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ABSTRACT 

For a ring R with 1, let <$C(R) denote the class of lattices 
representable in submodule lattices of R-modules. It is shown that 
the binary ring predicate I£(R) C «J£(S) is related to the existence 
of exact embedding functors R-Mod >-S-Mod. The predicate 
O£(R) C <J£(S) can be evaluated in general if it can be evaluated 
for rings with the same characteristic. Furthermore, only rings with 
zero or prime power characteristic need be considered. Necessary and 
sufficient conditions on R are given such that 3t(R) = JLiS) for 
S a unitary subring of the field of rationals or for S the ring 
of integers modulo n, n a prime or a product of distinct primes. 
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Given a ring R with unit, a lattice L is "representable by 
R-modules" if there exists a unitary left R-module M such that 
L is embeddable in the lattice of submodules of M. Of course, 
embeddability in the lattice of submodules of M is equivalent to 
embeddability in the lattice of congruences of M [1: VII, Thm. 1, 
p. 159]. In the following, we consider the general problem: 

For which rings with unit R and S is every lattice represent-
able by R-modules also representable by S-modules? 

Our attack on this problem uses abelian category methods in 
addition to the methods of modular lattice theory. Let us first 
introduce some notation. Hereafter, R and S will denote rings 
with unit. The lattice of submodules of a left unitary R-module 
M will be denoted r(M;R). The class of all lattices representable 
by R-modules will be denoted 3L(R). Hence, our general problem 
is the study of the binary ring predicate ï£(R) C X(S) for 
various choices of R and S. 

Let R-Mod denote the abelian category of all R-modules and 
R-linear maps between them. If g is a cardinal number, we will 
also consider R-Mod($), the category of all R-modules with 
cardinality less than $ and all R-linear maps between such modules. 
Note that R-Mod(3) is an exact subcategory of R-Mbd if 3 is 
infinite. Let card(X) denote the cardinality of a set X. 
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To digress momentarily, we remark that 3t(R) is a "quasivariety" 
of lattices, that is, 5C(R) is the class of all lattices satisfying 
some set of universal Horn formulas. (A universal lattice Horn 
formula is of form: 

(xr x2> ... , xm) C(ei = e2 § ... § e2n_3 = e ^ ) => e ^ = e2n 

where e^, e2, ... , e2_are lattice polynomials in the variables 
Xp x2, ... » xm-) This was proved by a model theoretic argument in 
general [4: Thm. 6], and was proved by discovery of a constructive 
procedure for generating infinite Horn formula axiomatizations of 

in the commutative case [6, 7: Main Thm.]. In [4: Thm. 3], a 
result is obtained implying that «£(R) is not finitely first-order 
axiomatizable if R is the ring of integers, or if R is the field 
of rationals, or if R is any ring between the integers and the 
rationals (that is, any unitary subring of the rationals). In [10], 
another model theory approach yields the following results: (1) If 
R is a ring defined on a recursive set of natural numbers with 
recursive ring operations of addition and multiplication, then there 
is a primitive recursive set of universal Horn formulas characterizing 
3t(R). (2) Suppose that a "term" is 0, 1 or a variable y^, y2, ... 
and an "equation" is t̂  + t2 = t̂  or tjt2 = t̂  for terms t^, t2 
and t̂ . For any rings R and S with unit, either 5C(R) C X(S) 
or there exists a system of equations that is true in S for some 
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assignment of elements of S to y^, y2, ... , yn but which is false 
in R for every assignment of elements of R to y^, y2, ... , y . 

Let us now return to consideration of the predicate 3C(R) C • 
We begin by stating a conjecture: 

For any rings R and S with unit, 5t(R) C 3C(S) if and only 
if there exists an exact embedding functor R-Mod •S-Mbd. 

We will not prove this conjecture as stated, but will prove a 
slightly weaker version for our first theorem. Specifically, we will 
prove X(R) C 3t(S) equivalent to the following: 

For every infinite cardinal 3, there exists an exact embedding 
functor R-Mod (6) Ŝ-Mod. 

The following propositions lead up to the proof of this result. 

Prop. 1. If there exists an exact embedding functor R-Mod >-S-Mod, 
then £(R)CÏ(S). 

Prop. 2. If there exists a ring homomorphism S >*R preserving 1, 
then £(R) C £(S) . 

