ^ ^ - q ^ v r ^ ^ » , completing the proof 

Finally, we introduce a quasi-ordering of P(Q) . 

Definition 5. For p , q ç P(Q), set p c q iff it follows from rules 

(i) - (vi) below: 

(i) p ° q. 

(i) 

(ii) For some i £ I, p £ q(i)* 

(iii) p - p Q A P 1 where p Q c q or p l c q 
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( l v ) p - P 0 v P 1 W h e r e P Q c q a n d p 1 C q . 

(v) q " q^ A q^ where p c and p G q 1 . 

(vi) q - c^ v q x where P G qg or p c q x • 

Definition 5 gives essentially the algorithm we have been 

looking for. For p , q Ç P(Q), it will be shown that p and q represent 
«•W 

the same element of the free product iff p q q and q c p . We shall 

show this by actually exhibiting the free product as the set of equivalence 

classes of P(Q) under this relation. To be able to do this we have to 

establish a number of properties of the relation c . All the proofs are 

by induction and will use the rank of a p ç P(Q) (see §4 of [5]): 

for p £ Q, r(p) - 1; r(p A q) » r(p v q) - r(p) + r(q). 

Lemma 6. Let p , q, r £ P(Q) and i Ç I. 

(i) P C q implies that p ^ £ q ^ and p ^ £ q ^ . 

(ii) p c q and q c r implies that p e r . 

Proof. Let p e q; we shall prove p ^ £ q ^ by induction on r(p) + r(q) . 

If r(p) + r(q) « 2, then p , q ç Q and so only 5(1) or 5(ii) is 

applicable to p c q. Hence either p « q, in which case P(^) ° ̂ (i) o r 

(1) (1) 

£ q ^ ^ for some j £ I. This implies that p V J and q^ ^ are proper, 

hence p » q - q ^ , and p £ q. Therefore, p ^ » p s q - q * ^ if 

i « j, and p ( 1 ) - 0
b
 * l

b
 - q

( i ) if i ^ j . 
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Now assume that the implication has been proved for all p ' c q' 

with r(p') + r(q') < r(p) + r(q). 

If p <„ q follows from 5(i), then p = q, and so p ^ ^ = q ^ ^ . 

If p c q follows from 5(ii) , then p ^ £ q ^ for some j Ç 1. 

If j « i, then by Corollary 4 p ^ £ p ^ <; q(i) ' w h i c h w a s t o b e proved. 

If j / i, then by Corollary 4 p ^ ^ = 0 b , hence p ^ £ q ^ is obvious. 

If p c q follows from 5(lii), then p = p Q A p^ where 

P 0 C q or p 1 c q, say p Q c q. Thus (P Q) ( 1 ) S and so 

P ( i ) " V d ) A ( p l } ( i ) (P0>(1) * q u r 

If p C q follows from 5(iv), then p = p Q v P^ where p Q c q 

and p x c q- Hence (p Q) ̂ ^ £ q ^ and ( P ^ ^ £ q ^ and so 

( P ) ( 1 ) " ( p 0 } ( i ) A (Pl>(i) * q ( i ) ' 

If 5(v) or 5(vi) is applicable to p c q, the proof is analogous 

to the last two cases. 

The proof of p ^ 5 q ^ follows by duality. 

To prove (ii), let p c q and q c r. We shall proceed by 

induction on a = r(p) + r(q) + r(r). If a = 3, then p , q, r ç Q. If p = q 

or q m x 9 then p e r is obvious; otherwise, p , q, r ç L^ for some i Ç I 

and p s r ; so p e r follows from 5(ii) . 

Now assume the statement true for sums smaller than a. We can 

further assume that p ^ q and q ^ r . 
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If p C q follows from 5(ii), then p ^ £ q ^ for some i 

(i) 

Since q c r , by Corollary 4 , q ^ £ ^ i ) ' h e n c e P * r ( i ) " 1 1 1 1 , 8 

p C r, by 5(ii) . 

If P C q follows from 5(iii), then p = Pq A p^ where 

Pq c q or p^ c q. Thus, by the induction hypotheses, Pq c r or p^ G 

and so by 5(iii), p Q v P 1
 a p c r , 

If p c q follows from 5(iv), then p = Pq v Pq G q and 

p^ c q, and so again PQ G r and p^ c r , implying p Q v P^ ~ P G r 

by 5(iv). 

If q c r follows from 5(v) or 5(vi) we can proceed dually 

(that is, by interchanging a and v) • Only two cases remain; since the 

second is the dual of the first, we shall state only one: 

q • A 5(v) applies to p G q, and 5(iii) is applicable to q C 

(observe that 5(iv) is not applicable). In this case, 5(v) yields 

p C <1q and p c q^ and 5(lii) yields q^ c r or q^ e r . Hence 

p c q^ c r for i • 0 or 1, hence by the induction hypotheses, p e r . 

Since by 5(i), p e p for any p ç P(Q), the relation c is a 

quasi-ordering and so (see Exercise 2.28 of f 5]) we can define 

p s q iff p G q and q c p (p> q € P(Q)). 

R(p) - {q I q € P(Q) and p = q} (p € P(Q)) . 

R(Q) - {R(p) I p € P(Q)}. 

R(P) s: R(q) if p C q. 
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In other words, we split P(Q) into blocks under the equivalence relation 

p - q; R(Q) is the set of blocks which we partially order under 

L e m m a 7 . R ( Q ) is a l a t t i c e , in f a c t , 

R(p) A R(q) = R(p A q) and R(p V q) = R(p) V R(q)-

Furthermore, if a , b , c, d Ç L ^ , i Ç I, and a A b = c , a v b = d in L ^ , 

then 

R(a) A R(b) « R(c) and R(a) v R(b) « R(d). 

Proof. p A q c p and p A q G q by 5(iii) . If r e p and r c q, then 

r c p A q by 5(v); this argument and its dual give the first statement. 

c c a and c c b is obvious by 5(ii), hence R(c) ^ R(a) and R(c) <£ R(b) 

Now let R(p) s R(a) and R(p) £ R(b) for some p £ P(Q) . Then p e a and 

p C b , and so by Lemma 6 p ^ s a ^ ® a and p ^ £ b ^ » b . Therefore 

p ^ s; c » c ^ and thus p e c by 5(ii) . The second part follows by 

duality. 

Let p , q £ L . i Ç I and R(p) « R(q) . Then p c q and q c p , 

Since only 5(i) and 5(ii) can be applied to these, we easily conclude that 

p £ q and q <£ p , hence p « q. Thus by Lenxna 7 

p R(p) p ç L t 

is an embedding of L^ into R(Q). Therefore, by identifying p £ L^ with 

R(p) we get each L^ as a sublattice of R(Q) and hence Q c R(Q). It is 

also obvious that the partial ordering induced by R(Q) on Q agrees with 

the original partial ordering. 
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Theorem 8. R(Q) is a free product of the L , i Ç I. 

Proof. 1(1) and l(ii) have already been observed. Let Q^: L^ A 

be given for all i £ I. We define inductively a map 

è : P ( Q) —> A 

as follows: for p f Q there is exactly one i ç I with p ç L^; 

set p,j, = p Cp i; if p = p Q A pj or p a p Q v P ^ PQi|r and p ^ have already 

been defined, thus set p^ = A p̂ \|r and p̂ f = p ^ v p̂ \|r> respectively. 

Now we prove: 

(i) If i s proper, then ^ P^ -

Lemma 9. For p Ç P(Q) and i Ç I. 

(li) If p ^ is proper, then pt|f £ p ^ ^ for p ç P(Q) and i ç 

(iii) p C q implies that p^ £ qù for p , q £ P(Q) • 

Proof. (i) If p ç Q and P ^ i® proper, then p ç L ^ , hence 

p " P(i) a n (* s o p(i)^ ^ ^ v i 0 1 1 8 * The induction step is obvious by 

3(ii) . 
/ 

(ii) This follows by duality from (i). 

(iii) If p , q ç Q , then p , q Ç L for some i £ I 
i. 

Therefore, p ^ £ cfcp̂ , and so p^ £ q^ . 

If p c q follows from 5(1), then pi|f = q\jf. 

If p c q follows from 5(ii), then, for some 

Thus p ^ and q ^ are proper. Therefore, p\jr s by 

because p* 1^ and q ^ ç Q , and q ^ f * q* b y (*•)> implying pf £ qf. 

and p i q. 

i € l , P ( 1 > ^ 

(ii), p ( i ) f ^q ( i )1r 
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"if p G q follows from 5(iii), then p « p^ A P^ where 

p Q c q or p x c q. Hence 5 qijr or p ^ £ qi|r, therefore 

Pf - P 0t A_P1t|t rS qtjf . 

If p G q follows from 5(iv) - 5(vi), the proof is analogous 

to the last one. 

Now take a p Ç P(Q) and define 

R(p)cp 0 pijf • 

CO i8 well-defined since if R(p) R(q) (p, q Ç P(Q)), then p c q and 

q C P • Hence by Lemma 9 p^ £ q| and qijf £ pty, and so p\[r «= qi|f . Since 

(R(p) A R(q))cp - R(P A q)çp « (p A q H ® p\|r A qf = R(p)cp A R(q)cp 

and similarly for v > we conclude that çp is a homomorphism. Finally, 

for p ç L t , i Ç I, 

R(p)co - Pt - Pcot 

by the definition of y , hence çp restricted to L^ agrees with çp^. 

Lemma 6(i) Implies that if p s q (p, q Ç P(Q>), then, for all 

i Ç I, p ^ j « q ^ and p ^ = q ^ . Hence we can define 

(R(P)) ( 1 ) « P ( i ) and (R(p)) ( 1 ) « p ( 1 ) . 

All our results will now be summarized. The Structure Theorem of 

Free Products (G. Gratzer, H . Lakser, and C.R. Piatt [ 1 0 ] ) : 

Theorem 10. Let L^, i Ç I, be lattices and let L be a free product of 

the L ^ , i Ç I. Then for every a ç L and 1 £ I if some element of L^ 

ia contained in a, then there is a largest one with ttiis property, a ^ . 
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If a = • • •, a^ ), where p is a n-ary polynomial and 

a0' a n - 1 J £ I) t then c a n b e computed by the 

( 4 ) 

algorithm given in Definition 3. Dually, a v can be computed. For 

a, b ç L, a » p(a 0 > • -, a n_ J , b = q(b Q, ..., b m _ J , 

a0 > a n - 1 ' b0' —* b m - 1 ^ i Ç I), we can decide whether 

a i b using the algorithm of Definition 5. 

3. Using the Structure Theorem of Free Products one can 

develop a theory which contains most of the known results on free lattices. 

The normal form theorem of P . M . Whitman [17] stating that the shortest 

representation of an element of a free lattice is unique up to 

commutativity and associativity has the following analogue for free 

products. Let L , L^,, i € I , and Q be as in §2. For a € L and 

P = p O Q J *••> ^ ( a 0 ' ' " > a n - l ^ ^ a = p is a minimal 

representation of a if r(p) is minimal and we call p a minimal 

polynomial. 

Theorem 1 (H. Lakser [15]). Let p Ç P ( Q ) . Then p is a minimal 

representation iff p Ç Q , or if p = p^ V ••• V p , , n > 1 where no 
0 n - 1 

p is a join of more than one polynomial and conditions (i) - (v) 

below hold, or the dual of the preceding case holds. 

(i) Each p is minimal, 0 ^ j < n . 

(ii) For each 0 £ j < n , p . i p v ••• V p . _ 1
 v P • . -, v * * • V p 

549 



(iii) If 0 <; j < r , r ( P j ) > I, i € I, then ( p . ) ( l ) k p ( i ) i n l ^ . 

(iv) If Pj = A p^ (0 <• j < n and p ^ , p^ Ç P(Q)), then 

P ; 4 p. 

(v) If p.. , p G L . (0 j i k < n and i £ I) , then j = k . 
j k i 

Another result of H . Lakser [16] (which is applied in G . Gratzer 

and J . Sichler [12]) is based on Theorem 1: 

Theorem 2 . Let M be a sublattice of L , a free product of the L i Ç I. 

