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REPRESENTATIONS OF FINITE LATTICES AS PARTITION

LATTICES ON FINITE SETS

A. Ehrenfeucht, V. Faber, S. Fajtlowicz, J. Mycielski

§ 0. A lattice is a set with two associative commutative and idem-

potent binary operations V (meet) and A (join) satisfying
XA(XVY =xV (XAYy) =x .

We put x gy if xVy =y and x <y if X <y and x £y . We
consider here only lattices L with a least element 0L and a greatest
element lL . A‘sublattice of a lattice L 1is a subset X of L

such that a ¢ X and b ¢ X imply that a A b ¢ X and avb¢X.

If OL and lL € X, X 1is called a normal sublattice.

For any set S we denote by II(S) the lattice of partitions on
S, that is, the lattice of all equivalence relations on S8 with <
defined as set inclusion, relations being treated as sets of ordered

pairs. Thus =8 X8, ={(x,x): x € S} and aAb=anb

nes) Onesy

for all a,b ¢ II(S).

A representation of a lattice L as a lattice of partitions is an

isomorphism ®: L - [I[(S) . Then we call ¢ a representation of L on
S . The representation ¢ is called normal if ¢(L) is a normal
sublattice of II(S) . For each lattice L, let u(L) be the least
cardinal y such that L has a representation on S, where |S‘ = M.

Whitman has shown [10] that p(L) < ako + ]Ll . A well-known and still
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unsolved problem of Birkhoff [2, p. 97] is whether u(L) is finite

whenever L is finite.

&1 . For any x ¢ II(S8) and a,b ¢ S we write a(x)b for

(a,b) € x . Let A and B be sets such that A NB = {v} . Let L
and M be normal sublattices of [I(A) and II(B) , respectively.

For x ¢L and y €M, let xcoy denote the partition of A (B
defined by a(xcy)b if and only if a(x)b or a(y)b or both

a(x)v and b(y)v

Theorem 1. The set N of all partitions of the form xoy with
x ¢ L and y € M is a normal sublattice of I(A U B) and this

lattice is isomorphic to L X M .

Proof. Clearly the map %: LxM » N given by ®(x,y) = xoy is a

bijection. We need only establish for all x,u ¢ L and y,v ¢ M the

equations
@ Inay ° iy T nays) |
G Oy ° ey = Cneays)

(iii) (xoy) v (uov) (xvu o(yvwv,,

(iv) (xoy) A (uo V) (x AU o (y AvV) .

1

These equations can be proved by examining all possible special cases.

In place of (iii) and (iv) it is sufficient to prove the cases

(v) X0y = (xo0M) v (OLoy) = (xolm) A (1Loy) ,
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(vi) (xo OM) v (QOOM) (xvuw oo, ,

]
o
c

(oLoy)v(oLov) L (y v v) ,

(xolM) A (UOlM)

i
~
b

Au) ol

i
ot
o]

(lLoy)/\(lLov) L (y A V)

which are obvious. We prove (iii) from (v) and (vi) as follows:

(xoy) vV (uov) = (x‘nOM) V (0, 0oy) vV (U°0M) vV (0 °v)

It

(XOOM) \Y; (uoom) Y] (OLoy) \YJ (OLov)

it

((x v u o OM) Vv (OL o (y v v))

H

(xvu) o (yvv).

The remaining facts are established in a similar way.

‘Corollary 2. If L 1is a sublattice of the product of the lattices

Li (i =1,...,k), then

k
(L) < Zu(Li)-k+l )

i=1
Proof. The proof follows directly from Theorem 1 by induction.
Theorem 3. If L is a subdirect product of M and P, if x(M) and
w(P) are finite and if (OM,IP) eL, e.g., L=MxP, then
p(L) = pM) +p(P) -1 .
Proof. For each x ¢ M there exists a Yy € P such that (x,yx) L .

