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This paper will discuss some new lattice-theoretic 

constructions of combinatorial interest. Throughout, 

all lattices will be assumed to be finite unless the 

contrary is stated, and most proofs will be omitted. 

Proofs and generalizations (e.g. to infinite lattices) 

are in the author's Doctoral Thesis [13]. 

After a few technical preliminaries we will dis-

cuss a basic representation theorem for lattices and 

give some applications of it, including a new character-

ization of distributive lattices and some combinatorial 

results having to do with the representation of lattices 

and posets by subsets of the power set of some given set. 

In Part II, we introduce the poset of join-irreducible 

and meet-irreducible elements of a lattice, a construc-

tion which bears the same relationship to the given 

lattice, as the poset of join-irreducible elements bears 

to the corresponding finite distributive lattice. After 

describing the properties of the poset of join-irreducible 
* This research has been partially supported by ONR 
Contract N00014-67-A-0298-0015 . 

36 



and meet-irreducible elements, we will give some appli-
cations of this construction, including the extension of 
the work of Crapo and Rota 17] on the factorization of 
relatively complemented lattices of finite length to all 
lattices of finite length. We will then discuss the 
enumeration of the elements of the free distributive 
lattice on n generators, a problem first proposed by 
Dedekind 18] in 1897. 

Much of the work in Parts I and II has been stimu-

lated by the following question. How much of the struc-

ture of a lattice is 'recoverable * from its join-irreduc-

ible and meet-irreducible elements? As we shall see, 

the answer to this question is that by concentrating 

only on certain relations between join-irreducible and 

meet-irreducible elements we are able to reconstruct the 

whole lattice, and can obtain information about the lat-

tice which would be difficult to obtain from the whole 

lattice directly, such as its factorization. 
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I. THE BASIC REPRESENTATION THEOREM AND APPLICATIONS 

We first introduce some notation. If n is an 

integer, by n we shall mean {1,..., n}. Of course 

if n <_ 0, n = If X is a set, we shall denote the 
cardinality of x by |X|, and the power set of X by 
X X 2 . Note that we shall always consider 2 to be a 
lattice in the obvious way. We will use <_ and < for 

set inclusion and proper set inclusion respectively. If 

L is a lattice, we denote by J(L) the set of all join-

irreducible elements of L (recall L is finite) and 

by M(L) the set of all the meet-irreducible elements 

of L. A and V denote meet and join respectively. 

The following representation theorem will be our 

starting point. It has been used by Zaretskii I18J and 

is closely related to the dual of the representation by 

principal dual ideals due to Birkhoff and Frink [2]. It 

can be generalized quite a bit, and was discovered by the 

author while he was investigating the structure of the 

semigroup of binary relations Q14J). 

THEOREM 1. Let L be a lattice. The map 

f:L+2 M (^ given by f(a) = {yeM(L)| y£a} is injective 

and join-preserving (and hence order-preserving). 

Theorem 1 has a number of consequences. The fol-

lowing corollary is obvious even without Theorem 1. 

38 



COROLLARY Let L be a lattice |T(L)|= j and 

|M(L) | = k, then the length o£ L < min {k,j}. 

The following theorem gives a new combinatorial 

characterization of finite distributive lattices. It is 

well known that (c) below implies (a) and (b). But the 

converse seems to be new. 

THEOREM 2. Let L be a finite lattice. The fol-

lowing are equivalent. 

(a) L has length n, satisfies the Jordan-

Dedekind chain condition, has n join-irreducible ele-

ments and n meet-irreducible elements. 

(b) L has n join-irreducible elements, n meet-

irreducible elements, and every connected (maximal) chain 

between I and 0 has length n. 

(c) L is distributive and has n join-irreduc-

ible elements. 

Proof: It is easy to see that (a) and (b) are 

equivalent and it is well known that (c) implies (a) 

(see Birkhoff 11]). Thus we need only show that (a) 

implies (c). Let L' be the dual lattice and observe 

that L * also satisfies (a). From Theorem 1 it follows 

that we can consider L and L' to be j o in- sub1at t i c e s 

of 2̂ -, where by a j o in-sublatt ice we mean a subset of 

2— closed under arbitrary join (union). Any such subset 

is of course a lattice with join being union but the 
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meet of two elements is not in general the intersection. 
We claim that L and L' are sublattices of 2— 

and hence distributive. Let f.-L+L* be an anti-isomor-
phism . 

Note that from (a) it follows that the height of 
any element of L or Lf is equal to its cardinality. 
We now make a series of observations. 