Assume that M "" M,. the five-element nondistributive lattice. Then 

M ' L, for some i or some L . has a sublattice isomorphic to M r X , 
i i 5 2 ' 

where C is the two-element chain. 

The most important properties of the free lattice are the 

following (P.M. Whitman [17] and B . Jonsson [13]): 

(W) x A y £ u V v implies that x ^ u V v or y ^ u W or x A y ^ u or x A y ^ v 

(SD^) x A y = x A z = u implies that x A ( y V z ) = u . 

(SD ) is the dual of ( S D J . 
V A 

The next result is due to G . Gratzer and H . Lakser [ 9 ]: 

Theorem 3. Let (X) be one of the properties (W) } (SD^) and (SD^) . Let 

A^ be a sublattice of L , i € I, and let L be the free product of the 

L ^ } i 6 I . Let K be a sublattice of L with the property that for all 

Ci) b 

a (' K ,
 a n d a

 ^ •
 I f a 1 1 1

 € satisfy (X), then so 

does K . 

We obtain that the free lattice has (W) , (SD^), and by 

taking L . = C (the one-element chain) and L = K . 
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Naturally, not all results on free lattices have been 

successfully generalized to free products. As an interesting example 

I mention the result of F. Gal vin and B. Jons son [4] according Lo which 

every chain in a free lattice is countable. A natural generalization 

of this is the following conjecture: 

Let m be a regular cardinal and let L ^ , I G I, be lattices 

with the property that any chain in any of the L^ has cardinality less 

than m . Then all chains in the free product of the L i € I, have 

cardinality less than m . 

Of course, m = N is the most interesting case. The only 

result relating to the conjecture above is in B. Jonsson [14] in which 

the general conjecture is reduced to the case |l| = 2 . 

In the same paper, B . Jonsson generalizes some of the results 

of §2 to K-free products for an arbitrary equational class K of lattices. 

The problem stated above is completely settled for distributive free 

product in G . Gratzer and H . Lakser [ 8 ] . 

4 . Let L ^ , i€l, be bounded lattices and let L be a {0, l}-free 

product of the L^,, i Ç I. As we shall see, a pair of elements x, y is 

complementary in L (that Is, x A y D 0 and x v y = 1) iff they are 

complementary in some L^ or if x^ s x £ y^, x^ £ y £ y^ in L̂ , and 

[x 0, y Q } , [x^, y } are complementary in L̂ , . We need a construction in 

which there are many more complements however we can still keep track of 

the complements. We call this construction the reduced free product. 
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In the discussion below let L ^ i £ I, be bounded lattices. 

Definition 1 . A C-relation C on L . i Ç I, is a symmetric binary relation 011 
1 

I X V
 1

 £ ^
 w i t h t h e

 property that if (a, b j ç c , a ç L . , b f L,, 1
 J 

then i ^ j. 

Definition 2. Let C be a C-relation on L±, i Ç I. A lattice L is 

a C-reduced free product of the L ^ 1 ç I iff the following conditions 

hold: 

(i) Each h±, i Ç I, is a {0, 1}-sublattice of L and 

L - [{J(Lt | i € I)] . 

(ii) If {a, b} £ C, then a, b is a complementary pair in L. 

(iii) If, for i Ç I, çp̂  is a (0, 1}-homomorphism of L^ into 

the bounded lattice A , and {a, b} £ C (a £ L±, b ç L^) 

implies that acp. j bcp, are complementary in A , then 

there is a homomorphism <p of L into A extending all the 

tp^, i ç I. 

It is obvious that a C-reduced product is unique up to 

isomorphism. The next result shows that it actually exists, and what 

is more important we can describe the complementary pairs in it (Theorem 5). 

Let Q = y(L , i Ç I) a n d define a subset S of P(Q): 
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Definition 3. For p Ç P(Q), p Ç S is defined by induction on r(p): 

(i) r(p) - 1, that is, p € L t (i ç I) and p ^ { 0 ^ lj,}. 

(ii) p « q A r where q, r £ S and the following two conditions 

hold: 

(11 1) p c for no i Ç I. 

(11 2) q c x and r c y for no [x, y} ç C-

(iii) p • q v r where q, r Ç S and the following two conditions 

hold: 

(iii^) c p for no i ç I. 

(iii 2) x c q and y c r for no fx, y} ç C-

Now we set 

L - {0, 1} U C R<P> | P € S}, 

and partially order L by 

0 < R(p) < 1 for p € S , 

R(p) £ R(q) iff p C q. 

If we identify a £ L^ with R(a), then we get the setup we need: 

Theorem 4 . L is a C-reduced free product of the L ^ , i Ç I. 

Proof. L is obviously a poset. To show that L is a lattice we have 

to find the meet of R(p) and R(q) in L (p, q Ç S), and dually. We 

claim that R(p) A R(q) - R(p A q) if p A q Ç S and otherwise 

R(p) A R(q) « 0 . This is obvious since if p A q fails ( i i ^ or (ii 2), 

then any r c p A q will fail (ii^) or (ii 2). 
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Now it is obvious that a—• R(a) is a [0, 1}-embedding of L^ 

into L . So after the identification 2(i) becomes obvious. 2(ii) is 

clear in view of 3(11^), 3(ii 2>, and our description of meet and join 

in L . 

Let K be the free product of the i Ç I, as constructed in 

§1. Then L - (0 ; 1) c K . We define a congruence ® on K: 

© "V(©(x, 0±) | i <= I, x * 0±) v V ( ^ ( x , 1 | i £ I, X l i> V 

u A v) | x £ u A v, {u, v} £ c) v\J(@(x, u v v) | x ^ u v v, (u, v) e C) 

In other words, © is the smallest congruence relation under which all and 

u A v (u, v ç C) are in the smallest congruence class and dually. We claim 

that 

K/0 2- L . 

To see this, it is sufficient to prove that every congruence class modulo ® 

except the two extremal ones contain one and only one element of S. 

Let be the identity map as a map of L^ into L . Then 

there is a map extending all i £ I, into a homomorphism of K 

into L. Let $ be the congruence induced by (p (a = b($) iff a<p = b<p) 

Since L satisfies 2(i) and 2(ii), © <; $ . Now if p, q f S, and 

R(p)çp « R(q)cp, then R(p) = R(q) . In other words, R(p) = R(q)($) implies 

R(p) « R(q). Therefore, the same holds for $ . This proves that there 

is at most one R(p) in the non-extremal congruence classes of To 

show "at least one" take a p £ P(Q) such that R(p) 4 0. (ft) and 
' i 

R(p) = l i(Q) (for any/all i £ I); we prove that there exists a q £ S 

such that R(p) s R(q)(®). 
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Let p ç L^ for some i ç I. Then, by assumption, p ^ and 

l i; hence we can take q « p. Let q « a, p - p Q A p ^ R(p Q) 2 R ^ H ® ) , 

R(p 1) = R U j K ® ) where q Q , ^ ç S. If q Q A Ç S take q « qg A q x . 

Otherwise, by 3(ii), q^ A q^ s 0^(0), hence p s 0^(0), contrary to our 

assumption. The dual argument completes the proof. Thus we have verified 

that K/© 2- L . 

Now we are ready to verify 2(iii). For each i Ç I, let çp̂  

be a [0, 1}-homomorphism of L^ into the bounded lattice A. Since K 

is the free product of the h±, I £ I, there is a homomorphism ty of K 

into A extending all the <p, i £ I. Let y be the congruence induced 

by ty (that is, a = b(y) if aty - bty) . It obviously follows from the 

definition of © that © i f . Therefore, by the Second Isomorphism 

Theorem (see e.g. Lemma 15.8 in [5 ]) 

[x]Q • xty 

is a homomorphism of K/9 into A . Combining this with the isomorphism 

L 5= K/© as described above, we get a [0, 1) -homomorphism ÇD of L into 

A extending all the i Ç I. 

Theorem 5. Let a, b be a complementary pair in the C-reduced free 

product L of the L , i ç I. Then there exist a Q , b Q and a ^ b̂ ^ such 

that 

a Q s a i a^ and b
0 ^ b ^ b l 

such that either {a^, b Q}, fa^, b^} ç C or, for some i Ç I, a^, b Q and 

a.,, b are complementary pairs in L. , and conversely. 
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Proof. The converse is, of course, obvious. In either case, by Definition 2, 

a^, bg and a^, b^ are complementary in L , hence 

a A b i A b^ • 0 , a v b ^ y • 1 $ 

and so a, b Is complementary in L . 

Now to prove the main part of the theorem, take p, q ç S such 

that a «• R(p) and b • R(q) are complementary in L . Then p A q violates 

3(ii1) or 3(ii2) and p V q violates 3(11^) or 3(iii2> . Thé 

four cases will be handled separately. 

Case 1. p A q violates 3(11^) and p v q violates 3(11:^) . Hence, 

for some i, j £ l , p / \ q c O ^ and c p v q • Thus in the free product 

K of the L i , i Ç I, (p A q )
( i ) - 0 ± and (p v q ) ( J ) « . Note that 

q ^ is proper, because otherwise p ^ - 0 i , that is, p c 0jL contradicting 

(1) p £ S. Similarly, q X J ' is proper. This is a contradiction unless i « j, 

in which case we can put a^ = p ^ ^ , b^ = q ^ ^ , a^ = p ^ , b^ = q ^ ^ and 

these obviously satisfy the requirements of the theorem. 

Case 2. p A q violates 3(ii^) and p v q violates 3(iii2>. Hence 

there exist i £ I and [x, y) £ C such that 

P A q c 0 , x c p, and y c q. 

Let x ç L and y £ L, (j, k £ I and j / k). Just as in Case 1 we 
J K 

conclude that in K p ^ , q ^ are proper, p ^ A q ^ ~ p ^ ^ x, 

and q ^ ^ ^ y. Hence i « j, i » k, from which j » k follows, 

contradicting j ^ k . 
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Case 3. p A q violates 3(ii2> and p v q violates 3(111^). This 

leads to a contradiction just as Case 2 does. 

Case 4. p A q violates 3(ii2> and p v q violates 3(iii 2>. Then there 

exist {a Q, b Q} ç C and {a^, b^} ç C 8uch that 

p G a ^ q c b ^ a Q c p, and b Q c q „ 

These obviously satisfy the requirements of the theorem. This completes the 

proof of Theorem 5. 

Theorem 5 is the main result on reduced free products. It is a 

generalization of the results of G . Gratzer [7 ], which in turn generalized 

C.C. Chen and G . Gratzer [ 1 ] . 

5 . The simplest application of the results of §4 is to uniquely 

comp 1 emented lattices } that is to lattices in which every element has 

exactly one complement. A longstanding conjecture of lattice theory was 

disproved by R . P . Dilworth [ 2] by showing that not every uniquely 

complemented lattice is distributive. In fact Dilworth proved that every 

lattice can be embedded in a uniquely complemented lattice. This result 

is further sharpened by a theorem of C.C. Chen and G . Gratzer [ 1 ] : 

Theorem 1 . Let L be a bounded lattice in which every element has at 

most one complement. Then L has a 0 and 1 preserving embedding into 

a uniquely complemented lattice. 
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Observe that Theorem 1 implies the Dilworth embedding theorem; 

indeed, if L is an arbitrary lattice , then by adding a 0 and 1 to 

L we obtain a lattice in which every element has at most one 

complement (in fact if x € L ^ x 0 , 1, then x has no complement). 

Apply Theorem 1 to L^ to get a uniquely complemented lattice containing 

L as a sublattice. 

The proof of Theorem 1 is so simple that we reproduce a sketch 

of the proof. 

If L is c o m p l e m e n t e d , then set K = L . O t h e r w i s e let L - L q . 

