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§ 0 . A latt ice is a set with two associative c o m m u t a t i v e and idem-

potent binary operations v (meet) and A ( join ) satisfying 

x A (x v y) = x V (x A y) = x . 

We put x < y i f x v y = y and x < y i f x ^ y and x / y . We 

consider here only latt ices L with a least element 0 and a greatest 
L 

element 1 . A sublattice of a latt ice L is a subset X of L 

such that a £ X and b Ç X imply that a A b Ç X and a V b Ç X . 

If 0 L and 1 L ç X , X is called a normal sublattice . 

For any set S we denote by II(S) the latt ice of partitions on 

S , that i s , the lattice of all equivalence relations on S with ^ 

defined as set inclusion , relations being treated as sets of ordered 

pa irs . Thus l n / c v = S X S , 0 . = { ( x , x ) : x e S} and a A b = a n b 
li(S.) IKS) 

for al l a ,b Ç H ( S ) . 

A representation of a latt ice L as a latt ice of partitions i s an 

isomorphism 9 : L I1(S) . Then we call cp a representation of L on 

S . The representation cp i s called normal i f <p(L) is a normal 

sublattice of I1(S) . For each lattice L , let p,(L) be the least 

cardinal (J, such that L has a representation on S , where |S| = JJ, . 

Whitman has shown [lo] that p,(L) <; + |L| . A well-known and st i l l 
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unsolved problem of Birkhoff [ 2 , p . 97 ] is whether ji(L) is f inite 

whenever L is f i n i t e . 

§ 1 . For any x ç I1(S) and a , b £ S we write a ( x ) b for 

( a , b ) ç x . Let A and B be sets such that A f| B = {v} . Let L 

and M be normal sublattices of 11(A) and 11(B) , respectively. 

For x ç L and y £ M , let x ° y denote the partition of A U B 

defined by a ( x o y ) b i f and only i f a ( x ) b or a (y )b or both 

a ( x ) v and b (y )v . 

Theorem 1 . The set N of all partitions of the form x o y with 

x ç L and y ç M is a normal sublattice of II(A U B) and this 

latt ice is isomorphic to L X M . 

Proof . Clearly the map L x M N given by ^ ( x ^ ) = x o y is a 

b i j o c t i o n . We need only establish for all x , u ç L and y , v £ M the 

equations 

( 1 ) 1 n ( A ) ° 1 n ( B ) = 1 n (A u b ) 

i 

U i )
 V )

 O 0

D ( B ) = V u B ) ' 

( i i i ) (x o y) v (u o v ) = (x v u) o (y V v) , 

( iv ) (x o y ) A (u o v) = (x A u) o (y A v) . 

These equations can be proved by examining all possible special cases. 

In place of ( i i i ) and ( iv ) it is sufficient to prove the cases 

(v) x< y = ( x o O M ) V (0 . o y) = ( x o 1 ) a (1T o y ) , 
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( v i ) ( x o 0 ) v (u o 0 ) 
M M 

( 0 L p y) v ( 0 L o v) 

(x o 1 ) A (u o 1 ) 
M M 

d L ° y) A d L O v) 

(X V U) o o M , 

0 L o (y V v) , 

< x A u) o 1 m , 

= 1 L o (y A V) 

which are obvious. We prove ( i i i ) from (v) and (v i ) as follows; 

(x o y ) v (u o v ) (X o 0 M ) V ( 0 L o y ) V ( u o 0 M ) V ( 0 L o v) 

= ( x o O M ) v ( u o O J V (0 . o y) V (0T O V) 
M M L L 

= ( ( x V u) o o m ) V ( 0 L o (y V v ) ) 

= (x V u) O (y V v) . 

The remaining facts are established in a similar way. 

Corollary 2 . I f L is a sublattice of the product of the latt ices 

L a ( i = 1 , . . . ,k) , then 

|i(L) £ Yj M-C^) - k + 1 . 

i = 1 

Proof. The proof follows directly from Theorem 1 by induction. 