Similarly, for each y € P there exists an xy € M such that

(xy,y) €L . Thus for each x ¢M and y € P we have
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(oMsY) = (OM’lp) A (xy’y) € L and (x’lp) = (OM’lp) \% (x:yx) €L

By Corollary 2, we know that p(L) < u(M) +u(P) -1 . Suppose that ¢
is a representation of L on a set T with uWu(L) elements. Suppose

that QP(OM,l) has k equivalence classes Al’A eea,A of car-

P 2’ k
dinalities nysfy,eee n . Let PA be the lattice of partitions
i
of A formed by restricting the elements (P(OM,y) with y ¢ P to

A . that is, PAi = {@(OM,y)|A1: y € P} . Let ¢(y) = (@(OM.y)\Al,

cp(OM,y)lA ,...,‘-P(OM,y)A) . Then ® is an isomorphism of P into
2 k

P X...xP and thus Corollary 2 yields
Al Ak

k
W(P) S )n -K+l =u(L)-k+1 .
i=1

On the other hand, M is isomorphic to {(x,l)‘ Xx €M} ¢ L . Thus M

can be represented on T/ (90 )) (T factored by the equivalence

M’1P
relation Cp(OM,lP) ), so k 2 u(M) . Hence

p(l) 2 p(P) +k=-1 2 p(P) +p(M) -1 .

Corollary 4. If (L) is finite and L is a sublattice of II(S),
where |S| = u(L), then L is a normal sublattice. Thus a minimum

finite representation is a normal representation.

Proof. Since L can be represented on S/OL’ the fact that p(L) is

minimum implies that O If 1 has equivalence classes

L = %) - L

Al’Az""’Ak , then L is isomorphic to a sublattice of the product

k
of the LA . Corollary 2 gives u(L) < Z lAil -k+1 = pL)~-k+1,
i
i=1

a contradiction unless k =1 . Thus 1L = lII(S) .
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Remark 1. By Theorem 3, the problem of finding u(L) for all finite
lattices L reduces to the determination of u(L) for all finite
directly indeccomposable L 's . This reduces this problem for various
special classes of lattices: Dilworth [3] has shown that every finite
relatively complemented lattice is a product of simple lattices. This
applies also to finite geometric lattices since they can be character-
ized as finite relatively complemented semi-modular lattices [2; p. 89].
Birkhoff has shown that every modular geometric lattice is a product of
a Boolean algebra and projective geometries [2; § 7]. Dilworth (see

[2; p. 97]) has shown that every finite lattice is isomorphic to some
sublattice of a finite semi-modular lattice. Hartmanis [5] has shown
both that every finite lattice is isomorphic to some sublattice of the
lattice of subspaces of a geometry on a finite set and that every finite
lattice is isomorphic to the lattice of geometries of a finite set.
Jdnsson [7] has shown that every finite lattice is isomorphic to a

sublattice of a finite subdirectly irreducible lattice.

Remark 2. The assumption (OM,lp) € L in Theorem 3 is essential. 1In
fact, if Cn is the n- element chain and if L = C3 X C2 , then
Theorem 3 gives (L) = 4 ; however, by Figure 1, L 1is also isomorphic

to a subdirect product of [I(2) X I[I(2) and TM(2) x [(2), which would

lead to p(L) =5 if Theorem 3 applied.
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(1,y) & x (y,%

(x,y)

/
”

(0,0)

Figure 1.

Remark 3. Let L g ll(n) mean that L‘ has a normal representation
on n . Theorem 1 shows that I[I(g) x [I(4) «[I(24-1) . Since

N(4) < N(L) X (L) , this suggests the question: For what ¢ and m
is (L) < (m) ? If T[1() <1II(I,1) and [I(£) GH(LZ) , then

neg) <« MCey + 45~ 1) . Since [I(3) « [I(4), we have [(3) < [{m) for
all m >3 . Ralph McKenzie has proved (private communication) that