We define by induction the lattice . If i s defined let 

I „ be the set of noncomplemented elements of L , . For i £ I -
n —• 1 n i. n — i 

let L± - {a i)
b . Define the C-relation x on the family 

{ L n - 1 } U a t | i <= I Q) by the rule 

[a, b ) ç C n - 1 iff {a, b] - fi, a ^ for some i £ I n _ x 

Let L be the C ,-reduced free product. Since 
n n - 1 

L - L q C L^ C L 2 C • • • 

and all these containments are {0, 1}-embeddings, we can form 

K - U <
L
t | i € D -
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Now consider for n > 0 the property 

0' "o ' V b i e 

V 
u o 

< b^, and 

bo" 
I 
r ) U x , b J € 

I • Il 1 r> tJ I lu/ 1. L-1 lit- L l L Kl t , « i. o 

n 0 0 1 

a l ^ b l ' then a = a^ and b^ = b^ 
a0' b0!' ai' bll 6 Cn a n d 30 5 al' b0 ^ V t h e n a0 = ai a n d b0 = b 

Obviously, (Pq) holds. An easy induction using Theorem 5 of §4 shows that 

(P ) holds for all n ^ 0 . Again by Theorem 5 a is a complement of 

f 1 

b in L iff the same holds in L , or a, b Ç C . Therefore we 
n n - 1 ! ' n 

obtain that the direct limit of the L ^ is uniquely complemented. 

Many variants of Theorem 1 are considered in C.C. Chen and 

G . Gratzer [ 1 ] : Bi-uniquely complemented lattices, lattices in which 

complementation is a transitive relation, and so on. All these results are 

based on Theorem 5 of §4. 

Another application is to the endomorphism monoid of a bounded 

lattice. For a bounded lattice L let End (L) denote the monoid of 
0, 1 

0 and 1 preserving endomorphisms of L . 

The following result is due to G . Gratzer and J . Sichler [11]: 

Th eorem 2. Let M be a monoid. Then there exists a bounded lattice L 

such that 

M ^ Endg X(L) . 

Let (G; R> 

a g r a P h , that is . a set G with a symmetric binary 

relation R such that (a, a) ^ B for any a € G . We associate with the 

graph a family of lattices L , a € G, where each L is a three-element a ' a 
chain 0 , a, 1 . Set C «= R; then C is a C-relation so we can form 

a a 
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the C-reduced free product L . We then prove (using Theorem 5 of §4) 

that every endomorphism extends to a [0, 1 ] -endomorphism, and conversely, 

provided that every element of G lies on a cycle of odd length. We get 

from the results of Z . Hedrlin and A . Pultr a graph (G; R> with 

End((G; R ) ) - M satisfying the cycle condition and so we obtain Theorem 2. 

The final application I would like to mention concerns hopfian 

lattices. A lattice L is called hopfian iff L — L/@ implies that © 

is the trivial congruence relation au . Equivalently, L is hopfian iff 

every onto endomorphism is an automorphism. 

T . Evans [3 ] has proved that every finitely presented lattice 

is hopfian. 

Motivated by H . Neumann's results, the question arose whether the 

free product of two hopfian lattices is hopfian again. 

Theorem 3. There exist two bounded hopfian lattices whose bounded free 

product is not hopfian. 

Theorem 4 . There exist two hopfian lattices whose free product is not 

hopfian. 

These results are due to G . Gratzer and J . Sichler [12]. 

Theorem 3 is based on Theorem 2 which reduces Theorem 3 to a graph 

construction. Theorem 4 is more complicated and it also uses Theorem 2 of §3. 

There are many more results on free products and many more results 

using free products. I hope, however, that this restricted exposition is 

sufficient to substantiate my claim that the free product is an important 

construction in lattice theory with which all experts should be familiar. 
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SOME UNSOLVED PROBLEMS 

BETWEEN LATTICE THEORY AND EQUATIONAL LOGIC 1 

Ralph McKenzie 

This is a very modest paper. My aim is to have a look at some 

problems that arise in the regions where lattice theory and equa-

tional logic share common ground. The list of problems is selected 

from my own mathematical experience, and is not intended to be in 

any way comprehensive or definitive. 

Throughout the paper, L(A) denotes the lattice of equational 

theories of lattices. A is its least element (the set of identities 

satisfied by every lattice <L, + ,«>), and fi is its largest element 

(the set of all lattice identities), while A is its one and only maximal 

element (the equational theory of distributive lattices). If T is 

a similarity type of universal algebras, then L(x) denotes the lat-

tice constituted by all equational theories of algebras of type T. 

If 0 is a member of L(x), then L(o) denotes the lattice composed of 

all 0' E L(x) such that 0 <_ 0 '. 

The problems in the first group are the ones of most recent 

origin. They concern the congruence identities holding in a variety. 

For an arbitrary equational theory 0 , we can form a theory Cg 0 be-
fsAJ 

longing to L(A), which consists of the identities that hold true in 

the congruence lattice of every algebra belonging to the variety 

^This is a greatly revised version of the lecture given "by the 
author at the Conference on Lattice Theory, Houston, 1973. 
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Var 0 defined by 0. Everyone is familiar with, the theorems which 
AA/Y/ 

assert that certain properties of congruences in Var 0 are equiva-
/A/W 

lent to conditions (of "Mal'cev type"), defined directly by refer-

ence to 0 itself. For example, the properties "Cg 0 _> A", "Cg 0 in-AAA A/»A 

eludes the modular law" are equivalent to Mal'cev conditions. We 

recall that each of these properties has very strong implications for 

the general algebraic theory of Var 0; see [10] and [9» Cor. 5.5], for /vw 

instance. Very recently, in [U] , it was shown that if 0 is an equa-

tional theory of semigroups and if Cg 0 ^ A , then Cg 0 includes the A/̂  AM 

modular law. A related paper, [17] , revealed that if 0 is any equa-

tional theory such that Cg 0 intersects a certain set of identities 

which are weaker than modularity then, again, Cg 0 includes the AAA 

modular law. Thus it turns out that the set {Clg 0: 0 is an equational 

theory} is a proper subset of L(A)—a dramatic development in an area 

which seemed thoroughly cultivated and not very promising of new re-

sults . 

I conjecture, very boldly: (l) every theory C g 0 , distinct from (VIA 
A , includes the modular law. And less boldly: (2) {Cg 0: 0 is an 

Avi 

equational theory} is a sublattice of L(A). 

The class of theories known to have a finite base has expanded 

greatly in the past decade. Many of the proofs of the positive re-

sults in this direction have used, at least implicitly, the satisfac-

tion of congruence identities. If we recall some of these results, 

it will lead us to two conjectures related to (l) above. (I am using 
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two excellent survey articles "by S. Oates MacDonald [12] and A . Tarski 

[191.) 

There are equational theories 0 for -which every member of L(©) 

is finitely "based, such as the theory of commutative semigroups [lS], 

or of idempotent semigroups [5]. (Note, however, that there exists 

a 6-element semigroup whose equational theory has no finite "base; see 

[l8].) More commonly, the above result does not hold, but the follow-

ing one does: if O l is any finite member of Var 0, then the identi-(WV\ 

ties satisfied by Ob have a finite base. This is known to be the case 

for the theory of groups (Oates-Powell [13]), for the theory of rings 

(Kruse [ll]), for the theory of lattices (McKenzie [lU]), and general-

izing the case of lattices, for any theory 0 of a finite similarity 

2/ 
type which satisfies Cg 0 >_ A.— Although the Oates-Powell theorem 

rtM 

uses the congruence modularity of the variety of groups, it has not 

yet been generalized in the way my theorem for lattices was generalized 

by Baker. In fact, the following conjectures are unresolved (they 

were printed for the first time in [12]): (3) if 0 is any theory of 

finite type such that Cg 0 includes the modular law, then every finite /Vw 

algebra in Var 0 has a finite base for its laws: (i+) the same conclu-
n/Wl 

sion holds if 0 is a theory of finite type and Cg 0 4 A. The first 
/VV 

conjecture was made by S . Oates MacDonald and by K . Baker, and S. 

Burris originated the second. [Burris is said to have some evidence 

2 
This result is due to K . Baker [l]; his proof is unpublished. A 

different proof is given by M . Makkai in a paper soon to appear in 
Algebra Universalis. 
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for (k) ; namely, that for each of the known finite groupoids C^ having 

no finite base of identities, ^ = A. Apparently this follows 

indirectly from the results of [U], since each of these groupoids con-

tains a 2-element subsemigroup that is not a group.] 

The second group of problems concerns the free lattice FL(w) gener-

ated by a denumerable set of freely unrelated elements {XQ ,.. . }. 

We denote by FL(n) , for 1 £ n < a), the sublattice of FL(to) generated 

by { X Q , . . . , X } . The study of these structures shows some analogies, 

and many differences, to the study of free groups. It is well known 

for instance that the FL(K) (K <_ to) , like the free groups, are com-

putable algebras: there is an algorithm (discovered by P. M. Whitman) 

which tells whether two formal words in the generators define the same 

element of a free lattice. 

Let us denote by (respectively, by the class of all 

finitely generated (respectively, finite) lattices that are isomorphic 

to a sublattice of FL(u>). Then in contrast to the situation for 

groups, where every subgroup of a free group is itself free, the 

classes JF and .Ĵ q are highly nontrivial, and there are long-standing 

open questions about them. Some known facts (from [l6]) are the 

following: is precisely the class of finitely generated lattices 

projective in the category of all lattices , where maps are all the 

homomorphisms (a result due to A. Kostinsky but proved in [l6] ) ; ̂  § 

is a computable class (there is an algorithm for determining whether 

a finite lattice belongs to c^q) ; every member of JF' has a finite 

presentation by means of generators and relations, relative to the 
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class of lattices (this was not proved in [l6], "but is easily demon-

strated using the ""bounded homomorphisms" discussed there). 

B . Jonsson once remarked that every sublattice of a free lattice 

satisfies three simple conditions (which w e formulate b e l o w ) , and 

over a period of years ([6], [7], and [8]) he has obtained deep re-

sults tending to confirm the following conjecture: (5) ^ q i s char-

acterized, as a subclass of the class of finite lattices, b y the 

conditions (i)-(iii) b e l o w . This conjecture is yet unproved. It 

appears very plausible that is characterized b y the same conditions. 

Jdnsson's conditions (for a given lattice L) : Let u o ' u i ' v o , V l ^ 

Then (i) Uq*U^ v Q + V 1 "that either uj_ 1. v Q + v l * o r e^- s e 

u 0 * u i £ V p for some i = 0,1; (ii) u Q + v Q = u Q + v^ implies Uq + v Q = 

Uq + Vq»V ; (iii) same as (ii) with + , • interchanged. 

Unlike the situation for groups, it is easily demonstrated that 

F L ( K) and F L ( X ) (for distinct K,A <_ W) do not satisfy precisely the 

same elementary (that i s , first-order) sentences. (A famous open 

problemjdue to T a r s k i , asks whether it is the same with free groups.) 

For free lattices, as for free groups, the following is open: (6) 

for each K (3 K W), is the elementary theory of F L ( K) decidable? 

Even a very special case of this problem has not been settled. Con-

jecture: (7) the existential first-order theory of FL(3) is decidable. 

We should remark t h a t , since FL(OJ) is embeddable into F L ( 3 ) , all 

F L ( K ) for 3 <_ K <_ W have the same existential theory. The decision 

problem for this theory is quite different from the so-called "em-

bedding problem for lattices"—the decision problem for the universal 
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theory of l a t t i c e s—fo r w h i c h Evans [2] gave a positive solution. 

A l s o , it is b r o a d e r in scope than the (solvable) problem of determin-

ing membership in O^q . 

Here is a concrete elementary sentence w h i c h , as shown in [l6], 

has the same truth value in every lattice F L ( K ) w i t h 3 K < u), and 

is certainly false in F L ( A ) ) . At p r e s e n t , w e have no w a y of deciding 

w h e t h e r it is true or false in FL(3)• This w o u l d b e decided as a 

p a r t i c u l a r case b y any algorithm giving a positive solution to p r o b l e m 

(6). 

$ : V*x,y -3 u , v V z. x < y - > ( x <_ u < v <_ y A u < z < V ) . 