Theorem 3 . If L is a subdirect product of M and P , i f H<(M) and 

^,(P) are f in ite and i f ( ° M » 1 p ) € L » e *g»> L = M X P , then 

|J,(L) = |0iCM) +M-(P) ~ 1 • 

Proof. For each x £ M there exists a y ç P such that ( x , y ) ç L 
" X X 

Similarly , for each y £ P there exists an x^ ç M such that 

( x y , y ) £ L . Thus for each x ç M and y 6 P we have 
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( 0 M > y) = ( 0 M » ! p ) A ( x
y »y> € L and ( x , X p ) = <0 M , l p ) V ( * ,y x > € L . 

By Corollary 2 , we know that p,(L) p,(M) +H-(P) - 1 . Suppose that 9 

is a representation of L on a set T with p-(L) elements. Suppose 

that 9(0. , has k equivalence classes A, ,A„ . . . . .A, of car-
M P 1 2 k 

dinalities n ,n , . . . n . Let P be the lattice of partitions 
i ^ K A. 

1 

of A. formed by restricting the elements ^C » y > with y £ P to 

A. , that i s , PA = { W M , y ) | A : y Ç p} . Let cp(y) = ( ^ . y ) ^ , 

i i 1 

•PC0»,>y)|» f • • • ̂ (O * .»y) « ) • Then cp is an isomorphism of P into T M 1A ' M A, 
2 k 

P X . . . x P and thus Corollary 2 yields 
A 1 \ 

k 

M> (P) * E
 n i " k + 1 = M-(L) - k + 1 . 

i = 1 

On the other hand, M is isomorphic to { ( x , l ) | x £ M} C L . Thus M 

can be represented on T/(cp(0^, l p ) ) ( T factored by the equivalence 

relation ) » so k i M<(M) . Hence 

(jXL) ;> ,j,(P) + k- l i n ( P ) + f i ( l l ) - l . 

Corollary 4 . If p,(L) is finite and L is a sublattice of I1(S) , 

where |s| = (i(L) , then L is a normal sublattice. Thus a minimum 

finite representation is a normal representation. 

Proof. Since L can be represented on S/0T , the fact that |i(L) is 
——————• Li 

minimum implies that 0 L = Ojj^gy • h a S e ( ï u i v a l e n c e classes 

A . , A , . . . , A , then L is isomorphic to a sublattice of the product 
X Z K . k 

of the L . Corollary 2 gives £ V |A. I - k + 1 = p,(L) - k + 1 , 
A . <m/ I 1 ' 

i = i 

a contradiction unless k = 1 . Thus 1T = l n . ^ . . 
L IKS.) 
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Remark 1 . By Theorem 3 , the problem of finding p,(L) for all f in ite 

latt ices L reduces to the determination of (j,(L) for all f in ite 

directly indecomposable L ' s . This reduces this problem for various 

special classes of l att ices : Dilworth [ 3 ] has shown that every f in ite 

relatively complemented latt ice is a product of simple l a t t i c e s . This 

applies also to f inite geometric latt ices since they can be character-

ized as f inite relatively complemented semi-modular lattices [ 2 ; p. 8 9 ] . 

Birkhoff has shown that every modular geometric latt ice is a product of 

a Boolean algebra and projective geometries [2; § 7 ] . Dilworth (see 

[ 2 ; p . 9 7 ] ) has shown that every f in ite latt ice is isomorphic to some 

sublattice of a f inite semi-modular l a t t i c e . Hartmanis [5] has shown 

both that every f inite lattice is isomorphic to some sublattice of the 

lattice of subspaces of a geometry on a f in i te set and that every f in ite 

lattice is isomorphic to the lattice of geometries of a f in ite set . 

Jonsson |7] has shown that every f in ite lattice is isomorphic to a 

sublattice of a f inite subdirectly irreducible l a t t i c e . 

