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§1. INTRODUCTION 

In [1] Birkhoff posed the problem of characterizing 

the lattice of all congruence relations of an algebra. It 

is easy to see that this lattice is a complete lattice. In 

[9] G. Gratzer and E. T. Schmidt showed that every algebraic 

lattice is isomorphic to the lattice of all congruence 

relations of some fi ni tary algebra. The converse had been 

known for some time. Recently, a number of other representa-

tion theorems involving the lattice of congruence relations 

of an algebra have been proved. One such theorem is that 

every complete lattice is isomorphic to the lattice of all 

congruence relations of some algebra. In this paper we will 

survey these results and discuss the basic method used in 

their proofs. We will also mention some of the open problems. 

(No originality is claimed for the problems). 

§2. TERMS AND NOTATIONS 

Let a be an ordinal and A be a set. If 

ry 

f : A + A , then we say that f is an a-ary operation on 

A. 2J = (A; F> is an algebra iff F is a family of 
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operations on the set A . We say SI is of characteristic m 

iff m is the least regular cardinal such that for any 

operation f of SI if f is a-ary then a < m. Si is 

f i ni ta ry iff Si is of characteristic K g . si is i n f i n i t a r y 

if Si is not fini ta ry. If £ e A
a
, then the i*

11
 component 

of £
 l s

 denoted x.. If 0 is an equivalence relation on 

A and if % e A
a
, we write £ = % (0) iff x^ = y . (0) 

for every i < a. 0 is a congruence relation of îl iff 0 

is an equivalence relation on A and for any a and any 

a-ary operation f and any % e A a f(&) = f(^) (0) when-

ever £ = XJ (©)• Con ( Si) is the set of all congruence relations 

of ) = < Con (at) ; £ > is the congruence 1 atti ce of Si. 

Si is simple if jCĵ jn(SJt) is the two element chain. Let 

SI = <A; F) be an algebra, and let B c A . B is a subal gebra 

of iff for every a and for every a-ary operation f of 

Si and for every £ e B a it holds that f(^) e B. Sub(Si) 

is the set of all subalgebras of si. By convention 0 e Sub(Si) 

iff Si has no 0-ary operations. SjjJb ( si) = (Sub(Si); c> is 

the subalgebra lattice of 21. Let £ e A a and a : A + A 

then is the sequence % e A a with y^ = x^a for every 

i < a . a is an endomorphi sm iff f(&a) = f(^)a for every 

operation f and every End(SI) is the set of all 

endomorphi sms of Si, and ^ d ( ^ ) = <End(Si); o> is the 

endomorphism semigroup of SI. A 1-1 onto endomorphism is 

an automorphi sm, and &yt,(si) = <Aut(2i); o) denotes the 

automorphism group. 
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^ = < L ; _< > is a complete lattice iff ^ is a 

partially ordered set such that any H c l has a join 

(sup, \/H) and a meet (inf, /\H). Let m be a regular 

cardinal. The element c of the complete lattice jÇ is 

m-compact iff whenever c £ \/ H then c <_ \/Hq for some 

Hq with Hq c H and |H Q| < m. The complete lattice 

is m-algebraic iff every element is the join of some set of 

m-compact elements. ^Q-algebraic lattices are simply called 

algebraic lattices. Clearly, any complete lattice is 

| L| +-a1gebraic. 

^ is a partition lattice iff d ^ is a sublattice 

of the lattice of all equivalence relations on some set such 

that equality and the total relation are members of 

§3. HISTORY AND RESULTS 

In [3] G. Birkhoff and 0. Frink showed that the 

congruence lattice of a finitary algebra is an algebraic 

lattice. The converse appeared in 1963. 

Theorem 1. (G. Gratzer and E. T. Schmidt [9]): If £ is any 

algebraic lattice, then there is a finitary algebra SU such 

that C^on( 2J) is isomorphic to ^ . 

In [9] Gratzer and Schmidt gave the construction for 

an algebra all of whose operations were unary, such that 

CojQ^ai) is isomorphic to the specified l a t t i c e ^ . A simpler 

proof appears in [16]. Other proofs appear in [4], [13], [14] 
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and [21]. The proofs in [14] and [21] are essentially the 

same. The various proofs differ in detail but all use 

basically the same construction. The proof in [13] is due 

to R. N. McKenzie. 

Let C be the set of compact elements o f . The 

algebra in each of the proofs has |C| • Nq elements and 

|C| • Nq unary operations. A long standing problem is to 

show that the representation in Theorem 1 can be effected 

with an algebra having one binary operation (or at least 

fi ni te 1 y many fi ni tary operations). The known results on 

this problem are fragmentary. 