(L) an(g+1) does not hold for ¢ = 4

§ 2. We now examine . for some special lattices. We recall that
by a complement of x in a lattice L is meant an element y ¢ L

such that x Ay =0 and xvy =1

Lemma 5. If Pl’Pz""P and Q are partitions of a set S with n

k
k

elements and Pl V oees V Pk =Q, then lS/Pi\ < n(k-1) + ]S/QI

i=1

K
in addition, P, VP, =Q forall i#j, then Y, |s/P, |
i=1

s-g- (n+|s/Q)) .
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Proof. For every A ¢ S/Pi (i =1,2,...,k) form a path through all

points of A . Thus S obtains a graph structure and by

PV ...VP

1 = Q, this graph has § = ‘S/Q‘ connected components

K

containing, in some order, nl,nz,...,n£ points. Since a connected

graph with m points has at least m-1 edges,

k 2

YL YAlFD = ) (e
i=1A¢s/P, j=1

k

Y Y 1al-is/p|| 2n-2s;

i=1\Ags/P,

k
), <|s|-|s/B ) 2 n-{s/q|
i=1
k
kn - ) |s/P,| = n-|s/Q| ;
i=1
Kk
E ‘S/Pi\ < nk-1) + |s/Q| .
i=1

Now suppose Pi \Y; Pj =Q for all i £ 3j . Then by the last equation

with k = 2, for all i £ j, lS/Pi|+\S/Pj| < n+|S/Q| . Hence we have
k
(k-1 L \s/ey| = ), ([s/e) « |s/p ]

i=1 1475

(;) (n+|s/Q} .

The lemma follows.

23



Theorem 6. Consider the lattice L(£,m) consisting of 0 and 1 and

of two chains P1 > ae. > P£ of length ¢ and the other Ql > ... > Q

of length m, such that Pi and Qj are complementary for all i

m

and Jj (see Figure 2). If g > 1, then

p(L(L,m)) = L+m~-1+{2,/L+m=-2}.

1

1 Q

2 Q,

- .

"o

p

L Q
- m

0
Figure 2.

Proof. Here, the symbol {x} denotes the least integer not less than

X . We suppose that k = ]Pl| < |Ql\ . Then 1P£‘ > lPl| +£4-1 and
Q| = || +m-1. By Lemma 5, if u(L) =n, then
n+l 2 ]PM +{Q] = |P | +2-1+]Q|+m-1 .
Letting x = g+m, we have
k < {Q| sn+3-k-x .

Since P1 A Q1 = 0, no class of Q1 can have more than Kk elements,
Thus

nsk]Q <k(n+3-k=-x) .

1|
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Since the maximum of the right hand side of this equation occurs when

1
k :§(n+3—x) ,

Solving this equation, we find that

n=x-1+2,/x-2,

We first demonstrate a representation of L(g,1). .Let k be the
first integer such that k2 > 2+2,/2~1 (k = 1+{/Z_-1}) . Let n
be the ihitial segment of length 1+—{2~/ZTT1} in the lexicographic
ordering on zk X Zk . The partition P1 on n is defined by
((x,9), (1, V) ¢ P/ if and only if x = u . The partition Q, on n
is defined by ((x,y),(u,v)) ¢ Ql if and only if y = v , (Note that
g > 2_ implies that k > 4 and thus P1 £ Q1 .} The partition P
is defined by ((s,y),(u,v)) ¢ PZ if and only if either x =0 = u
or (x,y) = (u,v) . The partitions Pi with 1 <« i < g are formed
by interpolation between P1 and Pﬂ (separating off each of the
singletons in Pz one at a time from Pl ). We must verify that a

sufficient number of partitions can be formed in this way. Since

\Pz‘ =n-k+1 and \Pll =-{£} , if all possible interpolations were

made, the length of the chain from P1 to Pz would be

n
1f {} <k-1, we have
p2g+l+{2/0-1}-2{.Jo-1} 2.
. n
It {E} = k, we have

p=2g+{2J20-1}-2{Je-1}.
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1
Suppose s<,/£-1ss+-§ for some integer s . Then n = g+2s+1,

2 . . . 2
k = s8s+2 and ¢ < s +s+-2-. Since ¢ 1is an integer, f < 8 +s+1
and thus

n < 92+35+2 = k(k=-1) .