(i) |f (x)| = n - |x| for all xeL, since a 
connected chain from x to n is mapped into a con-
nected chain from (|) to f(x). 

(ii) |f(y).l - |f (x) A L,f Cy) I = M - hcflyl 
for all x,yeL, since |f(y)| - | f (x) A L , f (y) | 

= (n - | y | ) - (n - |xUy|) 

- \xUY\ - lyl - M - |xfly|. 
Ciii) I f Cy) I - | f (x) H f Cy) I « |x| - |xA Ly| 

for all x,yeL, since | f Cy) | - [ £ C>cD 0 £ Cy) I 

- | f (x) U f Cy) I - I f (x) | = Cn - |xA Ly|) - Cn-[x|) 
= |x| - |xALy|. 

We know that x A^y <_ x H y and fCx) AL,f(y) 

f (x)f) f (y) for all x,yeL. Thus |x| - |xA Ly| ^ [x| 

- \xf) y | and |f(y)| - I £ Cx) fl f Cy) I <_ | f Cy) I -1 f , f Cy) | . 
But from the last inequality, (ii) and Ciii) it 

follows that |x| - [:xALy| <_ | x| - |xfly|. Hence, 
|xA Ty| = |xf)y| and ic/\Ty = xfly, implying that L is 
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a sublattice of 2—. Similarly, L* is a sublattice. 

Remark. Theorem 2 assists in identifying distri-

butive lattices from their Hasse diagrams, since it is 

usually easy to identify the join-irreducible and meet-

irreducible elements, as well as to determine whether a 

given lattice satisfies the Jordan-Dedekind chain condi-

tion . Certainly , a computer can easily be programmed to 

identify finite distributive lattices. 

Theorem 2 can be stated as follows: a finite lat-

tice L with n join-irreducible elements is distribu-

tive if and only if (i) it satisfies the Jordan-Dedekind 

chain condition, (ii) the number of meet - irreducible 

elements equals the number of join-irreducible elements, 

and (iii) the length of L is equal to the number of 

join-irreducible elements. The following three examples 

show the independence of conditions (i), (ii) , and (iii). 

Here n=3. (a) satisfies (i) and (ii) only, (b) (i) 

and (iii) only, and (c) (ii) and (iii) only. 
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COROLLARY 4. A finite modular lattice L is dis-

tributive if and only if its length is equal to |j(L)|. 

Proof. It is well known that modular lattices 

satisfy the Jordan-Dedekind chain condition II]. Also 

Dilworth has shown \1; 103] that |J(L)| and |M(L)| 

of any finite modular lattice are equal. Thus the cor-

ollary follows directly from Theorem 2 and these addi-

tional facts. 

Définition. Let L be a lattice. By an embedding 

of L in 2— we mean an injective join-preserving map 

f:L+2-. We shall say that two embeddings f and g 

are distinct if f(L) 4 g(L). 

Theorem 1 shows that L can be embedded in 2— 

if n >_ | M CL) I • Actually, it is true that L can be 

embedded in 2- iff n > |M(L)I. This was first shown 

to be true by Zaretskii 118] and later discovered inde-

pendently by the author 114]. We will not prove this 

result here. 

An obvious question about embeddings is the follow-

ing, Given a lattice L and an integer n how many 

distinct embeddings of L in 2— are there? The re-

sults above only tell us when an embedding is possible. 

The answer to this question follows from work done in 

exploring the structure of the semigroup of binary 
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relations done by Brandon Butler, D. W. Hardy and the 

author 13, 4]. It can also be derived from 

Zaretskii's work X18J . For details about the relation-

ship between lattices and the semigroup of binary rela-

tions see [15] . 

To avoid introducing too much additional theory we 

simply state the following theorem ( w h i c h c an be gener-

alized to the case of arbitrary join-preserving maps 

between arbitrary complete lattices 113]). 

THEOREM 3. Let L be a finite lattice such that 

|L| = p, |M(L)| = k. The number of distinct embeddings 

of L in 22. is ( 1 /1Aut L[) J (-1)1 (p-i)n, where 
i-0 1 

Aut L is the automorphism group of L. Note that the 

above quantity is 0 if n < k. A purely lattice-

theoretic proof can be found in 113J . 