G. Birkhoff showed in [2] that any group could be 

isomorphic to the automorphism group of some finitary 

algebra (in fact a unary algebra). His proof has been 

extended to show that any semigroup with unit can be the 

endomorphism semigroup of some finitary algebra. (That such 

a representation could be effected using only one binary 

operation or two unary operations was shown in a series of 

papers which ended with [10]). 

The "kernel" of any homomorphism is a congruence 

relation. This provides a mechanism thru which the 

endomorphism semigroup of an algebra can affect the 

congruence lattice. (Very little is known about the 

connection between JEnjd ( su) and CojnfaO . See, for example 

[5] and [15]). There is no such obvious mechanism through 

which the automorphism group can affect the congruence lattice. 
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So it was conjectured some time ago that in general the 

congruence lattice and the automorphism group are "independent". 

More precisely, it was conjectured that if ^ is any algebraic 

lattice and © is any group then there is a finitary algebra 

31 such that €oji(aO is isomorphic to c ^ and /^(SJ) is 

isomorphic to That this conjecture is true follows from 

Theorem 2. In [20] E. T. Schmidt published an incorrect proof 

that this conjecture is true. However, the intuitive picture 

of the construction in Theorem 2 is in some ways similar to 

E. T. Schmidt's. 

G. Birkhoff and 0. Frink proved in [3] that any 

algebraic lattice was isomorphic to Sub/su) for some finitary 

E. T. Schmidt gave a very nice proof in [19] that 

a n d Â J & t W a r e independent. This result is also a Corollary 

to Theorem 2. There is obviously a third corollary to 

Theorem 2 which gives a representation for any pair of algebraic 

lattices. 

Theorem 2. (W. A. Lampe [18]): If @ is any group and ï?^ 

and <£\-j are any two algebraic lattices each having two or 

more elements, then there is a finitary algebra Si such that: 

(i) is isomorphic to ô^q'» 

(ii) Ŝ jJb( U) is isomorphic to ; 

(iii) is isomorphic to 

The M in the proof of Theorem 2 actually has n-ary 

operations for every n > 0. Binary operations would have 
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done as well, but the proof would have been a little bit 

longer. If C^ represents the set of compact elements of 

, then 21 has C | C Q | • 10 -j | • K g ] elements and operations. 

In what ways can one "improve" this representation? 

If 21 i s a finitary algebra having at most countably many 

operations, then each finitely generated subalgebra is 

countable, and so each finitely generated subalgebra has at 

most countably many finitely generated subalgebras. Thus, 

in SjyJb(2l) each compact element has at most countably many 

compact elements below it. (The converse was first proved by 

W. Hanf. It appeared in [13] and [22]). It is clear then 

that in general one cannot put a bound on the number of 

operations that the 21 in Theorem 2 has. But if one omits 

conclusion (ii), then it seems likely that one could produce 

a representation using only finitely many finitary operations. 

One must use at least one binary operation in the 

21 of Theorem 2 for two reasons. First, among other things, 

G. Gratzer showed in [5] that the automorphism group of a 

simple algebra having only unary or nullary operations was a 

group of order p where p = 1 or p is a prime. (A 

corollary of the main result of [5] is that any group is the 

automorphism group of some simple algebra having one binary 

and many unary operations. The unary operations have been 

eliminated by J. Jezek in a recent paper appearing in 

Comm. Math. Univ. Carolinae). Secondly, if 21 is unary 

then the join in S^b(2l) is just set union, and so Ŝ b,(2J ) 
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is then a "completely" distributive lattice. 

Let 9 and $ be equivalence relations on some set, 

and let 0 • $ represent the "composition" of 0 and 

Let = 0, = 0 • = 0 • $ • 0 , = 0 • <£> • 0 • 

etc. In the lattice of all equivalence relations on the set, 

0 v $ = U(¥. | i = 0 , 1, ...). We say the join in a partition 

lattice is of type-n if for any 0, 0 v $ = ¥ . B. Jtfnsson 

isomorphic to a partition lattice in which the join is of type-

2. Cjon(Sl) is a partition lattice but it is a special kind of 

partition lattice. So a natural and non-trivial question arises 

which is answered by Theorem 3. 

Theorem 3. (6. Gratzer and W. A. Lampe [7]): If is a 

modular algebraic lattice, then there is a finitary algebra 

SI such that Co^n(Sl) is isomorphic to and the join in 

Con(SI) is of type-2 . 

Incorrect proofs for the above theorem appeared in 

[9] and [21]. 

The algebra ai in the proof is unary and has |C| • Nq 

elements and operations where C is the set of compact 

elements of . One can ask the familiar questions about the 

number and kind of operations required for this representation. 