Remark 2 . The assumption (0. . .1-) Ç L in Theorem 3 is essential . In 
M F 

fact , i f C is the n- element chain and i f L = C x , then 
n 3 2 

Theorem 3 gives |i,(L) = 4 ; however, by Figure 1 , L is also isomorphic 

to a subdirect product of 11(2) X 11(2) and 11(2) X 11(2) , which would 

lead to |j,(L) = 5 i f Theorem 3 appl ied . 
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( 1 , 1 ) 

( x , y ) 

(y , x) 

Remark 3 . Let L o Il(n) mean that L has a normal representation 

on n . Theorem 1 shows that Il(JFC) x II(J6) O 11(24 - 1) . Since 

n u ) <3 n (X ) X I I U ) > this suggests the question : For what jI and m 

i s 11(jK) o n ( m ) ? If n u ) <1 I K ^ ) and n(£) <J n ( l 2 ) , then 

n ( j fc ) <3 I K ^ + i2 - 1) • Since n ( 3 ) <3 11 (4 ) , we have n ( 3 ) <J n(m) for 

a l l m ^ 3 . Ralph McKenzie has proved (private communication) that 

I I U ) <J n ( i + l ) does not hold for I ^ 4 . 

§ 2 . We now examine p, for some special l a t t i c e s . We recall that 

by a complement o f x in a l a t t i c e L i s meant an element y £ L 

such that x A y = 0 and x v y = 1 . 

Lemma 5 . I f P i » P 2 » ' , é P k a n d ^ a r e P a r t i t i o n s ° f a s e t S with n 

k 

elements and P]L v . . . v P f c = Q , then ^ | S / P | <; n(k-l) + J S /Q | 

1 = 1 

in add i t ion , P ± v Pj = Q for a l l i ^ j , then ^ | s / P i | 

i = 1 

(n + | S/Q | ) . 

22 



Proof . For every A ç S / P i (i = 1 , 2 , . . . ,k) form a path through all 

points of A . Thus S obtains a graph structure and by 

P x V . . . V P R - Q , this graph has Jt = |S/Q| connected components 

containing, in some order, n ^ , n 2 , . . . p o i n t s . Since a connected 

graph with m points has at least m - 1 edges, 

k I 

E E ( M - 1 } 26 E ( n j • 1 } ; 

i = 1 A ç S /P . j = l 
i 

E f E H - l s / p i i ) * ; 

i = M A Ç S / P . I 

k 

YJ ( | s | - | S / P . | ) î> n- J S/Q | ; 

i = 1 

k 

kn - £ ! S /P . | * n- j S/Q j ; 

i =1 

k 

Y |S/P
i
| £ n(k- 1) + | S/Q | . 

i = 1 

Now suppose P. V P .̂ = Q for all i ^ j . Then by the last equation 

with k = 2 , for all i / j , \ s ^ ± \ + i s / p j I ^ |S/Q| . Hence we have 

k 

IS/P. | = V ( lS /P . 1 + Is/F ( k - D I I s /p . | = i q s / p j + 1 s / p . | > 

i =1 i * j 

( 2 ) <
n
+ l

s
^ l > • 

The lemma follows. 
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Theorem 6 , Consider the lattice L (X ,m) consisting of 0 and 1 and 

of two chains P. > . . . > P . of length I and the other Q„ > . . . > Q 
1 X 1 m 

of length m , such that P.̂  and Q^ are complementary for all i 

and j (see Figure 2 ) . I f I > 1 , then 

p,(L(i ,m) ) = X + m - 1 + {2 J i + m - 2 } . 

Figure 2 . 

Proof . Here, the symbol {x} denotes the least integer not less than 

x . We suppose that k = I P i I ^ l Q il ' T h e n ^ l Pil + 4 - 1 a n d 

|Qm| à |Q1| + m - l . By Lemma 5 , i f p,(L) = n , then 

Letting x = l + m , we have 

k ^ IQJ Î £ n + 3 - k - x . 

Since P^ A Q^ = 0 , no class of Q^ can have more than k elements. 