This sentence has i m p o r t a n c e , i n d e p e n d e n t l y , from the study o f 

equational theories of l a t t i c e s . (See [l6, Problem 6].) Given a 

lattice L and two o f its m e m b e r s , x and y , w e w r i t e x/y for the set 

{z: x <_ z _< y } . A nontrivial quotient in L is any set of the form 

x/y h a v i n g at least two members ; an atomic quotient in L is any non-

trivial quotient w i t h exactly two m e m b e r s . (So x/y is atomic i f f 

y covers x. ) C l e a r l y , L satisfies $ iff every nontrivial quotient 

of L contains an atomic quotient of L , in s h o r t , iff L is w e a k l y 

at omi c. It turns out that if w e identify any w ^ ,w G F L (to) just in 

the case that b o t h w Q / w Q # w 2 . ^ ^ c o n"' :' a^ n n o quotients u / v 

which are atomic in any FL(n) (n < œ ) , then the resulting relation 

is a fully invariant congruence relation on FL(u)). This relation 

is the equational theory of the class of all so-called "splitting 
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lattices." Thus, FL(3) is not weakly atomic just in case there exists 

a nontrivial lattice identity that holds in each and every splitting lattice. 

The third group of problems is a small selection from among those 

mentioned in [l6]. There are many open problems about the abstract 

structure of L(A), about particular members of L(A), and about related 

properties of equational theories and their models. Among them are 

the following: (8) Has L(A) any automorphisms aside from the identity 

m a p , and the involution that results from the duality of the two basic 

operations in lattices? (9) If 0 G L(A), and L(0) is finite, must 0 

cover only a finite set of elements of L(A)? (10) Is the equational 

theory of modular lattices decidable? (This is a long-standing open 

problem. Only recently, a somewhat richer theory, namely, the univer-

sal theory of modular lattices, was proved undecidable by G. 

3/ 

Hutchinson.— See his article in this volume, and the article by C. 

Herrmann.) (ll) Is it true for every 0 G L(A) that the following are 

equivalent: (a) L(0) is finite; (b) there is a finite lattice L 

with 0 = O^L? (Compare this with problem (9)-) 

Finally, I should like to repeat two conjectures about the lat-

tices L ( T ) , where X is an arbitrary similarity type. I proved in 

[15] basically two results about these lattices: first, that T is 

recoverable from the abstract structure of L ( T ) ; second, that most 

familiar equational theories—for instance, the theory of groups, of 

rings, of lattices, or of Boolean algebras—can be singled out 
3 
This important result was probably obtained independently and simul-

taneously by Leonard Lipschitz, and possibly can be found in his 
doctoral dissertation which was completed about 1972-73 under the 
direction of Kochen at Princeton. 
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abstractly in their type lattice and defined as the unique member 

satisfying a first-order lattice formula Cp(x) , where (p depends 

of course on the theory to b e defined by it. I conjecture: (12) 

all automorphisms of L ( T ) are basic o n e s , generated b y exchanging 

operation symbols that have the same r a n k , and b y permuting the 

"places" of some operation symbols; (13) every member of L ( T ) that 

is finitely b a s e d as a t h e o r y , and is a fixed element under all auto-

morphisms of L ( T ) , is a first-order definable member of this 

lattice. 
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1. Introduction 

Traditionally, the algebraic properties of Boolean 

algebras are reduced to those of Boolean rings by a well-

known construction. A Boolean ring, however, has the double 

disadvantage of having torsion, and of not being applicable 

to the richer domain of distributive lattices. In this 

paper we describe another construction, or functor, called 

the valuation ring, which associates to every distributive 

lattice L a torsionless ring V(L) generated by idempotents. 

The lattice L can be recovered by giving a suitable order 

structure to the valuation ring V(L), and thus the entire 

theory of distributive lattices is reduced to that of a 

simple class of rings. For example, the representation 

theory of distributive lattices is subsumed to that of 

valuation rings, where standard methods of commutative 

algebra apply. 

The applications and further development of the present 

techniques lie in at least three directions. 

First, the valuation ring turns out to be a very simple 

way of functorially associating a ring to a simplicial 

complex; we surmise that simplicial homology will benefit 

from this association. 
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Second, the theory of pseudo-Boolean functions and pro-

gramming of Hammer and Rudeanu can be seen to be an informal 

use of valuation rings; this theory can gain from the rigorous 

foundation provided by the present ideas. 

Third, the notion of quantifier on a Boolean algebra 

can be transferred to the valuation ring, where it becomes a 

linear averaging operator; in this way, problems in first-

order logic can be translated into problems about commuting 

sets of averaging operators on commutative rings. The re-

sulting linearization of logic is probably the most promising 

outcome of the present investigations. 

The method of presentation is deliberately informal and 

discursive. Some of the proofs are barely sketched; we hope 

to give a thorough presentation elsewhere. 
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2. The Valuation Ring. The theory of distributive 

lattices is richer than the better known theory of Boolean 

algebras; nevertheless it has had an abnormal development, for 

a variety of reasons of which we shall recall two. First, 

Stone's representation theorem of 1936 for distributive lat-

tices closely imitated his representation theorem for Boolean 

algebras, and as a consequence turned out to be too contrived 

(I have yet to find a person who can state the entire theorem 

from memory.) Second, a strange prejudice circulated among 

mathematicians, to the effect that distributive lattices are 

just Boolean algebra 1 s weak sisters. 

More recently, the picture seems to have brightened. 

The definitive representation theorem for distributive lat-

tices has been proved by H. A . Priestley ; it extends at long 

last to all distributive lattices the duality "distributive 

lattice - partially ordered sets", first noticed by Birkhoff 

for finite lattices. Strangely, Nachbin's theory of ordered 

topological spaces had been available since 1950, but nobody 

before Priestley had had the idea of taking a totally discon-

nected ordered topological space as the structure space for 

distributive lattices. 
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The second prejudice was more difficult to overcome; it 

paralleled the criticism of similar prejudices in other 

branches of mathematics. To stay on comparatively familiar 

ground, consider what happened in combinatorics. Here, it 

became clear a short while ago that the notion of set would 

have to be supplemented by a more pliable notion, which Knuth 

has called multiset. A multiset is simply a set where every 

element is assigned a multiplicity, positive negative or 

zero. Aside from the fact that multisets are found plenti-

fully in nature, they offer a decisive advantage over sets: 

they form a torsionless ring, whère addition and multipli-

cation are defined "elementwise" (Indeed, multisets are 

functions from a set to the integers.) Sets, on the other 

hand, have a more rigid algebraic structure: they form a 

Boolean algebra, or at best a distributive lattice. But it 

turns out that even for the study of Boolean operations on 

sets it is preferable to work with the ring of multisets, as 

was first noted by Whitney; unfortunately, his suggestion 

went unheeded until recently. 

It is this idea that I put forth a few years ago in my 

paper in the Rado Festschrift (It seems that publishing an 

idea in a Festschrift is the quickest way to have it forgotten.) 
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Given a distributive lattice L, can we associate to L a 

ring V(L) such that, if the lattice L were to be a lattice 

of sets, then V(L) would "automatically" turn out to be 

isomorphic to the ring of multisets over the same set? 

Such a ring V(L) is easily constructed as follows. 

To begin with, construct an intermediate ring F(L) consisting 

of all formal linear combinations of elements of L. Addition 

is defined formally, and multiplication in two steps: if 

x and y are elements of L, set x y = x y, then extend 

by bilinearity. 

Now, the main fact about the ring F(L) is that the sub-

module J generated by elements of the form 

x + y - x A y - x v y 

is an idealI The verification is easy. For any z e L, we 

must show that the element 

z (x + y - x A y - x v y ) (*) 

belongs to J. Expanding this expression we find it equals 

z A x + z A y - z A (x A y ) - z A (x v y ) . 
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We now use various identities satisfied in distributive 

lattices. The third term equals 

z A (x A y) = (z A x) A (z A y) 

using commutative, associative and idempotent laws for the 

meet operation A . The fourth term is simplified by the 

distributive law: 

z A (x v y) = (z A x) V (z A y) . (**) 

Making all these substitutions, we find that (*) equals 

z A x + z A y - (z A x) A (z A y) - (z A x) V (z A y) , 

which clearly belongs to the submodule J, thereby completing 

the proof that J is an ideal. 

Now define the valuation ring of the distributive lattice 

L to be the quotient ring V(L) = F(L)/J. 

Before proceeding any further, note the following amusing 

aside. To define the valuation ring, all we need is a set L, 

together with two binary operations A and v t say, such that, 

(a) the operation A is commutative, associative and idem-

potent, and (b) the distributive law (**) holds. Nothing else 
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is assumed of the operation v . Are these identities suf-

ficient to define a distributive lattice? 

Nov/, the construction of the valuation ring is (like 

every other "construction") a functor from the category of 

distributive lattices to the category of rings. Thus, every 

distributive-lattice concept should have an analog for a 

certain sub-category of rings. For example, an ideal in 

the lattice-theoretic sense, namely, a subset I of L closed 

under joins and such that x v y e I for x e l and y e L, is, 

when considered as a subset of the valuation ring V(L), an 

ideal in V(L) in the ring-theoretic sense. 

The problem therefore arises of how to recover the 

lattice L from the valuation ring V(L). Let us consider two 

special cases. First, suppose that L is the lattice of all sub-

sets of a finite set S. Then the valuation ring V(L) is naturally 

isomorphic to a ring of multisets on the set S. This non-triv-

ial fact validates our claim that the valuation ring is in-

deed the algebraic analog of the ring of multisets. 

But now take an ordered set P, and let L=L(P) be the 

lattice of decreasing subsets of P; a subset D of P is 

decreasing, if x e D and y <_ x imply that y e D (decreasing 

sets are also called order-ideals, but we prefer the former 
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term, recently introduced by Priestley.) Lattice operations 

are unions and intersections of sets. Then it can be shown 

that V(L) is isomorphic as_ a ring to V(B) , where B is the 

Boolean algebra of subsets of P generated by decreasing 

sets. If P is a finite set, then B is the Boolean algebra 

of all subsets of P. 

In order to strengthen the structure of the valuation 

ring V(L) we must impose some order structure. We shall do it 

in the simplest way. A valuation ring V(L) will be a torsion-

less commutative ring generated by idempotents, with a dis-

tinguished sublattice L of idempotents, such that L gene-

rates the ring. In other words, L will be a subset of 

idempotents closed under products and under the operation 

x,y+x+y-xy . A morphism of valuation rings <J> : V(L)-*V(L') 

is a ring homomorphism which maps L into L'. Every 

valuation ring V(L) is the valuation ring of the set L 

considered as a distributive lattice, and the two will be 

identified. 

An element 

x = £ n(e)e f n ( e ) > 0 

eeL — 

is called monotonie. Monotonie elements are closed under sums 
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and products, in other words they form a cone or semiring. 

It is possible to characterize a valuation ring in terms 

of this semiring C , as follows. 

A commutative ring R with identity will be called 

a valuation ring if it is endowed with a distinguished sub-

set, or cone, C , closed under sums and products, and 

forming a distributive lattice, such that: 

(a) The lattice operations in C are compatible with 

sums and products, that is f + (g /\ h) = (f + g) A (f + h) 

similarly with \/, for f,g and h in C , as well as all 

other identities satisfied in a lattice-ordered commutative 

ring which can be written without using subtraction; 

(b) Every element of C is a (finite) sum of idem-

potents belonging to C ; 

(c) Every element of R is the difference of two 

elements of C . 

This intrinsic characterization suggests the extension 

of the present theory to rings not generated by idempotents 

such an extension might give an extension of classical pre-

dicate loqic (see below.) 