The new techniques of [16] were essential to the 

proof of Theorem 3. Incidentally, the join in C£jn(Si) is 

"automatically" of type-3 for the particular algebra SI in 

showed in [12] that a lattice modular iff 
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the proof of Theorem 1 given in [16]. The same is probably 

true for the other proofs. 

By generalizing the technique in the proof of 

Theorem 3 we can make the algebra 21 in Theorem 2 be such 

that the join in C o i s of type-n and not type n-1 for 

any n _> 3. We can also make the join in C&nfai) be of 

"type w" - i.e. not of type n for any n. If © is the 

one-element group and c^q is modular, we can construct an 

for Theorem 2 such that the join in Con,(2I ) is of type-2. 

Another problem is: what are the automorphism groups of 

algebras having modular congruence lattices in which the join 

is of type-2? 

As mentioned in the introduction, we also know that 

Theorem 4: If ^ is a complete lattice, then there is an 

algebra 31 such that Cojn(âi) is isomorphic to . 

More generally, we know 

Theorem 5. (G. Gratzer and W. A. Lampe [8]): If is an 

m-algebraic lattice, then there is an algebra of charac-

teristic m such that jCqji(31 ) is isomorphic to 

In general, the congruence lattice of an infinitary 

algebra is not a partition lattice. However, we can build 

the 21 for the proof of Theorem 5 in such a way that 

Con(su) is a partition lattice in which the join is of type-3. 
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Such a result is not automatic for Theorem 5 as it was for 

Theorem 1. In fact, one uses a generalization of the 

technique for Theorem 3. 

Once again the algebra has very many opérâtions, and 

it's not clear one needs so many. 

Consider Theorems 2 and 3 and all their previously 

mentioned extensions. A natural question is, "Are all the 

straightforward generalizations of all these theorems to 

m-algebraic lattices and algebras of characteristic m true?" 

The answer is yes. But the proofs are not exactly straight-

forward generalizations of the corresponding finitary case 

proofs. There is also a corresponding array of open problems. 

A "master" construction from which all these theorems 

follow will appear in [8]. 

§4. THE BASIC METHOD 

All the above mentioned theorems are proved using 

constructions that have their roots in the original 

construction by Gratzer and Schmidt for Theorem 1. In this 

section we will make some remarks about this method. 

To some extent, the method is derived from the proof 

of the B i rkhof f-Fri nk Theorem on Sub (31 ). So we will start 

the discussion there. But first we need to define some more 

terms. 

Let C be some family of subsets of the set A. 

C is a closure system iff given any family (D. | i e I) 
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with D. e C for every i e I it also holds that 

fl(D. | i e I) e C. For B £ A we define the C-closure 

(or simply, closure) of B by [B] c = n(D | D e C , B c D). 

Since A e C, B £ [B] c e C. B is closed iff B = [B] c e C. 

The closure system C is an algebraic closure system iff C 

is also closed under directed unions; i.e., if the family 

(D. | i e I) is a directed partially ordered set (under set 

inclusion) and each D^ e C, then U(D. | i e I) e C. In an 

algebraic closure system a set is closed iff it contains the 

closure of each of its finite subsets. For a regular 

cardinal m one can define an m-algebraic closure system to 

be a closure system in which a set is closed iff it contains 

the closure of each of its subsets having less than m 

elements. 

If C is an algebraic closure system, then <C; £> 

is an algebraic lattice. Conversely, any algebraic lattice 

is isomorphic to some <C; £> where C is an algebraic 

closure system. Similar statements hold for m-algebraic 

lattices and m-algebraic closure systems. 

Let C be an algebraic closure system on the set A. 

It is easy to describe a family F of finitary operations on 

A such that C = Sub(<A; F>). In particular, for each finite 

sequence ag, ..., a n of elements of A such that 

a e [ a n , define an n-ary operation f 
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"y f a 0 , ..., a n
( a 0 ' V l > = a n a n d 

f_ a ( x n , ..., x„ -,) = x n otherwise. One takes F ag, ..., a u n- i u 

to be the family of all such operations. 

Suppose now you have some algebraic lattice ^ that 

you want to represent as Sub(5i x 31) . A first step is to 

find some algebraic closure system C on a set of the form 

B x B where ^ is isomorphic to <C; £>. Obviously, one then 

should try the approach from the preceding paragraph. So for 

each < a Q , b Q > , ..., < a n , b n> with < a n , b n> e 

[ <a Q, b Q > , ..., <a j _ -J , o n e defines an operation f 

on B with f ( a Q , ..., a n_-,) = a n and f ( b Q , ..., bn_-,) = b R 

and •••» xn-l^ = x 0 otherwise. Unfortunately, this 

doesn't work. Such an f has some unwanted side effects. 