Thus 

n <; k|Q | <; k (n + 3 - k - x) . 
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Since the maximum of the right hand side of this equation occurs when 

k = -|(n + 3 - x) , 

( n + 3 - x \ 2 

n n 2 j • 

Solving this equation, we find that 

n ^ x - 1 + 2 J x - 2 . 

We lirst demonstrate a representation of L ( j£ , l ) . Let k be the 

f irst integer such that k 2 £ I + 2 JI - 1 (k = 1 + { ^jfc - 1 } ) . Let n 

be the in i t ia l segment of length i + {2 J I - 1 } in the lexicographic 

ordering on x Z^ . The partition P on n i s defined by 

( ( x , y ) , ( u , v ) ) ç- P l i f and only i f x = u . The partition Q^ on n 

is defined by ( ( x , y ) , ( u , v ) ) £ Q x i f and only i f y = v . (Note that 

I ;> 2 implies that k 2: 4 and thus P^ £ . ) The partition P^ 

is do lined by ( ( s , y ) , ( u , v ) ) ç P i f and only i f either x = 0 = u 
XJ 

or ( x , y ) = ( u , v ) . The partitions with 1 < i < £ are formed 

by interpolation between P and P (separating o f f each of the 
Jo 

singletons in P one at a time from P ) . We must verify that a 
Jo 

suff icient number of partitions can be formed in this way. Since 

= n - k + 1 and JP^j = { ^ } , i f a l l possible interpolations were 

made, the length of the chain from P. to P would be 1
 I 

p = n - k + l - { ~ } + l . 

If { ~ } £ k - 1 , we have 

P H + i + { 2 y r ï } - 2 { y T i } u . 

If { } = k , we have 

P = I + {2 7 T T } - 2{ J } . 
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Suppose s < J l - 1 £ s + ~ for some integer s . Then n = £ + 2 s + l , 

2 5 2 
k = s + 2 and £ <. s + s + — . Since 4 is an integer, 4 ^ s + s + l 

and thus 

2 
n < s + 3s + 2 = k(k - 1) . 

This gives { } = k - 1 , a contradiction . Thus [2 J £ - 1 } = 2 { Jl-1 } 

and hence p = . 

To complete the proof, we show that L(j£-l,m + l ) can be 

represented on the same set as L (£ ,m) . Suppose £ ^ 2 and 

€ L (X ,m) has classes C^ , 1 ^ i ^ n . Since P^ ^ s P^ , we may 

assume that P . , has a class containing C, II C„ . Since 
£-1 1 2 

P£-l A Q m = 0 ' f ° r e v e r y x € c i a n d y € c
2 ' £ * Consider 

a shortest P -Q path x, xn . . . x (n s 3) from C, to c . Then 
4 m 1 2 n 1 2 

x, c- and x f C 0 but x. t C. y C,, , 2 «£ i < n . Thus 
1 1 n v 2 i r l w 2 

(x. ç Q . Let Q i g Q be the partition defined by: for all 
1 2 m m+1 m 

x ,y / x^ , ( x , y ) £ Q m + 1 i f and only i f ( x , y ) ç Q m ; for all x , 

(x ,x_ ) f Q t i f and only i f x = x_ . To show P 4 . v Q , = 1 , 
1 ^ m+1 * 1 £-1 ra+1 

we need only show (x_ , x 0 ) £ P • v Q .. for then P , . v Q , ^ 
L z £-L m+i £-1 m+ 1 

P a . V Q = 1 . Since the P -Q path x„ . . . x does not contain 
£-1 m £ m ^ 2 n 

x. , i t i s a P . - Q , path. Since (x , x . ) f P , , . x_ . . . x x_ is 
1 £ m+1 n' 1 c

 £-1 ' 2 n 1 

a P„ , - Q , path from x_ to x. . 
£-1 m+1 2 1 

We now consider the lattice L^ of subspaces of the geometry G n 

with n points and 1 l i n e . L^ consists of n mutually complementary 

elements and 0 and 1 (see Figure 3 ) . Hartmanis [6] has shown 

that P-(L
n) 2 P where p i s the f irst prime larger than n . We 
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shall prove M-(L
n) £ P » where p is the f irst prime not less than n 

(see Theorems 7 , 8 and 9 below) . 