The category of valuation rings is equivalent to the 

category of distributive lattices. It has a generator, 

namely, the valuation ring of the two-element lattice ; we 
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shall see that this fact can be used to obtain a represen-

tation theorem for valuation rings. Actually, more is true, 

but neither category theorists nor first-order logicians 

have yet invented a precise way of saying it, though the ap-

propriate term was introduced long ago by Birkhoff: the two 

categories (or first-order theories) are cryptomorphic. In 

other words, to every fact about one there "naturally" cor-

responds a fact about the other. The algebraic structure of 

a valuation ring is richer than that of a ring. It turns 

out that the linear functional 

e( E n(e)e) = £ n(e) 
eeL eeL 

is an augmentation of the ring, that is, it is a ring homo-

morphism. Setting 

f v g = e (g) f + e(f)g - fg, f, g e V(L) 

defines a second ring operation on V(L); actually, the same 

definition works for all augmented algebras. 

If L has a minimal element z and a maximal element 

u , then u acts as an identity and z as an integral 

(Sweedler) in V(L); that is, 

fz = c(f)z , f e L. 
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In the v - r i n g , the roles of u and z are reversed. From 

now on, we shall assume all valuation rings endowed with u 

and z , and morphisms to preserve u and z . 

The operation of complementation in a valuation ring R 

is defined as 

x (f) = e (f) (u + z) - f, f e R , 

so that in particular 

T (Z) = U, T (U) = Z, T (X) = U + Z - X 

if x is a positive idempotent. Note that the complementation 

T is idempotent. Indeed 

T
2
( f ) = £(t(f))(U + Z) - Tf = 

= e (e (f ) (u + z) - f) (u + z) - e(f) (u + z) + f = 

= (2 e (f) - e (f ) ) (u + z) - e(f) (u + z) + f = f, 

as desired. As a further check that the complement T is 

indeed a strengthening of the classical lattice-theoretic 

complement, suppose R = V(L), and let x* be the complement 
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of x in L. Then check that T (X ) = X'. Which identities 

in distributive lattices carry over to valuation rings? The 

answer is not hard to guess: all those identities where each 

variable occurs only once, that is, linearly. For example, the 

de Morgan law 

(x V y) ' = x' A y' 

carries over to the identity 

X(f V g) = T (f ) X (g) , 

but the distributive law 

x A (y V z) = (x A y) V (x A z) 

does not, because the variable x occurs twice, or non-

linearly, on the right side. It does if one of the entries is 

idempotent, however. 

One of the more interesting identities that carry over 

to the valuation ring is the inclusion-exclusion principle. 

It was in fact this identity that originally motivated my 

definition of the valuation ring. Recall that in the 
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valuation ring, for positive idempotents X 1 , x 2 ' * * * ' x
n ' one 

shows that 

x, V x „ V . . . V X = X, + . . . - x, x 0 - X , X ^ - . . . 1 2 n 1 n 1 2 1 3 

- x n _ 1 x n + x i x 2 x 3 + ••• ~ ••• + ••• i x l x 2 * * * Xn 

For arbitrary elements f ̂  , f 2 # . . . , f n one finds 

f l V f 2 V . . . V f n = z ( - i ) n " i + 1 s e ( f 0 l f 0 2 . . . f a i ) f 0 ( i + 1 ) 

1=1 a 

fa(i+2) f a n 

where the inner sum ranges over all shuffles a of the 

indices 1,2,...,. n. This identity is valid more generally 

in any augmented algebra. 
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3. Canonical Idempotents 

Let S be a subset of the monotonie cone of V(L), 

then the subring generated by S is of the form V(L'), 

where L' is a sublattice of L . Furthermore, if S is 

finite-dimensional, so is V(L'). 

Now let L be a finite distributive lattice, and let 

P be the set of join-irreducibles of L , that is, of those 

elements p e L such that if p = x V y , then either p = x or 

p = y . Clearly every element of L is the unique irredun-

dant join of join-irreducibles. It is technically prefer-

able not to consider z as a join-irreducible. The join-

irreducibles are linearly independent. The Mobius function 

p(p,q) is the integer-valued function on P such that 

y(p,p) = 1 

\i (p,q) = 0 if p £ q 

Ey(p,q) = 0 for p < r. 
p£q<r 

Now set 

e(p) = E y(q,p)q. 
qeP 

It can be shown that the e(p) and z are a set of linearly 

independent 
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orthogonal idempotents spanning V(L), and that every xeL is a 

linear combination of the e(p) and z with coefficients 0 or 1; 

these properties uniquely characterize the e(p). We shall 

call them the canonical idempotents. If L is a sublattice 

of L 1 , then the canonical idempotents of L are sums of those 

of L', so we may define the canonical idempotents of an 

arbitrary distributive lattice L as the union of all canonical 

idempotents of finite sublattices of L. Every linearly in-

dependent subset of orthogonal idempotents is then a subset of 

the set of idempotents of a finite sublattice of L . 

The canonical idempotents can be used to derive criteria 

for the following: when is an f e V(L) actually a member of 

the lattice L, that ILS j GXplTGS sible by j oins and meets of 

join-irreducibles? In other words, when is a linear combi-

nation 

f = Z c (p) p 
pcP 

actually expressible by the two lattice operations alone? 

This question is particularly important for free valuation 

rings (v. below). We shall answer it in two ways. 

Expressing f in terms of the canonical idempotents we 

have 
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f = E a (p) e (p) 
P 

for some coefficients a, which can be computed in terms of the 

coefficients c . 

Now f e L if and only if 

(a) a(p) = 0 or 1 for all p e P, 

(b) if a(p) = 1 and q < p, then a(q) = 1. 

In other words, the p for which a(p) = 1 form a de-

creasing set of the set P of join-irreducibles. Since 

a (q) = £ c(p) 

this condition can be translated into one in terms of the c-

coefficients, which gives the following necessary and suf-

ficient condition for f e L: there exists a decreasing 

subset A (= lower order-ideal: if p e A and q < p then 

q e A) of join-irreducibles such that 

(*) c(q) = l y(q,p)• 
p e A 

For a free valuation ring (v. below) this condition has an 

elegant topological formulation. The problem whose solution 
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we have just outlined can be restated in purely combinatorial 

terms: when can a linear combination of idempotents be 

built up by using only product x y and the operation 

x + y - x y = x V y ? There is at least one case when the 

M o b i u s function can be explicitly computed and thus the 

solution can be restated more e x p l i c i t l y , that is the free 

valuation ring on an ordered set Q . Let Q be a set of 

commuting idempotents subject to identities P q = p , 

w h i c h define a p a r t i a l order p <_ q . The monotonie cone gene-

rated by sums and products in Q defines the structure of a 

v a l u a t i o n ring V(I.) , where L is the distributive lattice 

freely g e n e r a t e d by the ordered set Q . Note that Q is not 

the set P of join-irreducibles of L; the set P is the set 

of all d i s t i n c t products of elements of Q , t h u s , P is iso-

m o r p h i c to the distributive lattice of increasing sets of Q 

(order i d e a l s ) . The Mobius function of P is calculated by 

the c l a s s i c a l inclusion-exclusion p r i n c i p l e , and the cano-

n i c a l idempotents are given by the formulas 

|B| 
e (lip) = I (-1) lip , S ç Q 
peS B peB 

for every antichain S of Q , the sum ranging over every 

superset B of S . 
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Using the canonical idempotents, we can define an order 

relation in V(L). For any monotonie f, the subring gene-

rated by f is of the form V(L") for a finite L". Since 

every g e V(L) is of the form g = f-h with monotonie f and 

h, it follows that g e V(L') for some finite L'. Hence 

g = E a(p)e(p) , 
peP 

where P is the set of meet-irreducibles of L 1 , and e(p) the 

canonical idempotents. Say g >_ 0 if a(p) 0 for all p . 

can be shown that this is an order relation which makes V(L) 

into a lattice-ordered ring. Note that this is a different 

order relation from the one defined by the monotonie cone. 

The canonical idempotents can be used to systematically 

solve systems of Boolean equations in a distributive lattice 

In fact the notion of pseudo-Boolean function of Hammer and 

Rudeanu is seen to be a special case of the valuation ring, 

and much of their theory can be extended to the present 

context. 
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4. Representation 

If L is finite, then for x e L we have 

x — E e (p) , 
p<x 

and in this way we obtain a representation of every x e L 

as the indicator function (characteristic function) of a de-

creasing subset of the set P of join-irreducibles. The 

monotonie cone of V(L) is thus represented as the cone of 

non-increasing functions on P, and V(L) is represented as 

the ring generated by the indicator functions of increasing 

subsets of P. We thus obtain a very simple proof of 

Birkhoff 1 s theorem. 

We can extend this result to arbitrary valuation rings. 

Define P(L) as the set of all prime ideals of the ring V(L) 

generated by all canonical idempotents. Given any two prime 

ideals a,b e P (L) , such that a b and a / b, we can find two 

orthogonal idempotents e,f e E(L) such that e e a and f e b; 

now take a finite-dimensional sublattice L' for which V(L') 

contains both e and f as canonical idempotents; it is then 

easy to find an increasing element p and a decreasing set q 

such that e p = e and f q = f. 
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Now use the canonical idempotents, together with u and 

z, to define a compact totally order disconnected topology 

on the ordered set P(L). This topology, in view of the above 

remarks, enjoys the following property: given a,b not 

comparable, we can find an increasing clopen set p and a 

decreasing clopen set q such that a e p and b e q . Such a 

space is called totally order disconnected. 

One thus gets the following representation theorem: 

every valuation ring is isomorphic to the ring generated by 

the (monotonie) cone of integer-valued non-increasing con-

tinuous functions on a totally order-disconnected compact 

space. This representation theorem is easier than the 

direct representation theorems for lattices, even for Boolean 

algebras. 

Restated in categorical terms, the preceding argument 

can be made to prove the following. Consider the category Dis 

of distributive lattices having maximal element u and minimal 

element z, where morphisms are lattice-homomorphisms pre-

serving u and z, as well as the category Val of valuation 

rings,where morphisms are ring homomorphisms preserving u and 

z and the monotonie cone; finally, the category Mon of all 

rings of continuous integer functions on totally order dis-

connected compact spaces, endowed with the monotonie cone of 
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all non-increasing f u n c t i o n s , and morphisms consisting of all 

ring h o m o m o r p h i s m s p r e s e r v i n g the m o n o t o n i e c o n e . The three 

c a t e g o r i e s are e q u i v a l e n t . (Note that in the category Mon 

the integral z requires special care.) By this e q u i v a l e n c e , 

a h o s t of q u e s t i o n s relating to Boolean algebras and distri-

b u t i v e lattices can be s i m p l i f i e d . 

A v a r i a n t of the representation theorem replaces prime 

ideals by m o r p h i s m s of V(L) into the valuation ring of the 

t w o - e l e m e n t d i s t r i b u t i v e l a t t i c e . A n o t h e r v a r i a n t uses the 

r e p r e s e n t a t i o n in the finite case and constructs the space 

P(L) as a c a t e g o r i c a l l i m i t . This last is perhaps the m o s t 

s a t i s f a c t o r y , though least familiar a p p r o a c h , since it ex-

h i b i t s totally o r d e r d i s c o n n e c t e d spaces as pro-finite 

o r d e r e d s e t s . 
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5. Homology 

Let P be a finite ordered set. It is well-known 

that one can associate to P the homology groups of the 

simplicial complex Z(P) whose faces are all the linearly 

ordered subsets of P , ordered by inclusion. If P is 

already a simplicial complex, one obtains ordinary simplicial 

homology. If P has a unique minimal element z, then the 

homology of P is trivial. More generally, the rank of the 

zero-th homology group Hq (E(P)) equals the number of con-

nected components in the Hasse diagram of the ordered set P, 

but an interpretation of the homology of P in terms of the 

order of P has not been given. 

Now, we can associate to P the valuation ring of the 

distributive lattice of its decreasing sets, by a (contra-

variant) functor. This leads to the suspicion that the 

homology of an ordered set may be defined in an algebraic 

way by means of the associated valuation ring. It turns out 

in fact that the Koszul complex construction gives a resolution 

which is closely related to the simplicial homology of 

Z(P). Because the technique is not familiar, we briefly 

describe it here. 