We will now consider the relationship between some 

of the material above, and the problem of computing the 

number of realizations of a given poset by a subset of 

2— for some integer n. By this we mean that if we are 

given a finite poset P, we wish to know how many subsets 

of 2—9 considered as posets with inclusion being the 

order, there are which are isomorphic to P. This pro-

blem is treated in some detail by Hillman in 111], We 

will briefly show how the theorems above apply to this 
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problem. Our method does not always simplify the cal-

culations involved, but it does give "geometrical" in-

sight into the difficulties involved in representing 

posets by sets. 

Definition. Let L be a lattice and P a poset. 

Then R(L,n) denotes the number of ways of representing 

L as a join-sublattice of 2—, R*(P,n) denotes the 

number of realizations of P by subsets of 2~, and 

D(P) denotes the distributive lattice of all closed 

from below subsets of P, while i:P-»-D(P) denotes the 

canonical map i(a) = {beP|b <_ a}. A subset 1c of L 

is called a meet-sublattice of L if it is closed under 

arbitrary meets (recall that the empty meet is always I). 

We note here that a meet-sublattice of a lattice is 

itself a lattice with respect to the induced order. 

The key result for applying Theorem 3 to the repre-

sentation of posets is the following. 

THEOREM 4. Let P be a poset, and L the set of 

all meet-sublattices of D(P) which contain iCP) • 

Pick one representative from each isomorphism class of 

L, say L1,..., L^. For each iek let m L = |{Q £ 
J(L-) < Q and P~Q as posets}|. Then R*(P,n) = 
k 1 ~~ 
I m L R(L^,n). 

i = l i 
All of Hillman's results can be derived starting 
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from Theorem 4, but we will not dwell on this here. 

Rather we will just give an example in which Theorem 4 

supplies the answer more directly than any of Hillman's 

approaches. 

EXAMPLE 1. Let P have the Hasse diagram 

i=u 
meet-sublattice of D(P) containing i(P) is D(P) 

itself, and |D(P)| = 3k+l. Thus in certain cases the 

lattice method allows one to quickly group the essentials 

of the situation and arrive at the solution directly. 

This example illustrates the fact that Theorem 4 often 

allows one to see quickly how to calculate R*(P,n) and 

gives some idea of how complicated the calculation will 

be, as well as allowing one to calculate R*(P,n) for 

a whole class of related posets, as opposed to isolated 

cases, It is interesting to note that Theorem 4 shows 

why the poset representation problem is hard in general. 

/ 

k < 

since the only 
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Namely, the poset representation problem involves the 

representation of a number of lattices which are not 

"obviously" related to one another. Thus we also see 

why the coefficients seem to vary so much in the cases 

that are known. However, Theorem 4 gives us enough in-

formation to describe the asymptotic behavior of R*0P>n)> 

for a fixed P as n-*-°°. In particular we have the 

following corollaries. 

ically as n-»-». 

The following corollary is an interesting special 

case of Corollary 1. It tells us the number of anti-

chains of size k in 2— and shows that as n->°° almost 

every subset of 2— of cardinality k is an anti-chain. 

In the next corollary, A^ is the poset corresponding to 

the Hasse diagram 

COROLLARY 2. R* (A^n) " l k) asymptoti-

cally (for fixed k) as n-*00. 

COROLLARY 1. R*CP,n) l A u A ) l | D ( P ) ' n a s W t o t " 

k 

46 



II. THE POSET OF JOIN IRREDUCIBLE AND MEET IRREDUCIBLE 
ELEMENTS. 
It is standard "II; p.59J that any finite distribu-

tive lattice is isomorphic with the ring of all order 
ideals of the partially ordered set consisting of its 
join-irreducible elements. Furthermore certain proper-
ties of the distributive lattice can be calculated dir-
ectly from this poset of join-irreducible elements. In 
particular we have the following results which do not 
seem to have been generally considered. A proof of 
Theorem 5(a) can be found in J15J . 

THEOREM 5. Let L be a finite distributive lattice 
and P its poset of join-irreducible elements. Let 
P - (v1, ..., vt). Then: 

(a) The map F : Aut (P) -*Aut (L) given by 

<F(£)('Ev.) = Ef(v-) for A<_t is a group isomorphism, 
A 1 A, 1 " 

i.e., every element of AutCP) extends naturally to an 
element of Aut(L). 

(b) L is decomposable iff P is not connected 
and the irreducible factors of L may be gotten simply 
by considering the distributive lattices (i.e., the rings 
of closed from below subsets) associated with the con-
nected components of P. 

REMARK. Theorem 5 does not hold for arbitrary 
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lattices. Consider the lattice L depicted by the 
following Hasse diagram. 

IAnt(L)| = 2 and L is indecomposable while 

|Aut(J(L))| = 6 and J(L) has 3 components. 