This gives {E} = k-1, a contradiction. Thus {2/}71} = 2 {fz-_l}
and hence p = g

To complete the proof, we show that L(g-1,m+1) can be
represented on the same set as L(fg,m) . Suppose g = 2 and
P, € L(£,m) has classes Ci y 1 <1 ¢n . Since

y/

assume that

P,G-l -] Pz, we may

Pl?,-l has a class containing C1 U C2 . Since

pf,—l A Qm =0, for every x ¢ C1 and y ¢ 02 , (x,y) Qng . Consider

a shortest Pﬂ—Qm path xlxz...xn (n =2 3) from Cl to C2 . Then

x, €C, and x ¢C, but xi‘:_ClUCZ, 2 i <n . Thus

(xl,xz) € Qm . Let Qm+1 < Qm be the partition defined by: for all
X,y £ X5 (x,y) € Qm+1 if and only if (x,y) ¢ Qm; for all x,

(x,x,) € Qm+l if and only if x = x, ., To show Pz—l v Q =1,

1 m+1

we need only show (xl,xz) € Pz~l \ Qm+1 for then pf,-l \Y; Qm+ 1 2

P vQ =1 . Since the P -Qm path x

o-1 m P does not contain

2...Xn

X it isa P_-Q

1’ ) path. Since (xn,xl) €P

X, o0 X X is
n

m+l -1 72 1

a

Q

Pz_l- mel path from x to  x, .

2 1

We now consider the lattice Ln of subspaces of the geometry Gn
with n points and 1 1line,. Ln congists of n mutual.ly complementary
elements and 0 and 1 (see Figure 3). Hartmanis [6] has shown

that I_L(Ln) < 2p where p is the first prime larger than n . We
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shall prove u(Ln) s'p , where p 1is the first prime not less than

(see Theorems 7, 8 and 9 below).

pl
Figure 3.
Theorem 7. n+1l; n even
“,(Ln) 2
n ; n odd .

Prool. Supposc Ln can be represented as a sublattice L of the
lattice ol partitions of m . Each non-trivial P ¢ L defines a set
of edges L, = {{a,b}: (a,b) ¢ P, a £b} . Since PAQ =0 and

PVvQ=1 when P £Q, we have that LP UL, is a connected graph.

Q
Thus
(1) |Lpl +1Lg} = jLp ULl 2 m-1,
(ii) }: ‘Lp‘ < % m(m=-1) .
PelL
From (i) we get
n(n-1)
(n=1) Y |Lp| = ) (Lp| + | 2 2B (-1
PcL P£Q

Hence f{rom (ii),
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m(m-1) 2 S lel 2-;— n(m-1)

[ R

Pcl

which yiclds m 2 n . Equality can occur only if ]LP‘-+‘LQl =m-1
for all non-trivial P £ Q ¢ L, which implies that m-1 is even

whenever m = n = 3 . Small cases are handled by inspection.

Theorem 8. The following four statements are equivalent:

(1) p(b, ) =2n-1;

(ii) The complete graph on 2n-1 points, can be edge-

KZn--l’

colored with 2n-1 colors so that the union of any two color classes

is a spanning path;
(iii) K2n can be edge-colored with 2n-1 colors so that the union

ol any two color classes is a spanning cycle;

(iv) The symmetric group on 2n eclements, S contains a sct

2n’

{li: i =1,2,...,2n~-1} of involutions such that the group generated

by Ii and Ij is transitive whenever i # j

Proof. (i) « (ii) . If we assume (ii), each color class is a partition,
so0 (i) follows easily. Suppose (i) holds. As we have seen above

\LP U LQ| =2n-2 forall P £Q . Since Ly U LQ is connected, it

=n-1 and L contains no cycles, that

must be a tree, Thus ‘LP‘ p

is, P is a maximum matching of the points of K2n-1 . (ii) now

follows.