P, r: P P 
1 \ 3 

0 

Figure 3 

Theorem 7 . n + 1 ; n even 

n n odd . 

Proo1. Suppose L^ can be represented as a sublattice L of the 

lattice of partitions of m . Each non-trivial P ç L defines a set 

of edges L p = { { a , b } : ( a , b ) £ P , a / b} . Since P A Q = 0 and 

P v Q = 1 when P ^ Q , we have that L (J L is a connected graph. 
F VJ 

Thus 

( i ) 
L p l + I L Q I = L

L
P U L Q | * M - 1 , 

( i i ) 

From ( i ) we get 

E lLpl * I ni(m-l) 

P € L 

( N - 1 ) E I L P I 

P 6 L 

= E < I L
P M L

0 I > 
P ^ Q 

. n (n~ 1) 

PI • l-QI' * 2 ( m " X ) 

Hence from ( i i ) , 
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i m(m - 1) ;> V |L p| ;> | n(m- 1) 

P ç L 

which yields m i il . Equality can occur only i f |L p| + = m- 1 

for all non-trivial P £ Q £ L , which implies that m - 1 is even 

whenever m - n - 3 . Small cases are handled by inspection. 

Theorem 8 . The following four statements are equivalent: 

( i ) M-( L
2 n . 1

) = 2n - 1 ; 

( i i ) The complete graph on 2n - 1 points, K , can be edge-
ZN- J. 

colored with 2n - 1 colors so that the union of any two color classes 

i s a spanning path; 

( i i i ) K can be edge-colored with 2n - 1 colors so that the union 
2n 

of any two color classes is a spanning cycle; 

( i v ) The symmetric group on 2n elements, S„ , contains a set 
2n 

{ l ^ : i - L , 2 , . . . ,2n - 1} of involutions such that the group generated 

by I . and I . i s transitive whenever i ^ j . J i J ° 

Proof . ( i ) «M. ( i i ) . I f we assume ( i i ) , each color class i s a partition , 

so ( i ) follows e a s i l y . Suppose ( i ) holds. As we have seen above 

|L p U L q | = 2 n - 2 for al l P ^ Q . Since L p U L Q i s connected, it 

must be a t ree . Thus jLp| = n - 1 and L p contains no cycles, that 

i s , P is a maximum matching of the points of , . ( i i ) now 
2n~l 

follows. 

( i i ) « ( i i i ) . Suppose K 2 n has been ( 2 n - l ) edge-colored 

so that the union of any two color classes is a spanning cyle . Clearly 

\ {v} s a t i s f i e s ( i i ) . On the other hand, i f K„ , has been 
2n N J ' 2n-l 

( 2 n - l ) edge-colored so that the union of two color classes i s a 
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spanning path, each point misses one color and, by counting, each 

color misses one point . K = K _ y { { v , a } : a £ K„ ' , } i s 2n - 1 
2n 2n-l c 2n-lJ 

edge-colored by coloring { v , a } , a £ K , with the color missing 
ZRI' JL 

at a . It is easy to show that this coloring sat i s f ies ( i i i ) . 

( i i i ) « ( i v ) . Each 1 - factor of K„ defines an involution 
2n 

on 2n and vice versa. Since the elements of the group generated by 

the involutions I and J have the form . . . I J I J . . . , the union 

of two 1- factors spans K 2 n i f and only i f the group generated by 

the corresponding involutions is transit iye . 

Theorem 9 . The statement 8 ( i ) holds i f n (see [ l ] and [ 8 ] ) or 

2n - 1 (see [ l ] and [9 ] ) is a prime. 