Prop. 3. If there exists a bimodule M (left S-module, right R-module) 
which is faithfully flat as an R-module, then <C(R) C *C(S). ( M is 
"faithful" if M ®p M„ = 0 iiiplies Mn = 0 for all Mn in R-Mod.) 
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To prove 3f(R) C X(S), it suffices to show that r(M;R) is in 
cC(S) for each M in R-Mod. Suppose F : R-Mod »-S-Mod is an 
exact embedding functor. Then F induces a lattice embedding 
FQ:r(M;R) •r(F(M);S) defined by FQ[£] = [Ff] for [f] a sub-
object of M. (See [5: p. 183] for relevant information. Note also 
that we have identified the lattice of submodules of M with the 
lattice of subobjects of M in R-Mod, and similarly for F(M) in 
S-Mod.) This proves Prop. 1. 

If there exists a ring homomorphism h:S >-R preserving 1, 
it is well-known (and easily verified) that the "change of rings" 
operation [2: p. 28ff] M ^(h) in^uces 311 exact embedding 
R-Mod •S-Mod. So, Prop. 2 follows from Prop. 1. 

The hypotheses of Prop. 3, interpreted, assert that M<8L — is 
an exact functor that reflects zero objects (that is, every inverse 
image of a zero object is zero). But then M® R - is an exact 
embedding functor [11: II, 7.2, p. 57]. Therefore, Prop. 3 also 
follows from Prop. 1. 

To prove that 3C(R) C £(S) implies existence of an exact 
embedding functor R-Mod(3) >-S-Mod, we make use of the "abelian" 
lattice concept of [5]. By [5: Main Thm.], a functor A can be 
constructed, taking an abelian lattice L into a small abelian 
category A T , and taking a lattice homomorphism b:L >M of 
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abelian lattices into an exact functor A, : AT •A,,. If b is a b L M 
lattice embedding, then A b reflects zero objects by [5: 3.16, p. 172], 
and so A^ is an embedding functor by [11: II, 7.2, p. 57]. 

Definition. Let 6 be an infinite cardinal number, regarded as the 
set of smaller ordinals. Let R. be the free R-module with 3 

p 

generators, with free generating set { x̂ : <S e 3 }. A submodule M 
of Rg has "bounded support" if there exists a subset A of 3 
such that card (A) < 3 and M is contained in the submodule of R0 p 
generated by {x̂ : <5 e A}. Let r̂ (R̂ ;R) denote the set of submodules 
of Rg with bounded support. 

Prop. 4. If 3 is an infinite cardinal, then is an ideal 
of r(R_;R), and is an abelian lattice. p 

Proof: Modify the proof of [5: 4.2]. We will only outline the 
proof that any M in r̂ (R̂ ;R) can be "tripled". Choose A C 3 
such that card (A) < 3 and M is contained in the submodule generated 
by { { e A }. Since card(3 - A) = 3, we can choose B C 3 — A 
and a bisection 9:A Now each m in M can be expressed 
uniquely as a sum £ rgxô, where all but finitely many of the ôeA 
coefficients r. equal zero. Then define: 

1 ôeA 6 6(ô) ÔeA 6 6 

ML = { E rx(x. - x_rrO: E r,x_ e M î 
2 ÔeA 0(ô) ôeA 6 6 
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It is easily shown that M^ and M2 are in and that M, 
M^ and M^ generate the five-element modular lattice of length two. 

Prop. 5. If M is in R-Mod and 3 > + card(M), then there 
exists a lattice embedding r(M;R) 

Proof: Assume the hypotheses. Let y = card (M), and extend a 
bisection fQ:y >M to an R-linear epimorphism f:R̂  >M by 
the free module property. Then r(M;R) is isomorphic to the interval 
sub lattice [ker f , R ] of R . Since R can be regarded as a 

Y Y Y 

bounded submodule of R , there exists an embedding 
r(M;R) HT(RY ;R) ^ ( R ^ R ) . 

Prop. 6. If M is an R-module with generating set G, then 

card(M) < + card(R) + card(G). 
oo 

Let X be the set ) (Rn x G11), and define the function 
n=l 

onto M given by: 

n 
m « T l > r 2 > > rn}> «2- ' = ^ rigi* 

If y = KQ + card(R) + card(G), then: 

00 ? card(M) < card(X) < z (y11) = y. 
n=l 

Proof: 
m from X 

In the next two propositions, we will use the definitions and 
notations of [5] without reference. 
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Prop. 7. Let L be an ideal of some r(M;R), and HomR denote Horn 
in R-Mod. If A, B:2 are r-dis joint, then there is a one-one 
correspondence v:S(A, B) •HomR(A1/A°, B1/^0) given by: 

v(f) (x + A0) = (x + f") 0 B1, 

for f :T kL in S(A, B) and x e A1, and 

v_1(h)" = {x - y: x e A1, y e B1, h(x + A°) = y + B0}, 

for h:A1/A° ^B1/B° in R-Mod. Furthermore, 

ker v(f) = K(f)/A° and im v(f) = I(f)/B°. 