Suppose the valuation ring V(L), with set P of join-

irreducibles, acts on a module M . The most important case 
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occurs when M is a module of integer- or real-valued 

functions on a set S , and the action is obtained by as-

sociating to every p e P the indicator function of a sub-

set of S , followed by ordinary multiplication. In 

plain words, the ordered set P is "represented" by a family 

of subsets of 3 , where inclusion of subsets is isomorphic 

to the order of P . The homology of P thus should be a 

measure of the complexity of a system of sets, relative to 

unions and intersections. Note that different modules M 

can give rise to essentially distinct homologies for the 

same ordered set P . 

For simplicity denote the action of P on M by 

(p,m)+pm, and list the elements of P , say p^,p>2, . . . 'Pn« 

Choose anticommutative variables e^,...,e generating an ex-

terior algebra: e.e. = - e .e.. (Note: these are not 
J 1 

members of V(L).) Let E^(M) be the module of all linear combi-

nations of elements of degree k , with coefficients in M , 

that is, of linear combinations of elements of the form 

m (e. e. . . . e . ) , 0 k n , to e M . 
11 12 xk 

Define the boundary operator 9 of such an element by 

9(m e. e. ... e. ) = 
X
1

 1
2
 x

k 
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= p . m (e. ... e. ) - p . m (e. e. ... e. ) + ... -
X 1 X 2 X k 1 2 1 1 3 x k 

- ... + (-1)^ ^ p . m (e. e. ... e. ) . 
Xk 11 12

 1k-l 

This is well defined in view of the anticommutativity of the 

2 

e^. It is easily verified that 8 = 0, so that we obtain a 

complex associating a resolution to P and M . 

Our claim is that simplicial homology of an ordered set 

P can be obtained from the Koszul complex of P considered 

as a subset of the valuation ring. 

The following questions may be worth investigating: 

(a) Starting with the valuation ring of an infinite 

distributive lattice L , is it possible to define its 

homology by approximation by finite sublattices, whose 

valuation ring is a subring of the valuation ring of L ? 

This might simplify the process of simplicial approximation. 

(b) In the finite ordered set P , the submodules M^ 

k-1 

generated by p^ - p 2 + ... + (-1) p^ • 

generate all of the valuation ring. Each of these 

alternating sums is the indicator of a subset of P; thus we 

obtain a sequence of increasingly complex subsets of P , 

whose union is the family of all subsets of P . It is 
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inevitable to conjecture that the dimensions of M^/M^ ^ 

should be related to the Betti numbers of P . This 

filtration provides a measure of the complexity of a subset 

of P , which can in turn be used for the study of Boolean 

functions (see below.) 

(c) The Koszul resolution may be expressed in terms of 

the canonical idempotents, instead of the join-irreducibles. 

In this way, one obtains an expression for the boundary in 

terms of the Mobius function. Is it possible in this way to 

relate the homology to the Mobius function? Judging by the 

example of geometric lattices, it should be. 

(d) It is an open question to construct free resolutions 

for the valuation ring. Taking the elements of P as 

generators, one has the relations 

p q = X c ( r ) r 
reP 

for suitable coefficients c(r), easily computed in terms of 

the Mobius function of P . But these relations are not 

independent, considered as a module over V(L). What are 

their dependencies? The question is not trivial even in the 

case of a valuation ring freely generated by an ordered set 

Q , as considered above,where the only relations are of the 
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form pq = p. These relations are not independent; a smaller 

generating set is obtained by taking only those where q 

covers p; but even these are not always independent. The 

question of a free resolution is worth investigating, if only 

because of the possible connection with the characteristic 

polynomial of the ordered set P , which, as has been ob-

served, shares some of the properties of the Hilbert poly-

nomial . 

In terms of the canonical idempotents, a set of rela-

tions is given by the orthogonality relations. However, 

these are seldom independent; their dependencies depend on 

linear relations satisfied by the Mobius function. 
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6. Propositional Calculus 

Classical propositional logic is equivalent to the 

study of the free valuation ring V(L) generated by a sequence 

of idempotents x^ fJ^' • • • • e l e m e n t s °f this ring will be 

called Boolean polynomials. The axiomatic of pronositional 

logic amount to an axiomatic for rings generated by idem-

potents. The constants u and z in the ring V(L) corres-

pond to the propositional constants for truth and falsehood. 

The implication p o q for idempotent p and q turns out to 

equal u - p + p q , and the deduction theorem states that if 

P,q are idempotents and p>q, then p 3 q = u. Verifying that a 

statement is a tautology amounts to showing that it equals u. 

The present context leads to a re-examination of some of 

the concepts of classical logic, and we shall consider a few 

by way of example. 

Suppose f,g e V(L) are not idempotents. Is it possible 

to give a meaning to "f implies g"? For monotonie (or even 

non-negative) f and g, the natural extension is f <_ g. 

For a given sequence f ̂  , . . . , f 2 of Boolean polynomials, 

not necessarily idempotent, one can define the information 

of the sequence to be the sublattice L' of L generated by 

the sequence (with o r without taking complements). The com-

plexity of the sequence can then be described by finding a 
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resolution of the set of generators of L', that is the join-

irreducibles of L
1
, in the sense of generators and relations. 

The relations describe, in an intuitive way, the various ways 

of proving a subset of the f^ from another subset, and the 

relations between relations give a meaning to the 

notion "two proofs are equivalent." The Koszul complex built 

on P or directly on the f^ also gives information on the 

complexity of Boolean functions. Thus, the study of 

complexity of Boolean polynomials can be reduced to techniques 

of commutative algebra. 

The duality of classical logic is preserved in the valu-

ation ring: interchanging joins and meets simply interchanges 

the roles of u and z , and u becomes the integral, whereas 

z is theiunit. 

The canonical idempotents of the free valuation ring can 

be explicitly computed. Any subset A of generators de-

defines a join-irreducible 

and gives for the canonical idempotents e(A) the formula 

e (A) = I y( A,B)x B 

B̂ <J> 
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If A is the set x ^ , , . . . , x n , then this can be rewritten as 

e(A) = X 1 X 2 ... x n (u - x n + 1 ) (u - x n + 2 ) ... . 

When is a Boolean p o l y n o m i a l a Boolean function? This 

q u e s t i o n can be i n t e r p r e t e d in two w a y s , according as one 

a d m i t s just m e e t s and j o i n s , or complementation as w e l l . 

E v e r y Boolean p o l y n o m i a l can be uniquely w r i t t e n as a linear 

c o m b i n a t i o n of c a n o n i c a l idempotents; it is a Boolean function 

(including c o m p l e m e n t a t i o n ) if every c o e f f i c i e n t 

in such an e x p r e s s i o n is 0 or 1. It is a Boolean f u n c t i o n , 

e x p r e s s e d by joins and m e e t s o n l y , if and only if the coef-

ficients w h i c h e q u a l 1 form a decreasing set of P . 

Suppose n o w that a Boolean p o l y n o m i a l f is given in 

the form 

(*) f = I c ( A ) x A , 
A 

w h e r e A ranges o v e r a finite set of i d e m p o t e n t s . W h a t condit ions 

m u s t the n u m e r i c a l c o e f f i c i e n t s c(A) s a t i s f y , in order that f 

be a Boolean function b u i l t up o u t of joins and m e e t s (but n o t 

c o m p l e m e n t s ) ? An e l e g a n t a n s w e r can be given using the notion 

of E u l e r c h a r a c t e r i s t i c of a simplicial c o m p l e x , n a m e l y , a 

603 



family of sets closed under the operation of taking subsets. 

If £ is a finite such simplicial complex, and A a member, 

or "face" of £, then the relative simplicial complex (E,A) 

consists of those faces of E which contain the face A; 

let denote the Euler characteristic of the relative 

simplicial complex (E,A). The answer to our question is: a 

Boolean polynomial (*) is a lattice polynomial if and only if 

c (A) + 1 = -

for some simplicial complex £ of subsets of the set of join-

irreducibles; A ranges through the faces of E , and 

c(A) = 0 otherwise. 

Now consider the representation of a Boolean polynomial 

f in terms of joins, meets and complements x = u-x. In 

terms of the canonical idempotents a necessary and sufficient 

condition is that 

f = E c (A) e (A) + u E (J c (A) |-c (A) )/2 , 
A A 

with c(A) = + 1. Again, this can be turned into a condition in 

terms of the generators x^,but we shall not do so. The repre-

sentation in terms of joins, meets and complements is not 

unique, as is well-known, and the theory of prime implicants 
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can be developed along present lines. So can the classical 

theory of Boolean e q u a t i o n s . 

A (propositional) theory is an ideal in the free valua-

tion r i n g , generated by Boolean functions, that is, by 

members of L ; in this case the quotient is again a valuation 

r i n g , in general not free; a g a i n , the complexity of the axiom 

system can be investigated by generators and r e l a t i o n s , or by 

finding a suitable basis for the axioms in the valuation r i n g . 

Finding the canonical idempotents explicitly amounts to solving 

the decision problem for the theory. We shall illustrate the 

simplicity of the use of the valuation ring by an example 

from c o m b i n a t o r i c s . 

R e c a l l that a geometry on a finite set S is a family 

of n-subsets called bases such that if (a^,...,a^) and 

(b^, . . . , b ) are b a s e s , then for some i , both (b^, a 2 , . . . , a^) 

A 

and ( a ^ , . . . , . . . , b n ) are b a s e s . A fundamental problem 

is that of deciding which statements about bases follows from 

this a x i o m . 

Now one can restate the axiom as an identity in the 

valuation ring generated by idempotents (a-^, . . . r
a
n ) w h i c h 

take the value 1 if the a^ form a b a s i s , and 0 o t h e r w i s e . 

The basis axiom then turns into a linear identity, w h i c h , 

simplified by the inclusion-exclusion p r i n c i p l e , is 
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(a^,...,a n) (b1,...,fc>n) = (b 1,a 2,...,a n) ... fb n)V 

V , a 2 ' ' ' * ' a l ' b 3 ' * " * V ^ ^ b n ' a 2 ' * * * 

n 
( b ^ r b 2 , . . . - S (b^,a 2,...a n) . . . . . . , b n ) -

A 

A 

• b^) 4" • • • • 

This identity can be analyzed by Young's method of stan-

dard tableaux. In this way, a decision procedure can be 

found for combinatorial geometry, and the powerful tech-

niques of representations of the symmetric group can be 

brought to bear on the problem. 
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7. Averaging Operators 

An averaging operator on a valuation ring V(L) 

is a linear operator A such that 

(1) A u = u , A z = z . 

(2) A(fAg) = Af Ag. 

(3) If f is in the monotonie cone, so is Af. 

Sometimes these operators go by the name of Reynolds ope-

rators. In probability, they are called conditional expecta-

tions . We shall investigate the structure of averaging ope-

rators. To this end, it is convenient to consider valuation 

rings with coefficients in an arbitrary commutative ring R 

with identity subject to conditions to be specified later, 

and written V(L,R). 

The range of an averaging operator A is a valuation 

ring of the form V(L'), where L' is a sublattice of L . 

For every x e L we have 

(*) A x = E c (x,e)e , c(x,eXe R , 
eeP 

where P is the set of canonical idempotents of L' other 

than z , and the sum is finite. We shall characterize an 

averaging operator by properties of the coefficients c(x,e). 

607 



Since A e = e for e e P w e infer that if x /y e = z , 

then A x A e = z , o r , as w e shall s a y , the s u p p o r t of A x 

c o n t a i n s the s u p p o r t of x . F u r t h e r m o r e , w e infer 

(1) c(x a e,e) = c(x,e) . 

(2) c(e,e) = 1 , e e P . 

From the fact t h a t A is l i n e a r , o r A ( x v y) + A(xy) = 

Ax + Ay w e add the p r o p e r t y 

(3) c(x A y , e ) + c(x V y,e) * c(x,e) + c ( y , e ) , x , y e L , 

in o t h e r w o r d s , for fixed e the function c is a v a l u -

ation on the lattice L . F i n a l l y , w e have t h a t A z = z , so 

(4) c(z,e) = 0 

and A u = u , w h e n c e 

c(u,e) = 1 . 