We will now describe a poset which can be associ-

ated with all finite lattices and which has the same 

properties with respect to the original lattice that the 

poset of join-irreducibles has with respect to the cor-

responding distributive lattice. 

Definition. Let L be a lattice. By P(L) we 

mean the poset J(L)\^/M(L) (disjoint union) with the 

following order. Let ^ : J (L)-*P (L) and i2 :M (L)-*P (L) 

be the canonical injections. For x,yeP(L), y>x iff 

(a) yei2(M(L)), (b) xei^ (J (L) ) , and (c) i 2
_ 1 ( y ) £ 

i^ (x) in L. When talking about P(L), we let 
X1 = a n d = i2 CMCL) ) . We call PCL) the 

poset of join irreducibles and meet irreducibles of L 

or simply the poset of irredrucibles of L. 

PCL} furnishes us with quite a bit of information 
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about L. Since the proofs of the following theorems 

are somewhat involved we omit them and present the most 

important properties of PCL). 

THEOREM 6. Let L be a lattice and P(L) = 

X1 • X? its poset of irreducibles. 

(a) Let f:X1^2 2 be given by f(a) - {beX2|b>a}. 

Then L - rT def { U w A < f (X., ) } . (Thus we can recon-L we a 1 — v 1J K 

struct L from P(L).) 

Cb] Aut (P (L) ) - Aut(L) . 

(c) L is decomposable iff P(L) is not connected, 

Futhermore, the irreducible factors of L may be gotten 

by applying the procedure of (a) above to each connected 

component of P(L). 

(d) For each xeX0, let T = g.l.b.r Sv where l' x ^ L 
S^ = {Uef(X^)|xeU), where r^ and f are as in (a). 

Then L is distributive iff for all Vef(X1), V ^ y T ^ 

iff for all 
x eX 2 » x e T . To illustrate Theorem 6 we 

consider the following examples. 

EXAMPLE 2. Thus if we construct P(L), where L 

is the lattice in the remark after Theorem 5, we get 
a b c d. i 1C T) - h,i1(3) - g,i1(«)=e, i 2 ( Y) b a,i2(3] = b,i2Ca)-c, 
e g h and i2 ( 6) = d. 

Thus [Aut(P(L])| - 2 = |AutCL]|, L is indecomposable. 
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If we consider f (I) <_ 2 { a , b , c , d } we see that f(e] : 

{a,b}, fCg) - ( a,c}, f (JO. = (b,c,d). Thus T a = 
Tb = Tc " ^ Td = tb,c,d}. Consequently, L is not 

distributive, which of course is no surprise in this 

case. 

EXAMPLE 3. Let L have the following Hasse dia 

gram. 
<5 > y 

a 

Then P(L) has the following diagram, 

d e f 

ô 

Here i-̂ CoO = a, i2C°0 - f, 

i 1 C H = i1Cr) = c> = d> 

i2C<5) = e. a b c 

P(L) has two components, so that P(L) has two inde 

composable factors corresponding to the diagrams 

q (d> ç {e ,f} 

and {f} 

0 
Note |Aut(P(L)]| = 1 = |Aut(L)|. Applying Theorem 6 
we see that T d = {d}, T g = {e,f}, and T f = {f}, and 
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that consequently L is distributive. 

Theorem 6 has some interesting consequences con-

cerning the factorization of lattices. In particular, 

it leads to a simple characterization of the center of 

a lattice (see [1; p. 67]). The following fairly immed-

iate corollary of Theorem 6 generalizes and extends the 

results described by H. Crapo and G.-C. Rota (and which 

follow from some work of Dilworth) for factorization of 

relatively complemented lattices with no infinite chains 

[7 ; Chapter 12] to the factorization of all lattices 

with no infinite chains. 

COROLLARY. Let L be a lattice and C(L) be the 

center of L. 

(a) xeC(L) iff x is a separator of L, i.e., 

if PeJ (L) and qeM(L) are such that p̂ _q, then either 

p<_x or x<_q. 

(b) C(L) — 2—, where k is the number of irreduc-

ible (non-trivial) factors of L. (Note L has a unique 

irreducible factorization.) 

(c) L —[ 0 , c^] x [0 , c 2] x ... x [0,ck] where 
C1 ' '** » cic a r e points of C (L) . 

The author is indebted to Professor Curtis Greene 

for suggesting that the results of [7 ; Chapter 12] be 

considered from the point of view of Theorem 6. 