If A, B, C:2 is a mixed sequence, f e S (A, B) and g e S(B, C), 
then v (gof ) = v (g) v (f ). Also, f is isorepresentative if and only if 

-1 -1 v(f) is an isomorphism, and v(f ) = v(f) in that case. 

Proof: Assume the hypotheses. Using the known relations between 
a\ A°, B1, B̂  and f , we can show that (x + f") fl B1 is a coset 

1 0 1 
in B /B for x e A , and v(f) so defined is R-linear. Straight-
forward computations prove that v~*(h)~ is in L, A^ v B°C v'̂ Qi) " C 
AXv B1, B1 v v_1(h)* = A1v B1 and B1 A v_1(h)~ = B°. So, 
v_1(h):T >-L in S (A, B) can be defined as above. We also omit 
the computations proving that v"*v(f) = f, vv'̂ Qi) = h, ker v(f) = K(f)/Â  
and im v(f) = I(f)/B°. 
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Let k = v_1(v(g)v(£)) in S(A, C). By definition k"CA 1vC 1. 
Suppose x - z g k", with x e A1, z e C1 and v(g)v(f)(x + A0) = 
z + C°. Choose y e B1 with v (f) (x + A0) = y + B°, and observe 
that x - y e f and y - z eg", so x - z e f '" v g" and 

k" C (gof)~ = (£' v g") A (A1 v C1). 

So, k = gof by [5: 3.4], proving v(gof) = v(g)v(f). Using the 
fonnulas for ker v(f) and im v(f) and [5: 3.21], f is iso-
representative if and only if v(f) is an isomorphism. If 
h:Â "/Â  »-bVb° is an isomorphism, then v_1(h)~ = v"1^"1)" by 

- 1 -1 direct computation. Then, v(f ) = v(f) follows. 

Prop. 8. Let 6 be an infinite nondenumerable cardinal, 3 > card(R), 
and let L = Then there exists a full exact embedding 

1 0 equivalence functor F: A L •R-Mod(e), given by F (A) = A /A and 
F([f2, fx]) = vff^vCfp. 

Proof: Assume the hypotheses. If A0 C A1 in L, then card (A1/A0) < 3 
by Prop. 6, and P̂ /fiP is in R-Mod(B). There is no problem in verifying 
that F is well-defined and is a full exact embedding functor, by Prop. 7 
and [5: 3.13, 3.15, 3.17, 3.19, 3.25]. To prove that F is an 
equivalence functor, it suffices to show that every M in R-Mod(e) 
is isomorphic to F (A) for some A in A L [9: IV. 4, Thm. 1, p. 91]. 
Let card(M) = y < 3, and choose an R-linear epimorphism f:R̂  >M 
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as in the proof of Prop. 5. Now R can be regarded as a bounded sub-
0 1 

module of R^, so F (A) is isomorphic to M for A = ker f C R̂  = A 
in L. 

We can now prove: 

Theorem 1. Let R and S be rings with unit. Then Ĉ(R) C $(S) if 
and only if there exists an exact embedding functor R-Mod(3) •S-Mod 
for every infinite cardinal 3. 

Corollary. <£(R) C X(S) if and only if there exists an exact embedding 
functor C •S-Mod for every small exact subcategory C of R-Mbd. 

Proof: By a slight modification of the proof of Prop. 1, we can 
show that l̂(R) C £(S) if there exists an exact embedding functor 
R-Mod(3) >-S-Mod for every infinite 3. 

Assume <£(R) c £(S). To prove the theorem, it suffices to show 
that there exists an exact embedding functor R-Mod(3) >-S-Mod 
whenever 3 > Kq + card(R). (If <5 < y, then R-Mod(6) is an exact 
subcategory of R-Mod(y).) So, assume 3 > + card(R), and choose 
y > XQ + card(S) such that there exist lattice embeddings: 

rb(R3 ;R)-^r ( M ; S ) ( S y ;S), 

using 3C(R) C X(S) to obtain f and Prop. 5 to obtain g. Let L(R) 
denote ^(R^R) and L(S) denote r̂  (S ; S), and construct an exact 
embedding R-Mod(3) •S-Mod by composing: 
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F F F F 
R-Mod(3) ^ A l ( R ) 2 » A l —•S-Mod(y) S-Mod. 