W h e n the lattice L ' is f i n i t e , and w h e n P is the 

set of c a n o n i c a l i d e m p o t e n t s of L ' , c o n d i t i o n s (1) - (4) 

on the c o e f f i c i e n t s c define a u n i q u e a v e r a g i n g o p e r a t o r . 
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W h e n L ' is n o t f i n i t e , the right side of (*) is n o t 

w e l l - d e f i n e d ; to h a n d l e this c a s e , w e introduce a seemingly 

s p e c i a l class of averaging o p e r a t o r s . For every finite sub-

lattice TT of L ' , let A ^ be an averaging o p e r a t o r w h o s e 

range is the v a l u a t i o n ring V(TT), considered as a subring of 

V (L) . If A is a s u b l a t t i c e of TT , w e assume that 

(**) A A = A , ' a TT a ' 

in o t h e r w o r d s , the o p e r a t o r s A ^ form a m a r t i n g a l e as TT 

runs through a l l finite sublattices of L ' . Now s e t , for 

x e L 

(***) A x = lim A_ x 
TT tr 

w h e r e the limit on the r i g h t side means the following: for 

e v e r y x e L there is a sufficiently large sublattice ir of 

L ' such that A x = A x , and A x = x for all sublattices o 
TT a 

of : L ' c o n t a i n i n g TT . We shall say that such an a v e r a g i n g 

o p e r a t o r is o b t a i n e d by finite a p p r o x i m a t i o n . 

C o n d i t i o n (**) implies a condition on the c o e f f i c i e n t s 

c , d e r i v e d as f o l l o w s . W r i t i n g 

A x = I c ( x , e ) e ; A x = E c ( x , f ) f , 
° eeP feQ 
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w h e r e P and Q are the sets of c a n o n i c a l idempotents of 

a and IT, w e find 

A A x = £ £ c ( x , f ) c ( f , e ) e = 
a ÏÏ £ 

e f 

= £ c(x,e)e , 
e 

and hence 

£ c ( x , f ) c ( f , e ) = c(x,e) . 
f 

Since a is a s u b l a t t i c e of TT , e a c h c a n o n i c a l i d e m p o t e n t of 

ÏÏ is c o n t a i n e d in a unique c a n o n i c a l i d e m p o t e n t of a , and 

the p r e c e d i n g sum simplifies to 

£ c ( x , f ) c ( f , e ) = c(x,e) . 
f <e 

R e p l a c i n g x by xf for a fixed c a n o n i c a l i d e m p o t e n t f of o , 

this gives 

£ c(xf ,f)c(f,e) = c ( x f Q , e ) . 
f <e 

But c(xf ,f) = 0 unless f = f . and this sum simplifies to o o ^ 
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c(xf ,f )c(f ,e) = c(xf ,e) , 
o'o o' o' ' 

w h i c h in turn can be restated in more e l e g a n t form as 

(5) c(x,ef)c(f,e) = c(xf,e) . 

This is the c o n d i t i o n for a c o c y c l e in h o m o l o g y . F i n a l l y , 

c o n s i d e r the limit c o n d i t i o n (***). If A x is given by the 

r i g h t side of (*), and if f is any c a n o n i c a l idempotent of 

L ' , then 

A(xf) = fAx = £ c(x,e)ef = Z c(x,ef) ef 
e e 

and thus we have that c(x,e) = c(x,f) for any f £ e; in other 

w o r d s , we require :(6) for every x e L and every c a n o n i c a l 

i d e m p o t e n t e of L ' such that 

A x = I c (x,e)e w i t h c(x,e) ^ 0 
e 

one has c(x,e) = c (x, f ) for every canonical i d e m p o t e n t f of 

L 1 c o n t a i n e d in e . 

This last condition puts a strong r e s t r i c t i o n on the 

sublattice L ' . For suppose f < x; then c(x,f) = 1 by (1) 
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and hence c(x,e) = 1; t h u s , if c(x,e) ^ 1, then no f < e 

is contained in x . A g a i n , if f x = z, then c(x,f) = 0 by 

(4); t h u s , if c(x,e) ? 0, then any c a n o n i c a l i d e m p o t e n t f 

such that f m e e t s e also m e e t s x , that i s , f A x ^ z. 

We conclude that there is a m a x i m a l f e L ' c o n t a i n e d in x , 

call it V'xf and a m i n i m a l e c L ' c o n t a i n i n g x , c a l l it ,3x • 

The (non-linear I) o p e r a t o r s on L 

x V x , 

are q u a n t i f i e r s (universal and e x i s t e n t i a l ) in the sense of 

H a l m o s , and the s u b l a t t i c e L ' m u s t be r e l a t i v e l y c o m p l e t e 

in L . 

We thus find that on the right side of (*) o n e term 

always is c ( x , V x ) V x , w i t h c ( x , VxJ = 1; of the r e m a i n i n g 

t e r m s , c(x,e) ^ 0 only if e < -Jx. ,A function c (x,e) d e f i n e d 

for x c L and for all n o n - z e r o c a n o n i c a l i d e m p o t e n t s e e L', 

satisfying condition (1) - (6) is c a l l e d a fibering of L 1 by 

L . We have shown that every a v e r a g i n g o p e r a t o r o b t a i n e d by 

finite a p p r o x i m a t i o n d e t e r m i n e s a fibering; c o n v e r s e l y , every 

fibering d e t e r m i n e s an averaging o p e r a t o r , assuming t h a t L ' 

is relatively c o m p l e t e in L . 

612 



A n y further statement about the existence of a fibering 

for a given pair L and L ' depends on more delicate 

m e a s u r e - t h e o r e t i c q u e s t i o n s . If L and L ' are B o o l e a n 

a l g e b r a s , the e x i s t e n c e of a "universal" fibering can be e 

e s t a b l i s h e d , b u t this requires a previous c l a s s i f i c a t i o n of 

s u b a l g e b r a s of a Boolean algebra (Haharam ), and c a n n o t be 

u n d e r t a k e n h e r e . The case of i n t e r e s t in p r e d i c a t e loqic 

is w o r k e d o u t b e l o w . 

613 



8. Quantifiers. 

Every relatively complete Boolean subalgebra L' 

of a Boolean algebra L defines two quantifiers, the ex-

istential quantifier 

_.. x = inf {y: y x , v e L'} 

and the universal quantifier 

V x = sup {y : y <_ x, y e L 1 } 

We have seen that every non-trivial averaging operator on 

the valuation ring V(L,R) defines two such quantifiers. Is 

it possible to reverse the process? In other words, given 

L and L' , we wish to construct an averaging operator: 

A x = E c(x,e)e 
e 

where e ranges over the canonical idempotents of L' , with 

the following properties: 

(a) for x e L, the support of x, that is, £{e: c(x,e)^0}, 

is the idempotent j x 
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(b) for x e L , the i d e m p o t e n t V x coincides w i t h 

Z{e: c (x,e) = 1 } . 

Vie shall solve this p r o b l e m in a special c a s e , w h i c h is strong 

e n o u g h to include the q u a n t i f i e r s of predicate l o g i c . It 

w i l l be simpler to d e s c r i b e the construction in s e t - t h e o r e t i c 

l a n g u a g e . T h u s , we are given two sets S and T , and on S 

a Boolean algebra L ' of subsets freely generated by elements 

' W 1 , y 2 , w 2 ' Y3 ' w 3 ' • • • such that = We identify L 1 

w i t h the Boolean alnebra of S - c y l i n d e r sets in the p r o d u c t 

S x T . Now take a Boolean algebra of T - c y l i n d e r s e t s , freely 

g e n e r a t e d by z , , z 0 , . . . . 

Now let L be the Boolean alaebra of subsets of S x T 

g e n e r a t e d by the and w ^ . The q u a n t i f i e r s from L 

to L ' can be e x p l i c i t l y d e s c r i b e d as follows: 

(1) If x b e l o n g s to the Boolean subalgebra g e n e r a t e d 

Set 

y , + t, 1 1 

by the y . and w . , set V x = x and J x 1 1 x ; 

(2) Set J (x v y ) v 

615 



and V(x A y) = V x A V y for all x,y e L; 

(3) Set 

x. = y. + w., —! v. = y. , 
i J

 i i J i 7 1 ' 

J (x. x. ... x. ) = (y. + w. ) ... (y. + w. ) , 
1 2 n 1 1 X 1 l 2 S 

V x . = y . . ^ y . = y . 
i x i ' 7 1 i 

V(x. v — V x , ) = y. \/ ... V y , , 1, 1 1, 1 
n i n 

J x. = 
! 

V x. = y. + w v i J
 i : 

In view of the known properties of quantifiers (Halmos) 

this gives __ x for all x in L . We can now construct the 

averaging operator of L onto L' , by choosing a suitable 

universal ring of coefficients. 

Set 

A x . = y. + c (x . , w. ) w. l 1 1 I ' l l 

616 



w h e r e the c o e f f i c i e n t s c belong to an as y e t u n s p e c i f i e d 

r i n g . D e f i n e A ( x . x. ... x . ) by i n d u c t i o n , w r i t i n g 
1 1 l 2 1 n 

A(x-,...x ) for s i m p l i c i t y . Having defined A ( x , ...x ,) w e 
i n ± n—i 

have 

A ( X l . . . x n ) = A ( x 1 . . . x n _ 1 ( y n + t n ) ) = 

= y n A ( x 1 . . . x n _ 1 ) + A ( x 1 . . . x n _ 1 t n ) , 

so w e set 

A ( x 1 . . . x n _ 1 t n ) = c ( x 1 . . . x n _ 1 x n , w 1 . . . w n ) w 1 . . . w n . 

L e t R be the c o m m u t a t i v e ring w i t h identity g e n e r a t e d 

by these v a l u e s of c , together w i t h conditions (1) - (6) of 

the p r e c e d i n g S e c t i o n . C o n d i t i o n (6) is m a d e specific by 

stating that 

c C x ^ - . x , w ± . . .w nf) = c ( x 1 . . . x n , w ^ . - . w ^ 

for any i d e m p o t e n t f in the range of A . T h e s e c o n d i t i o n s 

d e t e r m i n e the v a l u e s of c u n i q u e l y , and in fact m a k e it a 

fibering of L by L* . 
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To simplify the c o m p u t a t i o n of A x , w r i t e 

x . = p . + q . , w h e r e p . = y . - w . + t. is a c y l i n d e r s e t , and 1 1 1 1 1 1 1 

q . = w . - t . . T h e n ai i i 

A x . = p . + c (x., w . ) w . , i * i i ' i i ' 

as is easily c h e c k e d . 

As an e x a m p l e of c o m p u t a t i o n w i t h the a v e r a g i n g o p e r a t o r 

A , let us verify that 

A ( x 1 x 2 ) + A (x^x 2 ) = • 

N o w , 

A f X j ^ ) = y x P 2
 + c ( x 1 , w 1 ) p 2 w 1 + c ^ 2 ' W 2 ^ y l W 2 + 

+ c (x^x"2 , w ^ w 2 ) w ^ w 2 , 

and 

A ( x 1 x 2 ) = y x y 2 + c ^ x ' w l ^ 2 W l + c ^ x 2 ' w 2 ^ y l w 2 + 

+ c ( x 1 x 2 , w ^ w 2 ) w 1 w 2 . 

A d d i n g , 

A(X±X2) + A(X1X2) = Y1(Y2+P2) + C ^XL'WL^Y2+P2^ W1 + 
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+ y l W 2 + C ' W 1 W 2 ^ W 1 W 2 ' 

where we have used the additivity of e . But Y 2 + P 2 + w 2 = u ' 

and furthermore c(x^,w^w 2) = by condition (6) in 

the definition of a fibering. Simplifying, the right side 

is seen to equal y^ + c ^ x l ' w l ^ w l ' a s desired. 

One retrieves the quantifiers from the averaging ope-

rator by the following algorithm: 

(1) Write A x as the sum of multiples of disjoint 

idempotents,where the multiples are values of c; 

(2) To get _J. x , replace by 1 all coefficients which 

are non-zero, and take the sum of the resulting idempotents; 

(3) To get V x , replace by 0 all coefficients which do 

not equal 1, and take the sum of the remaining idempotents. 