Before we discuss additional aspects of the poset 
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of irreducibles we make the following definition. 

Définit ion. By a bipartite digraph D, we mean a 
triple CX,Y,A), where X and Y are sets, X Y - (f, 
and A<XxY, A is called the set of arcs. If SçX, by 
Ou(S) we mean (yeY| there exists xcS such that 
(x,y) eA) . Similarly, if T^Y, by InCT) we mean {xeX| 
there exists yeT such that (x,y)eA} . If xcXjyeYJ 
we write Ou(x)IIn(y)] instead of 0u({ x}) Iln({ y))J . 

Sometimes we will use the term bidigraph to stand for 
bipartite digraph. 

We will usually think of bidigraphs as being posets 
with the following ordering, If w,zeD, then w^z iff 

weY, zeX, and weOu(z). 

From Theorem 6 we see that we can associate a 
"unique" bidigraph P(L) to each lattice L and then 
recover L from PCL) in a well-defined way. The 
following theorem shows that to any bidigraph we can 
associate a lattice. This theorem sets the stage for 
some interesting questions. 

THEOREM 7. Let D = (X,Y,A) be a finite bipartite 
digraph. Let frX+2 be given by f(x) = Ou(x), and 
let Ld « {J^wI A 1 f Q O K Th.en L^ is a lattice. Let 

Y 
g:Y+2 be given by g (y) = l.u.b.T fCX-In(y)) 

LD 
Ou(X-In(y) ) . Then fQQ > ^CLr,] and gCY) >_ MCL^) . 
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We conclude this section by considering the follow-

ing two questions. First, which finite bidigraphs are 

isomorphic to PCL) for some lattice L? 'Second, sup-

pose we are given the Hasse diagram of a. finite poset, 

how can we determine whether or not the poset is a lattice 

The first question is answered by the following 

theorem. 

THEOREM 8. Let D - (X,Y,A) be a finite bidigraph. 

Then the following are equivalent. 

(a) D — PCL) for some finite lattice L. 

(b) For all xeX, if A <_ X is such that Ou Cx) 

= OuCA), then xeA. Similarly, for all yeY, if r <_ Y 

is such that In(Y) - In(T), then yeT. 

We will not answer the second question formally, 

but simply show how the techniques described above allow 

one to systematically attack the second question. The 

basic idea is that, given a finite P (say in the form 

of a Hasse diagram) one assumes that it is a lattice and 

constructs P(P) of Theorem 6 using any element which 

is only covered by one element as a meet-irreducible 

element and any element covering only one element as a 

join-irreducible element. If P(P) does not satisfy 

Cb) of Theorem 8, it follows that P was not a lattice 

originally. If PCP) does satisfy Cb) of Theorem 8 

53 



one proceeds to construct a s Theorem" 7. From 

the work abo\'e, it is clear that P is a lattice iff 

'PCP) — P. Often, it is not necessary to construct all 
of Lp^p-j to discover that P ^p^p) a s be seen 

below. 

Needless to say, if P has more than one maximal 

or more than one minimal element, there is no need to 

test it for being a lattice. Again, it is often easier 

to test that (b) of Theorem 8 holds for Ou and then 

construct LpQ^, then to see that (b) of Theorem 8 

holds for both Ou and In. 

EXAMPLE 4. Let P be represented by 

The shaded elements are the 

"join-irreducibleH elements of P 

determined as above, assuming that 

P is a lattice. The starred 

elements are the meet-irreducible 

elements of P. We will not use i^ and when 

working with P(P), in order to keep notational distrac-

tions to a minimum. Here, we have that OuCa) = (]), 

Ou (b) = {d}, Ou (c) - {£}, and Ou(d) = {e,f}. Since 

Ou(a) = (|), (b) of Theorem 8 is not satisfied, since 

OuC$) s $ and â Cj). Hence P is not a lattice. PCP) 

can be represented by 
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o cr o o 
b d c a and L, (using Theorem 7) 

is the lattice of Example 3. 
EXAMPLE 5. Let P be represented by 

PCP) can be represented 
as 

ô o 
a b d . Clearly L p ( ^ - 2- ± P, so 

that P is again not a lattice. 

EXAMPLE 6. Let P be represented by 
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We will not draw P (P), but note that the follow-

ing are easily obtained from the diagram: On(a) = (d,e,h}? 