Remark 4 . B . A . Anderson (private communication) has also shown that 

8 ( i ) holds for n = 8 and n = 14 . Thus the f irst unknown case i s 

n ~ 18 . We would like to know a similar result to Theorem 6 about a 

latt ice L(£ t & , ) consisting of 0 and 1 and of w chains 
X z w 

P. - > . . . > P. . , 1 £ i . ^ w . such that P . . and P . , . , are cora-
il i j i 3 

plementary when i ^ i ' . However, the method of proof used in 
w 

Theorem 6 gives only p^LCj^ , . . . , i ^ ) f ( i , w ) where 1 = w Yj 

and i - 1 

f<ï,w) = 2 4 - 3 + 8 + 4 1 y 4 + w 2 ( 2 X - 3 ) . 

w w 

Although this reduces to Theorem 6 when w = 2 , for large values of 

it is a very bad estimate since lim f (X ,w ) = 2X - 3 , an absurdity . 

Actually, proofs of this type seem to indicate that the best results 

for these lattices are obtained by partitions with nearly equal classes 

For this reason, we mention the following theorem. 
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Theorem 10 . L, has a normal representation cp: L „ -» n (S) , 
k+2 T k+2 ' 

where |s| - n such that j S / ^Ca)| = n and |A| = n for each 

A £ S / tp(a) whenever a Ç L , a / 0 , 1 , i 1' and only i f 

k+2 k+2 

there arc k mutually orthogonal Latin squares of order n . 

Proof . Suppose L ex ists . Let the partitions be C. = f C . , . . . . , C } , 
i 11 inJ 

1 i £ k , A = { A ^ . . . ^ } , and B = { B l f . . . , B } . We form the 

Latin square as follows: let L* = j i f C. . f| A „ f| B £ &> . 
I>m £m I J L m 

The def init ion is possible since A . f| B = {x„ } for al l I and m , 
& m i mJ 

and given i , some C. . must contain x . . Suppose L* = L* . = i . 
ij J£m £m I ' m 

Then C. , 0 A . p| B / 0 and C. . f| A w n B t 0 , contradicting 
i .1 ji m ij I ' m 6 

A/i H A . , 0 unless i = H ' . Similarly L* = L* , i f and only i f Jo Si j&m j&m 

m m' . Thus L* is a Latin square. Suppose L* = L 1 = p and 
£m im rs 

h] = L J = q with i £ j . Then 
j£m rs 

( C. f| A n B = -fx } 
i p X m 1 im1 

C. n A n B = {x } 
ip r s 1 rsJ 

c. n A n B = { X , } 
jq Je m 1 XmJ 

v c . n A n B = { X } . 
\ jq r m L rsJ 

Thus C. fl C. . = {x } = {x } , so I = r and m = s . Hence the 
jq ip L jfcnr rsJ 

L* are mutually orthogonal Latin squares. 

r i 
Conversely, suppose i s a s e t o f mutually orthogonal 

2 
Latin squares. We consider the n elements in Tl x Tl . We let 

n n 

A± = { i } X 2 n and Bj = » n X { j } . We put U , m ) ç c i f and only i f 
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L* = j . It is easily veri f ied that the partitions C. = ( C . , , . . . , C I , 
j£m i i l ' inJ 

1 ^ i ^ k , A = { A ^ , . . . , A n ) , and B = { B ^ . . . ^ } generate the desired 

latt ice . 

Corollary 11 . (See | 4 ; p . 1 7 7 ] ) . The following statements are equivalent 

2 
( i ) The edges of the complete graph K on n points can be decom-

n 

posed into n + 1 sets so that each set consists of n components iso-

morphic to K^ and so that the union of any two sets is a connected 

graph. 

( i i ) There exists a projective plane P of order n . 

n 

( i i i ) There are n - 1 mutually orthogonal Latin squares of order n . 

2 

( iv ) There is a partition lattice L on n elements consisting of 

n4 1 mutually complementary elements plus 0 and 1 such that each 

non-trivial partition has n classes of n elements. 

Proof. We shall sketch the proof. The equivalence of ( i ) and ( iv ) 

follows from the method used in the proof of Theorem 7 . That i s , to 

each partition P ^ 0 , 1 in L there corresponds a set of edges 

L p - { { a , b } : ( a , b ) £ P} . (Note that each of these partitions turns 

out to be nothing more than a parallel class of l ines in an a f f i n e 

geometry.) The equivalence of ( i i i ) and ( iv ) follows from the theorem. 