We shall informally illustrate the connection with the 

decision problem for the predicate calculus. Let x ^ , x 2 , . . . 

be predicates in two individual variables: F 1 ( x , y ) , F 2 ( x , y ) , . . . 

and let the y. and w. be predicates in one individual variable i i 

such as G(y). In order to analyze the validity or satisfi-

ability of a formula in the predicate calculus quantified 

in the single variable x, and not necessarily in prenex 

normal form, reason as follows. Every predicate F^(x,y) can 

be decomposed into the disjoint sum of three predicates: 

F - n ( x , y ) , corresponding to the set of x for which no y 
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exists for w h i c h F^(x,y) is t r u e , F ^ ( x , y ) , c o r r e s p o n d i n g to 

the set of x for w h i c h there exists some y such t h a t 

F^(x,y) is t r u e , and F ^ (x,y), c o r r e s p o n d i n g to the set of 

x for w h i c h F^(x,y) is true i r r e s p e c t i v e of y . C l e a r l y 

F ± ( x , y ) = F i 0 ( x , y ) + F i ; i ( x , y ) + F ± 2 (x,y) . Now F i ] L ( x , y ) 

c o r r e s p o n d s to t ^ , and F ^ ^ r Y ) c o r r e s p o n d s to y ^ . We as-

sign p r e d i c a t e s G.(x) and H.(x) = F.~(x,y) to t. and v . . 
" i i i2 '

1
 i y i ' 

so that we have 

A F (x,y) = c ( F , G i ) G± (x) + H±(x). 

By this t e c h n i q u e , and its e x t e n s i o n to s e v e r a l v a r i a b l e s , 

every formula of the p r e d i c a t e c a l c u l u s is seen to be e q u i v a -

lent to a formula in a v a l u a t i o n ring e n d o w e d w i t h c o m m u t i n g 

a v e r a g i n g o p e r a t o r s . In o t h e r w o r d s , p r o b l e m s of f i r s t - o r d e r 

l o g i c , such as the d e c i s i o n p r o b l e m , can be shown to be 

e q u i v a l e n t to a l g e b r a i c p r o b l e m s for v a l u a t i o n rings w i t h 

a v e r a g i n g o p e r a t o r s . 

The case of several commuting q u a n t i f i e r s is t e c h n i c a l l y 

m o r e c o m p l e x , b u t the idea is the same: one considers a 

Boolean algebra g e n e r a t e d by d i s j o i n t p a r e l l e l e p i p e d s of a 

very special kind in an n - c u b e ; the e x p r e s s i o n of q u a n t i -

fiers by a v e r a g i n g o p e r a t o r is akin to an Herband e x p a n s i o n , 
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but the linear structure of the valuation ring allows con-

siderable simplifications. We hope to take up these matters 

elsewhere. 
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9. Logic and Probability. 

In the present context, the algebra of real random 

variables on a probability space can be viewed as a close 

analog of a valuation ring, the only difference being that 

infinite sums of idempotents are allowed. In fact, the 

passage from predicate logic - i.e., a valuation ring with a 

set of commuting averagincr operators - to probability is 

achieved by the following steps: 

(1) Assign a probability measure y to the canonical 

idempotents; 

(2) Define an L-space norm on the valuation ring by 

setting 

|Ea(e)e| = £|a(e)|p(e) ? 
e 

(3) Complete the resulting normed linear space, thereby 

obtaining an L-space, representable as the space of all inte-

grable functions. 

(4) Represent every averaging operator as a conditional 

expectation operator (in the sense of probability.) Once the 

restriction that every element of the range be finite-valued 

is removed, one can show that a conditional expectation 

operator always exists. 
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The r e s u l t i n g structure is richer than that of a 

p r o b a b i l i t y s p a c e , b e c a u s e it is endowed in addition w i t h a 

m o n o t o n i e cone of n o n - d e c r e a s i n g f u n c t i o n s . 

By this p r o c e s s certain questions of p r e d i c a t e logic can 

be seen to be analogous to questions in p r o b a b i l i t y , and new 

q u e s t i o n s in p r o b a b i l i t y are suggested by the analogy - . 

For e x a m p l e , does the decision p r o b l e m for averaging operators 

make sense? Problems of m o d e l t h e o r y , which can be re-

p h r a s e d and simplified in the c o n t e x t of v a l u a t i o n r i n g s , 

have analogs for p r o b a b i l i t y s p a c e s . The intriguing possi-

b i l i t y arises of handling the decision p r o b l e m of p r e d i c a t e 

logic by the techniques of p r o b a b i l i t y . 
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1 0 . A c k n o w l e d g e m e n t s . 

It was L . S o l o m o n w h o first introduced w h a t we have 

called c a n o n i c a l i d e m p o t e n t s , but his c o n s t r u c t i o n r e m a i n e d 

o b s c u r e for several y e a r s ; he called it the Mobius algebra 

of an o r d e r e d s e t . A few y e a r s l a t e r , the p r e s e n t w r i t e r 

introduced the notion of v a l u a t i o n ring of a d i s t r i b u t i v e 

l a t t i c e , quite u n a w a r e that it m i g h t be related (at least in 

n 

the finite case) w i t h S o l o m o n ' s M o b i u s a l g e b r a . It was R . 

Davis who proved the i s o m o r p h i s m of the two s t r u c t u r e s ; 

s u c c e s s i v e l y , C . Greene m a d e the c a l c u l a t i o n s w i t h c a n o n i c a l 

idempotents o b v i o u s , and used them to s y s t e m a t i c a l l y d e r i v e 

p r o p e r t i e s of the M o b i u s f u n c t i o n . It m u s t be p o i n t e d o u t 

h o w e v e r that the v a l u a t i o n ring is m o r e g e n e r a l than the 
ft . , , 

M o b i u s a l g e b r a , since it does not require any finiteness 

a s s u m p t i o n s . 

The v a l u a t i o n ring was later studied by G e i s s i n g e r in 

a series of papers ; to him is due the e x i s t e n c e of an aug-

m e n t a t i o n , the i n t e g r a l , and the e l e g a n t d u a l i t y , w h i c h ex-

tends to all v a l u a t i o n rings the d u a l i t y of B o o l e a n a l g e b r a s . 

The r e p r e s e n t a t i o n of d i s t r i b u t i v e lattices in terms of 

totally o r d e r d i s c o n n e c t e d spaces w a s r e c e n t l y d i s c o v e r e d by 

P r i e s t l e y ; we h a v e given h e r e the v a l u a t i o n - r i n g v e r s i o n , 

w h i c h is slightly simpler and tells m o r e . The notion of 
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quantifier on a Boolean algebra was introduced by Everett and 

Ulam and extensively studied by Ilalmos and others, but the 

precise connection with averaging operators seems to be new, 

though the analogy had been noted by Wright. Averaging ope-

rators on spaces of continuous functions have an extensive 

literature (Brainerd, Kelley, Wright); in the present con-

text they have not been previously considered. 

It seems astonishing that the use of the valuation ring 

as a technique of proof and as a decision procedure should 

not have been realized and exploited, even for the proposi-

tional calculus. We hope the present paper will contribute 

to correct this neglect. 

The conjectured connection between the homology of an 

ordered set and the Koszul complex also seems to be new, and 

we hope its potential usefulness in studies of computational 

complexity will also be developed. 
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PROBLEMS 

Problem. Given a partially ordered set P, what subsets of P are images of 

order-preserving idempotent functions f;P y P ? (If P is a complete 

lattice, the answer is: any subset A £ P which is a complete lattice in 

the induced order.) 

Henry Crapo 
University of Waterloo 

Problems belong to the folklore 

1. What are lattices of congruence relations of groupoids (algebras of 

finite type)? (conjecture: all algebraic lattices) 

2. What is the concrete structure of the set of congruence relations for 

an algebra? 

Other problems 

1. (See 1. above) Given a complete lattice L , what is the minimum 

number of operations required to represent L as the congruence 

lattice of an infinitary algebra? What is the minimum number of 

operations of rank less than the cordinality of L? 

2. If L is a complete (resp., algebraic modular lattice and G is a 

group, is it always possible to find some infinitary (resp., finitary) 

algebra A s.t. 

(i) G R : Aut (A) 

(ii) L — Con (A) 

(iii) in Con (A) # v $ = € $ Q for any $? 

William A . Lampe 
University of Hawaii 
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Problem: Let V c ( K ) denote the variety of lattices generated by the con-

gruence lattices of algebras in K , where K is a variety. If V c ( K ) is 

proper, must it be included in the variety of modular lattices? 

PROBLEM: J . B. Nation has shown (1972) that not every variety of lattices is 

of the form V (K). Characterize {V (K):K a variety}. Is this class 
c c J 

a sublattice of the lattice of lattice varieties? 

PROBLEM: If K is a congruence-modular variety of algebras of finite 

type, must every finite member of K have a finitely based equational 

theory? 

PROBLEM: Are finitely generated free lattices weakly atomic? 

5. PROBLEM: If V ( A ) ^ V in the lattice of lattice varieties, and A is 

a finite lattice, must V^ = V(B) for some finite B? ( means "covered", 

V(A) is the variety generated by A.) 

6. PROBLEM: Is the set of "universal" first order sentences true in the free 

lattice FL^ a recursive set? 

I make no claim to having originated these problems. 

R . McKenzie 

University of California 
Berkley 

If L is a uniquely complemented lattice satisfying a proper lattice 

identity then L is distributive. (Classically known for modular identity) 

R . Padmanabhan 
University of Manitoba 
Winnipeg 

1. Let G be group of automorphisms of a totally ordered set L . Does 

there exist an integer n such that for every L if G is m-transitive 

then for every K ^ n G is K-transitive. 

S. Fajtlowicz 
University of Houston 
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PROBLEMS ON COMPACT SEMILATTICES 

1. Let S be a compact, metric, one-dimensional semilattice. Suppose that 

S — i s an open, monotone, epimorphism. Must (f be an isomorphism? 

2. Let S be a compact, metric, finite-dimensional semilattice with small 

semilattices. Let x,y e S. Does there exist a closed subsemilattice A 

of S such that dim A < dim S and A separates x and y in S? 

3. Let S be a compact, connected, finite-dimensional semilattice with 

small semilattices. Is A the strict projective limit of locally connected 

semilattices? 

4. Let S be a compact, connected, locally connected, one-dimensional semi-

lattice. Is S the strict projective limit of one-dimensional polyhedral 

semilattices? 

5. Let A be a compact space with a closed partial order. Is there a con-

tinuous isotone map of A into a compact semilattice S where dim A = dim S? 

6. Consider the class £ of semilattices generated by the min interval by 

the operations of forming finite products, quotients and closed subsemi-

lattices. Is the class £ precisely the class of compact topological 

semilattices of finite breadth? 

7. Do compact semilattices of finite breadth have the congruence extension 

property? Does the class ? 

8. Let U be an open cover of a compact semilattice S with small semilattices. 

Does there exist a closed congruence f ^ such that the congruence classes 

of refine U and S/FI is locally connected and finite-dimensional. 

9. Let S be a topological semilattice on an n-cell with boundary B such 

2 
that o £ B. I S B = S ? If x e B does there exist y e B such that xy = 0? 
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10. Let S be a one-dimensional, compact, connected similattice with a 

closed set of end points. Does S have small semilattices? 

11. Let S be a topological semilattice on a Peaiio continuum. Is S an AR? 

12. Let S be an n-dimensional semilattice on a Peano continuum. Does S 

contain an n-cell? 

13. Let S be a compact, connected, n-dimensional semilattice. Does there 

exist x € S such that dim xS = n? 

14. Let S be a locally compact, connected, locally connected semilattice. 

Is S arcwise connected? Is it acyclic? Suppose that S is not locally 

connected? 

D.R. Brown 
University of Houston 

J.D. Lawson 
L.S.U. 

A.R. Stralka 
University of California, Riverside 
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