Ou (b ) = {d}, Chi (c) = {a}, OuCd) = (a,e,f}, Ou Ce] = 

{a,d,g,h}, Ou(h] = {a,d,e,f,g}. To simplify checking 

whether QO of Theorem 13 holds one should arrange the 

Oufs according to cardinality: OuCb), Ou(c), Ou (a), 

Ou(d), Ou(e), Ou(h). In this way, each Ou could only 

be a union of preceding Ou's. OuCb) and Ou(c) are 

singletons and thus satisfy (b). Ou(a) is the first 

one on the list to contain an "e" or nh", while Ou(d) 

is the first to contain an nf n. ,rg" first appears in 

Ou(e). "g" appears only in Ou(e) and OuCh), but 

Ou(e) £ Ou(h), and hence (b) holds for all the Oufs. 

Note that InCy), for ye{ a ,d ,e ,f ,g ,h} is easily 

constructed since In(y) = { xe{ a ,b ,c ,d , e ,h} | ye Ou 0 0 ) . 

It is also easily verified that (b) holds for In(y). 

It is easy to construct L p ^ , and one quickly sees 

that P - L p ( p ) . 

It is easy to see that PCP) is connected and that 

therefore P is indecomposable. Furthermore, let 

feAut(PCP))» it is easy to show that f = Identity, since 

f(a) = a (a considered as belonging to X^), f(d) = d 

Cd considered as belonging to , etc. 
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EXAMPLE 7. Let P be represented by 

Thus Ou Ce ) = {a,el 

Ou(d) = { a,e,f} , 

OuCb) = {e,£,j}, 
Ou(e) = { a, £, g ,h} , Ou(a) = {e,f,g,j,k} , Ou(f) ={a,e,g,h,m} 
Ou(i) = (a,e,f,g,j). It is easy to see that Ou satis-
fies (b) of Theorem 8. However, when constructing Lp(p)? 
one notices almost immediately that Ou(c) Ou(d) , but 
that c£d in P. Thus LpQ>) "f" p> an(^ p n o t a 

lattice. 

The above examples actually contain the skeleton 

of an algorithm for checking posets for being lattices. 

We will not develop this algorithm further here, but 

note that it can be refined quite a bit and that some 

fair-sized examples, e.g., Example 7, can be handled 

easily using this algorithm. 

Remark. Much of the preceding can be generalized 

to arbitrary lattices. The forms of the theorems vary 

depending on whether one wants to allow arbitrary joins 

or just finite joins. In the case of arbitrary joins, 

the generalization of Theorem 1 allows one to embed every 
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lattice in a complete lattice, while the generalization 

of Theorem 6(d) leads directly to some of RaneyTs results 

dealing with completely distributive lattices. Both 

theories are complicated by the fact that arbitrary 

lattices need not have any join-irreducible or meet-

irreducible elements, and by other considerations. Actu-

ally all the above theorems hold for lattices of finite 

length. We have presented everything above in the con-

text of finite lattices so that the underlying ideas 

would stand out more clearly. We would also like to 

mention that other classes of lattices (e.g., geometric 

lattices) can be characterized in terms of properties of 

their posets of irreducibles as was done in Theorem 6(d) 

for distributive lattices. For details see [13]. 
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III. THE FREE DISTRIBUTIVE LATTICE ON n GENERATORS 
The free distributive lattice on n generators, 

FD (n ), is D(2—). For ba sic information about FD(n) 
the reader should consult II; pp 34, 59] or 112]. Actu-
ally, for an arbitrary set X, D(2 ) is the free completely 
distributive (complete) lattice on [X| generators. 

This contrasts with the result of H. Gaifman and 
A. W. Hales that there does not exist a free complete 
Boolean algebra with even countably many generators (see 
[1; p. 259]). We note that in addition to FD(|X|) for 
infinite X, it is possible to talk about a free distri-
butive lattice with infinitely many generators (see 
A. Nerode 116]). 

The problem of enumerating FD(n) was first proposed 
by Dedekind 18] in 1897. Exact answers are known with 
certainty only for n <_ 6. We now show that as is often 
the case, the problem of enumerating FD(|X|) if X is 
infinite is much easier than if X is finite. 

THEOREM 9. Let X be an infinite set. Then 
X 

|FD(|X|)| = I 2 2 | . 
X 

Proof: Clearly, FD(|x|) <_ |22 |. Since X is in-
finite, there exists a bisection f:2_ x X+X. If y & 2 , 

then we define y* = {f(2,a)|aey} { f (1 ,a) | aeX-y} . 
Note that |y*| = |X|, and that if Yi >Y? £ 2 , y- f y?, 
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then y* y* and y*. 