(ii) e (iii) . Suppose K2n has been (2n-1) edge-colored

so that the union of any two color classes is a spanning cyle. Clearly

K2n‘\{v} satisfies (ii). On the other hand, if K has been

2n-1

(2n~-1) edge-colored so that the union of two color classes is a
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spanning path, each point misses one color and, by counting, each

is 2n-1

color misses one point. K, =K, , U {{v,a}: a ¢ K2n—1}

cdge-colored by coloring {v,a}, a ¢ K with the color missing

2n-1"’
at a . It is easy to show that this coloring satisfies (iii).

(iii) « (iv) . Each 1 - factor of K2n defines an involution
on 2n and vice versa. 8Since the elements of the group generated by
the involutions I and J have the form eeoe IJIJ ..., the union
of two 1~ factors spans KZn if and only if the group generated by

the corresponding involutions is transitive.

Theorem 9. The statement 8 (i) holds if n (see [1] and [8]) or

2n-1 (see [1] and [9]) is a prime.

Remark 4. B. A. Anderson (private communication) has also shown that
8 (i) holds for n =8 and n = 14. Thus the first unknown case is
n : 18 . We would like to know a similar result to Theorem 6 about a
lattice L(zl,zz,...,zw) consisting of 0 and 1 and of w chains
Pil > e > Piﬂi , 1 €£i <« w, such that Pij and Pi’j’ are com-
plementary when i # i’ . However, the method of proof used in

w
Theorem 6 gives only p(L(zl,..,,zw) =3 f(i,w) where 4 = w“l E: Li
i=1

and

f(z,w) :22-3+8 w-—1+4 fwz—l /4+w2(2z—3) .
w

2
w

Although this reduces to Theorem 6 when w = 2, for large values of

it is a very bad estimate since 1lim f(Z,W) = 22-—3 , an absurdity.
W

Actually, proofs of this type seem to indicate that the best results

for these lattices are obtained by partitions with nearly equal classes.

For this reason, we mention the following theorem.
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Theorem 10, Lk+2 has a normal representation : Lk+2 - [I1(S),

where \SI = n2 such that \S,’¢(a)\ = n and ‘A‘ = n for each

A € 8/ %P(a) whenever a ¢ Lk+2’ a k 0L ,1L , il and only if
k+2 k+2

there are kK mutually orthogonal Latin squares of order n .

Proof. Suppose L exists. Let the partitions be c, = {Cil"'°’cin}’

1 <i<k, A={A,...,A}, and B ={B,...,B } . We form the
1 i
i 11 : = j i .
Latin square LZm as follows let Lzm j if Cij N A£ N Bm £ ¢

The definition is possible since Az NB_ = {xzm} for all £ and m,

. . - i .
and given 1, some Cij must contain xzm . Suppose Lzm =L, , =]

Then ij N Aﬂ N Bm A ¢ and Cij N AL' N Bm # ¢, contradicting
AE N Ag' - ¢ unless £ = £’ . Similarly Lzm = Lzm' if and only if
m - m’ . Thus L;m is a Latin square. Suppose Lim = Lis = p and
Lj = LJ =q with i # j . Then
4m rs
(CipnALan:{xzm}
Cip 0 Ar n Bs = {xrs}

ﬂ CJq n AE B, = {xlm}

\ch NA_NB_ ={xrs} .
Thus C; N Cy = {xzm} = {xrs} , s0 4 =r and m =s . Hence the

Lzm are mutually orthogonal Latin squares.

ik :
Conversely, suppose {Lzm}i—l is a set of mutually orthogonal
Latin squares. We consider the n2 elements in Zh X Zh . We let

A, = {i} X 2, and B, =7 X {i} . wWe put (&,m) ¢ Cij if and only if
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i . . . e s
Ly,=3 . Itis easily verified that the partitions C, = {Cil""’cin}’

1 <ic<ck, A= {Al,...,An} , and B = {Bl""’Bn} generate the desired

lattice.

Corollary 11. (See |4; p. 177]). The following statements are equivalent:

(i) The edges of the complete graph K 9 on n2 points can be decom-
n

puosed into n+1 sets so that each set consists of n components iso-
morphic to Kn and so that the union of any two sets is a connected
graph.