Here, F4 is an exact inclusion functor, and F1 and F̂  are exact 
embeddings obtained from the equivalences of Prop. 8. The functor F2 

equals A^: A^q^ ^L(S)' 311 exact embedding by the 
discussion following Prop. 3. This proves Thm. 1. 

Half of the corollary is proved by adapting the proof of Prop. 1. 
Since every small exact subcategory of R-Mod is an exact subcategory 
of R-Mod(3) for sufficiently large 3, the other half of the 
corollary follows from the theorem. 

There is a foundational point worth mentioning. The construction 
of the reciprocal functor to the equivalence functor F:AL >-R-Mod(3) 
in Prop. 8 using [9: IV.4, Thm. 1, p. 91] seems to require the strong 
axiom of choice (there exists a choice function for the class of all 
nonempty sets). However, the corollary of Thm. 1 can be proved using 
a slightly modified version of Prop. 8 requiring only the ordinary 
axiom of choice. Furtheimore, most of the consequences of Thm. 1 here-
after can also be proved using the corollary. 

In the remainder of the text, we will sometimes treat integers as 
members of an arbitrary ring R with unit. In each case, the integer 
n is identified with the additive multiple n-1 of the ring unit 
( 2 = 1 + 1 in R, etc. ). Note that an integer n is a central 
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element of R, so nR is a two-sided principal ideal of R. If p 
is a prime number and j > 0, we will say that p is "j-invertible" 
in R if (pr - 1) = 0 for some r in R. If p is 0-invertible 
in R, then p is invertible as a ring element of R. If p is 
j-invertible in R, then it is k-invertible for k > j. Also, p is 
k-invertible in R if char(R) = p m for relatively prime p and m. 

The next theorem gives some simple tests for proving that i£(R) C 3C(S) 
is false in various cases. 

Theorem 2. Let C i£(S), and let a and b be integers such 
that b divides a. If ax + b = 0 for some x in S, then 
ax + b = 0 for some x in R. Therefore, char(R) divides char(S). 
Also, for any prime p and j > 0, p is j-invertible in R if p 
is j-invertible in S. 

Proof: Assume the hypotheses. Using Thm. 1, choose an exact 
embedding functor F:R-Mod(3) •S-Mod for 3 > + card(R). 
For any S-module M, im(b.l̂ ) 3 im(a«l̂ ) because b divides a. 
Conversely, imCb-l̂ ) C imCa-l̂ ) because ax + b - 0 for some x 
in S. In particular, im(b.lp^) = im(a-lp^). Since F is an 
exact embedding, im(b-l̂ ) = im(a-lR) [3: pp. 65-66]. So, 
b e im(a.lR), and therefore ax + b = 0 for some x in R. 

Letting a = 0 and b = char(S), we see that char(S) = 0 in 
R, and so char(R) divides char(S). (By convention, 0 divides 
00 

/ 
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If p is j - invertible in S, then ax + b = 0 has a solution in 
S, hence in R, for a = and b = . Therefore, p is 
j - invert ib le in R. This proves Thm. 2. 

More information on ring characteristics is given by: 

Theorem 3. Let R and S have characteristics m and n, respec-
tively. Then <C(R) C £(S) if and only if £(R) C £(S/mS), and 
m divides n and char(S/mS) = m in this case. 

Proof: Assume the hypotheses, and that m Y 0 (the case m = 0 
is trivial). Since £(S/mS) C £(S) by Prop. 2, £(R) C £(S/mS) 
implies £(R) C £(S). Assume £(R) C j£(S), and suppose M is 
an R-module. By Thm. 1, let F : R-Mod (3) •S-Mod be an exact 
embedding for some 3 > + card(R) + card(M). Then F induces an 
embedding homomorphism r(M;R) >-r(F(M);S), as usual. Since 
char (R) = m and F is additive, m-lp^ = Ffa.l̂ ) = F(0) = 0. There-
fore, sQx =0 if SQ e mS and x e F(M). But then we can make F(M) 
into a S/mS-module MQ, retaining the additive structure of F(M) 
and defining (s + mS)x = sx for s e S and x e MQ = F(M). 
Clearly r(MQ;S/mS) is isomorphic to r(F(M);S), and so r(M;R) is 
in £(S/mS). This proves £ (R) C £(S/mS) . 