Define F : 2 2 ^ F D ( |X | ) , by F(S) = { Ae2X | A<_y* for 

some yeS}. It is obvious from the definition that for 
2X 

S e 2 , F(S) is closed from below, and hence F is 

well-defined. We claim that F is injective. Suppose 
2X 

that we have F(S) = F(T), for S,T e 2 . Let A e S, 
then A* e F(S) => there exists y e T such that 
A* <_ y*. a s w e s a w above this is only possible if 
X - y. Thus < X e T and consequently S <_ T. By sym-
metry, we get that S > T, and finally that S = T. 

2 1 

Thus |2 | <_ |FD(|X|) and we are done. 
From Theorem 5 we have the following results, 

THEOREM 10. FD(n) is irreducible and Aut(FD(n)) 

— S n (the symmetric group on n letters). 

We note that Theorem 10 is also true for FD(n)-{0,I}, 

which is often considered to be the free distributive 

lattice. This is true since FD (n) - {0,1} - D(2- - {((),n}). 

It would be of interest to know the factors of 

|FD(n)|, but the irreducibility of FD(n) suggests that 

there is no "natural" way to factor |FD(n)|. The only 

result along these lines which is known is Yamamoto's, 

that if n is even so is |FD(n)| [17]. The converse 

of this statement is false, e.g., |FD(3)| = 20. 
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We conclude this paper by considering several as-
pects of the enumeration of FD(n). We wish to briefly 
sketch the nature of the functions L^(n), where ^ ( n ) 

is the number of elements of FD(n) of cardinality k. 
k-1 

THEOREM 11. Lv(n) = J C(p,k)(n), where Av is 

V1 
an integer such that 2 _> k > 2 and C(p,k) is 

the number of order ideals of cardinality k of 2̂ -

which contain all the singletons of 

Remark. Thus we see that, for k _> 1, L^Cn) is a 

polynomial in n of degree k-1, and since C(k-l,k) = 1, 

the leading coefficient is l/(k-l)!. L^C11) resembles 

the chromatic polynomial somewhat. Note that 0,1,..., 

A^-l are among the roots of L^Cn). These are the only 

possible non-negative integral roots of L^(n), since if 

n _> there exists at least one closed from below sub-

set of 2_ having cardinality k. It is possible for 

L^Cn) to have negative integers as roots, e.g., -1 is 

a root of L^(n) and -9 is a root of L^(n). All the 

L^Cn) up to k = 7 have only real roots each with mul-

tiplicity one. Whether this is true in general is not 

known to the author. 

We also observe that ^ ( n ) = L (n) for fixed 2 -k 
k and n. Thus if we know L

k(n) for k = 1,..., m, 

for a given n we can calculate the elements on 2m 
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levels of FD(n). 

Note also that from Theorem 11, it follows that for 
1 k-1 

fixed k, ^ ( n ) ~ (k-1) ' n a s Unfortunately, 

this gives some information about the tail ends of FD(n), 

but does not help to understand the behavior of the 

middle terms. 

It turns out that the values of the C(p,k)ts can 

also be calculated from a polynomial. We will now pre-

sent the machinery necessary for calculating at least 

some of the L-^(n) fairly easily. 

We should note that a somewhat similar approach to 

the problem of calculating FD(n) was used by Randolph 

Church 16], although he fixed n and let k vary. Thus 

in 16] he obtained the values for L^(n), n <_ 5 and for 

all k. 

Definition. By P(j,k) we shall mean C(k-j-l,k), 

and by C^(a,b) we shall mean the number of elements of 

(a,b) such that no singleton is a maximal element, 

where (a,b) is the set of all closed from below subsets 

of cardinality b of 2— which contain all the single-

tons of 2—. 

Remark. Thus we have that Lk(n) = JkP(j ,k) • j =0 Note also that P(0,k) = C(k-l,k) = 1 for all k > 0. 

The following theorem shows that for a fixed j, 
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P(j,k) is a polynomial in k of degree 2j . 

THEOREM 12. For j > 0, P(j,k) = £ C1Ci,i+j+l) 
i=m. 

k-i -1 J £ , where m^ is the smallest integer such that 
m • m • -1 2 3 > m.+j+l > 2 3 . 

- J 

The strategies for calculating C1(a,b), P(j,k), 

and Lk( n) a r e involved and rather technical. The 

author has calculated C^ (2j-a ,3j-a+1) explicitly for 

0 <_ a <_ 9 and P(j,k) explicitly for 0 <_ j <_ 10. 