The proof of the equivalence of ( i ) and ( i i ) follows standard l ines : 

Suppose ( i ) holds . To form P^ add to the points of K the points n 
c , , . . . , c corresponding to the n + 1 sets C, , . . . . , C , . We 

1 n+1 1 n+1 

suppose the components of C. are C . C . . The l ines of P 
i i l in n 

are then the sets C U (
c

i
) > i = l , . . . , n + l , and the set 

(c3_ » • • • » c
n +]_) • Conversely, i f ( i i ) holds, let be a 
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line in P^ . The points of K are then the points of 

n 

P \ { c , . . . , c } . The edge { x , y } of K „ is in the set c. i f 

x , y and c. are colinear in P 
' l n 

§ 3 . By Whitman's Theorem (see § 0 ) , every Lattice is a sublattice of 

the lattice of all partitions of some set. I f is a representation of 

a lattice L as a lattice of partitions of A , and B is a subset of 

A , then for every x ç L let ^ (x) be the restriction of the partition 
D 

cp(x) to B . Of course, ^ ( L ) does not necessarily have to be a 
B 

sublattice of L . Even i f ^«(L») i s a sublattice , cp does not have 
D B 

to be an isomorphism. If i s a sublattice and cp is an iso-
D B 

morphism, then the subset B is called f a i t h f u l . 

Homavk 5 . Every representation of the lattice L^ has a f inite faithful 

subset . The simplest example of a f inite lattice which has a representa-

tion without f in i te faithful subsets is L . The representation i s 
o 

constructed as follows: the points of the set are the vertices of the 

regular triangular lattice on the plane. Three points form an equivalence 

class with respect to a given color i f they are the vertices of a triangle 

which has this color (see Figure 4 ) . It is clear that i f we take any 

l 
n 

\ 

Figure 4 . 
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f inite subset S of this triangulation, there will be at least one 

vertex which appears in only one colored triangle , say color 1 . Thus 

this vertex is not 2 V 3 equivalent to any other, so S cannot be a 

faithful subset. We can also show that the latt ice of Figure 5 has a 

representation without f in ite faithful subsets. 

Figure 5 . 

There exists a f inite distributive lattice with a representation 

without finite faithful subsets. The lattice generated by the partitions 

induced by the colors 1 , 2 and 3 in Figure 6 i s isomorphic to 

{ 0 , 1 } 3 . 

Figure 6 . 

The lattice L in Figure 7 is a f in ite lattice with an i n f i n i t e 

representation without proper faithful subsets. Partitions A , B , 

Aĵ  and B^ of K are formed as follows: A has classes {2n , 2n + 1} 

for al l n £ 2 , B has classes {2n - 1 , 2n} for al l n , A^ has 

classes {2n - 1 , 2n + 4} for all n , and B^ has classes {2n + 2 , 2n - 1} 
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for all n . It is clear that these partitions generate a lattice 

isomorphic to L . For any proper subset of Z , one of the relations 

A v B = 1 , A^ v B^ = 1 would f a i l , so this representation of L has 

no proper faithful subsets. 

1 

Figure 7 . 

Problems. 

1 . Suppose P c Q are lattices and P has a representation 

without f in ite faithful subsets. Does Q have such a representation? 

Can a given representation 9 of P without f inite faithful subsets 

be extended to a representation 9 of Q such that 9 also does not 

have f in ite faithful subsets? 

2 . Characterize the class of lattices which can be generated by 

colorings of tesselations of the plane . 

3 . (See Remark 3 . ) For what I and m is 11(4) < n (m) ? 

4 . (See Theorems 7 , 8 and 9 and [ l ] , [8] and [ 9 ] . ) Find ) 

for al l n . 

5 . (See Remark 4 . ) Find |i(L( jfĉ , , . . . , l ) ) for al l w - tuples 

of positive integers ( l ^ , , . . . . 
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