In particular f ( < a Q , c Q > , ..., <an_-j , c n _ 1 > ) = < a n , c Q > and 

it may happen of course that < a n , c^} i 

[ < a q, c Q ) , ..., c
n _ i ̂

 S o o n e drops the statement 

" f ( x 0 , ..., x n _ ^ ) = Xq otherwise" and leaves f undefined 

otherwise. One can take B together with these partly 

defined operations and form a "partial algebra" SB. One can 

extend SB to the "algebra freely generated by SB" 

(£(®)) b y filling in the "tables" for the operations as 

freely as possible. The subalgebras generated by subsets of 

B x B in £(93) x F,( ©) are "right". But there are many new 

subsets that don't generate the "right" subalgebras. So add 

some new partial operations to take care of this. Freely 

generate. Repeat ad infini turn. Take the direct limit, and 
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call it aï. Ŝ jJb ( ai x ai) is isomorphic to . (Actually one 

must choose the initial C so that the "diagonal" is the 

smallest member.) (That this works is shown in [6], 

essentially. See [11] also.) 

Now suppose you want an 31 so that £oji(3i) is 

isomorphic to the algebraic lattice . It is easy to check 

that Con(2l) is always an algebraic closure system on A x A. 

So one might look for a set B and some algebraic closure 

system C on B x B such that each member of C is an 

equivalence relation on B and such that <C; £ ) is 

isomorphic to ^ . One could then hope to proceed as in the 

preceding paragraph. Unfortunately, transitivity rears its 

ugly head, and that idea doesn't work either. The following 

modification does work. Given < a n , b n ) , ..., <a , b ) with \ g Q s n n 

< a n , b n > e [ < a Q , b Q > , ..., <an_-j , bn_-j> ] c one defines three 

partial operations, say f, g, h, with 

f ( a Q ,
 a

n _ -j ) = a n , f ( b Q , ..., b n - ] ) = g ( b 0 , ..., b ^ ) , 

g ( a Q , a n _ 1 ) = h ( a Q , ..., a n - 1 ) and h ( b Q , ..., b n - 1 ) = b 

Now when 0 is a congruence relation with a^ = b^ (0) for 

0 < i < n-1 then under 0 we have a = f ( a n , ..., a„ -,) 
— — n 0 n-1 ' 

= f ( b
0 >

 b n - l ) = 9 ( b 0 , ..., b n - 1 ) = g ( a 0 , ..., a ^ ) 

= h ( a Q , ..., a n _ -j ) E h ( b q 9 ..., b ^ ) = b^. Transitivity 

gives us the desired result, a n = b n (0). Now if one 

replaces each partial operation of the proceeding paragraph 

by three partial operations (as in this paragraph), and if one 

otherwise proceeds as in the preceeding paragraph, one then 

obtains an algebra 31 with jCoji(3l) isomorphic to . 
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Now let us go back to the © and the £(25) above. 

Each congruence relation 0 of ® has an extension £(0) 

to a congruence of £(29). It is fairly obvious that if the 

ideas are going to work then one must have £(0 n $) 

= £( 0) n £($). Unfortunately, this fails in general. This 

is the technical problem that is cured by using a triple of 

operations in place of each "natural" operation. This 

problem is caused by transitivity. 

So it becomes important to discover lemmas giving 

sufficient conditions on a partial algebra SB so that 

£(n(0 i | i e I)) = n(£(0.) | i e I). Such a lemma was 

implicit in [9]. It was made explicit in both [14] and [21]. 

But this lemma was true only if © was a unary partial 

algebra. A lemma of this sort for arbitrary finitary partial 

algebras appears in [17]. This made Theorems 2 and 3 possible. 

(There are some other innovations required also.) 

One would hope that the construction outlined above 

(when appropriately generalized) would work for proving 

Theorem 5. It does, but a new proof is required. One of the 

main new ingredients is a new, mildly complicated lemma 

giving sufficient conditions on an i nfi ni tary partial algebra 

2& so that £(fl 0.j | i e I) = fl(£(0i | i e F) always holds. 

The proofs of all the theorems use variations on the 

above construction. 

The reader has probably noticed that the construction 

outlined above for Theorem 1 gives an algebra 21 having n-ary 
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operations for every n > 0. Yet it was stated in §3 that 

the algebra 31 used in the proof had only unary operations. 

One can do this by starting with a C such that an 

equivalence relation 0 is closed iff it contains the 

closure of its one element subsets. If ^ is algebraic, 

such a C exists. As previously noted, Grâtzer and Schmidt 

were forced to do this because their techniques were valid 

only for unary partial algebras. 

University of Hawaii 
Honolulu, Hawaii 96822 
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