Theorem 13 gives the explicit values of for 
0 i k 1 1 6 ' 

THEOREM 13. For n > 0, 

(I) L0(n) 

(2) Lx(n) 

(3) L2(n) 

(4) L3(n) 

(5) L4(n) 

(6) L5(n) 

(7) L6(n) 

(8) L7(n) 

(9) Lg(n) 

(10) L9(n) 

(ID Ll0(n) 

3 •n-, . n -n 

.1) = n; 
2 n. n -n 

• 2 J 2 ' 
2 j • 5-» 

4 3 2 , _ n +6n -25n +18n. l3J + l4J , 
n 5 + 2 0n4-8 5n3+100n2-36n (3)+6(4) + ( 5) = ^ 

L7(n) = (?) + 15 (?) + IOC?) + (2); 3J M^ 

(3) + 2OC4D + 45C5D + 15(g) + (£); 

19 Q) + 120 Cg) + 105(g) + 21 (y ) + (£ 
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(12) L n ( n ) = 13(^)+322 (^)+l,385 (^)+l,330 (y)+378 Cg) 

+ 36 (g) + (JQ) ; 

(13) L12(n) = 10(*)+420(*)+3,243(£)+6,020(*)+3,276(£) 

+ 630 (g)+45 (^q) + ; 

(14) L13(n) = 6(4)+500 +6,325(^)+21,014 (y)+20,531 (g) 

+7,140(^)+990(^0)+55(^1)+(^2); 

(15) L14(n) = 4(*)+560(*)+10,925(£)+59,6l9(*)+99,680(£) 

+58,989(^)+14,190(^0)+l,485(^1)+66(^2)+(^3); 

(16) L15(n) = (4)+600(£)+17,345(£)+145,050(*)+393,540(£) 

+ 379,848 (g)+149,115 C^0)+26,235^^)+2,145 (J2) 

+78(-3)+(-4); 

(17) L16(n) = (4)+616(^)+25,945(^)+314,965(y)+l,313,260(g) 

+ 1,992,144 Cg) +1 ,226,919 (*Q) +341 , 2 20 

+45,760(^2)+3,003(^3)+91(^4)+(^5). 

Remark. Note that we have enough information to 

calculate L-^y(n) entirely, since we know from Theorem 11 

that C(5,17) = L^y(5) and from the Remark following 

Theorem 11 that L17(5) = L15(5). All the remaining 
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coefficients can be calculated using the values of 

P c j ,k) for o <_ j <.10. 

The ideas in this chapter have been applied by 

Butler and the author [5] to the enumeration of partially 

ordered sets, to show that when partially ordered sets 

are broken down into certain classes, each class is enum-

erated by a polynomial. 

We conclude by briefly discussing the problem of 

finding an accurate upper bound for |FD(n)|. The best 

published result is that of D. J. Kleitman [12] which 
-1 

states that |FD(n)I < 2 ( 1 + k n J l n n ) E for some 
I n \ n 

constant k, where En = j " j . Recently, Kleitman and 

the author working jointly have been able to improve this 

upper bound. In particular, we have shown that 

|FD (n)| <_ 2^1 + k n l n En. The improvement of the 

upper bound follows from a detailed analysis of Hansel's 

approach to the problem [10] , using a characterization, 

due to Greene and Kleitman [9], of the partition of 2— 

into chains used by Hansel. Greene and Kleitman char-

acterize this partition in terms of the way an expression 

can be parenthesized allowing a certain number of "free" 

parentheses to remain. 
-I ] 

It can be shown that [13] | FD (n) | > 2 ^ + c 2 7 ) En, 

for c a constant on the order of 1 and appropriate n. 
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The lower bound given in [12] is too large to be supported 

by the argument given there. 

We wish to finish by stating two conjectures. The 

first is that the order of FD(n) is closer to the lower 

bound given above than it is to the upper bound given 

above. The second conjecture concerns the number of 

anti-chains of 2— (recall that anti-chains of 2— 

correspond in a 1-1 fashion to the sets of maximal 

elements of elements of D (2—) ). This conjecture is due 

to Garrett Birkhoff and asserts that asymptotically all 

anti-chains of 2— consist entirely of subsets of n 

with cardinality between IjJ-k and [^-]+k, where k is 

a small fixed integer, perhaps 3, 4 or 5. 

The author would like to gratefully acknowledge 

many stimulating discussions with Garrett Birkhoff, 

Daniel J. Kleitman, and Curtis Greene, and the many very 

helpful suggestions which they made. 
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