(ii) There exists a projective plane Pn aof order n .
(iii) There are n-~1 mutually orthogonal Latin squares of order n .
(iv) There is a partition lattice L on n2 elements consisting of

n4+ 1l mutually complcementary elements plus O and 1 such that cach

non-trivial partition has n classes of n elements.

Proof. We shall sketch the proof. The equivalence of (i) and (iv)
follows from the method used in the proof of Theorem 7. That is, to
each partition P £ 0,1 in L there corresponds a set of edges

Ly, = {{a,b}: (a,b) € P} . (Note that each of these partitions turns
out to be nothing more than a parallel class of lines in an affine
geometry.) The equivalence of (iii) and (iv) follows from the theorem.

The proof of the equivalence of (i) and (ii) follows standard lines:

Suppose (i) holds. To form Pn add to the points of K 2 the points
n

Cy» ..,cn+1, corresponding to the n+1 sets Cl""’cn+1 . We

suppose the components of Ci are Cil""’cin . The lines of Pn

are then the sets Cij U {ci} , i=1,...,n+1, and the set

{cl,...,c } . Conversely, if (ii) holds, let {cl,...,cn+1} be a

n+l
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line in Pn . The points of K 2
n

are then the points of

Pn\\{cl""’cn+l} . The edge {x,y} of an is in the set c, if

x y and ¢, are colinear in P_ .
! i n

§ 3 . By Whitman's Theorem (see § 0), every lattice is a sublattice of
the lattice of ail partitions of some set. If @ is a representation of
a lattice L as a lattice of partitions of A, and B is a subset of
A, then for every x ¢ L let WB(x) be the restriction of the partition
p(x) to B . Of course, ¢h(L) does not necessarily have to be a
sublattice of L . Even if @B(L) is a sublattice, ¢h does not have

to be an iSOmorphism. If @B(L) is a sublattice and wB is an iso-

morphism, then the subset B is called faithful.

Remark 5. Every representation of the lattice L2 has a finite flaithful

subset. The simplest example of a finite lattice which hés a representa-
tion without finite faithful subsets is L3 . The representation is
constructed as follows: the points of the set are the vertices of the
regular triangular lattice on the plane. Three points form an equivalence

class with respect to a given color if they are the vertices of a triangle

which has this color (see Figure 4). It is clear that if we take any




finite subset S of this triangulation, there will be at least onc
vertex which appears in only one colored triangle, say color 1 . Thus
this vertex is not 2 v 3 equivalent to any other, so S cannot be a
faithful subset. We can also show that the lattice of Figure 5 has a

representation without finite faithful subsets.

Figure 5.

There exists a finite distributive lattice with a representation
without finite faithful subsets. The lattice generated by the partitions

induced by the colors 1, 2 and 3 in Figure 6 is isomorphic to

{0,1}3 .

Figure 6.

The lattice L in Figure 7 is a finite lattice with an infinite
representation without proper faithful subsets. Partitions A, B,

A, and B, of 7 are formed as follows: A has classes {2n , 2n + 1}

for all n ¢ 2, B has classes {2n-1,2n} for all n, Al has

classes {2n-1,2n+4} for all n, and B, has classes {2n+2,2n-1}
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for all n . It is clear that these partitions generate a lattice
isomorphic to L . For any proper subset of Z, one of the relations
Av B=1, A1 Y B1 = 1 would fail, so this representation of L has

no proper faithful subsets.

Problems.

1. Suppose P g Q are lattices and P has a rcpresentation
without finitc faithful subsets. Does Q have such a representation?
Can a given representation ¢ of P without finite faithful subsets
be extended to a representation @ of Q such that @ also does not
have finite faithful subsets?

2. Characterize the class of 1atti§es which can be generated by
colorings of tesselations of the plane.

3. (See Remark 3.) For what £ and m is [I(£) < O(m) ?

4. (See Theorems 7, 8 and 9 and [1], [8] and [9].) Find u(L)
for all n .

5. (See Remark 4.) Find “(L(Ll’zz""’zw)) for all w- tuples

of positive integers (zl,zz,...,zw> .
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