If d = char(S/mS), clearly d divides m. If C f(S/mS), 
then m divides d by Thm. 2, and so m = d. By Thm. 2, m divides 
n if £ ( R ) C £ ( S ) . 
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Using Thm. 3, we can evaluate the ring predicate £(R) C in 
general if we can evaluate it for rings with the same characteristic. 
After some preparation, we will prove that only rings with zero or 
prime power characteristic need be considered. 

Prop. 9. Let char(R) = char(S) = ab, where a and b are relatively 
prime positive integers. Then j£(R) C £(S) if and only if 
£ ( R / a R ) C £(S) and £ ( R / b R ) C £(S). 

Proof: Assume the hypotheses. Suppose 3£(R) C £(S). Then 
£(R/aR) C *(S) and £(R/bR) C £(S) by Prop. 2. 

Now assume that £(R/aR) C and «C(R/bR) C £(S). Let M 
be an R-module. Make M/aM into an R/aR-module by defining: 

(r + aR) (m + aM) = rm + aM for r e R and m e M, 

and make M/bM into an R/bR-module similarly. Let L = r(M;R), and 
let L& and L^ denote the interval sublattices [aM, M] and [bM, M] 
of L, respectively. We can verify that L and L̂  are isomorphic 
to r (M/aM;R/aR) and r(M/bM;R/bR), respectively. Therefore, there 
exist lattice embeddings F :LA •ROTPS) and g :L^ >T(M2;S) for 
some S-modules M^ and M2« Then f x g:Lax ^rCM^S) x r(M2;S) 
is a lattice embedding. Also, i^CM^S) x r(M2;S) •rO^ x M2;S) 
given by i(N̂ , N2) = N̂  x N2 is a lattice embedding. 
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Let au + bv =1 for some integers u and v, since a and b 
are relatively prime. For any m e M, aum e aM and bvm e bM, so 
m = (au + bv)m e aM v bM, proving M = aM v bM. Furthermore, if 
m e aM A bM, then m = am̂  = bn^ for some m^ and m2 in M. 
Therefore, am = abm2 = 0 = bam̂  = bm, since char(R) = ab. But 
then m = uam + vbm = 0, proving aM A bM = 0. Finally, suppose 
M* £ L. Then M' = M1 A (aM v bM) = (M1 A aM) v (M' A bM), since 
m = aum + bvm e (Mf A aM) v (Mf A bM) if m e Mf. Therefore, aM, 
bM and M' generate a distributive sublattice of L [1: Thm. 12, 
p. 37]. Now define functions as follows: 

h:L >L x given by h(MT) = (M1 v aM, M' v bM). 

ft A 
h : L a x >L given by h (MT, M") = M* A M M. 

Then h*h(Mf) = (MT v aM) A (Mf v bM) = Mf v (aM A bM) = M' for all 
M1 e L. Also, if M'DaM and M" 3 bM, then: 

hh* (Mf, M") = ((M' A M") V aM, (M1 A MM) v bM) = (M', M") , 

since aM v (MM A M') = (aM v M1') A M' = M' by modularity and 
aM v MM 3 aM v bM = M, and similarly (M' A MM) v bM = MM. Since * 
h and h preserve order, they are reciprocal lattice isomorphisms 
between L and L&x L^. We have proved that L is in £(S) by 
the embedding : 
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L - ^ L a x f * S tCM^S) x r(M2;S)-^-^rCM1 x M2;S). 

So, 3C(R) C j£(S), completing the proof. 

Prop. 10. Let p be a prime, t > 0 and j = min A for: 

A = {t} U {k: p is k-invertible in R}. 

Then char (R/p^) = p^. If char(R) f 0 and n divides char(R), 
then char(R/nR) = n. 

Proof: Assume the hypotheses. Since p^ e p^R, char(R/p̂ R) = p^ 
k t 

for some d, 0 < d < t. If 0 < k < d, then p isn't in p R. But 
k 

then p (pr - 1) = 0 is false for all r e R, since otherwise 
t t-k k p r = p . So, d < min A. If d = t, then min A < d, so assume 
d < t. Then p*"r = p^ for some r in R, so p̂ Cpr̂  — 1) = 0 for 

t-d-1 
TQ = p r. So, p is d-invertible in R, and min A < d. This 
proves that d = min A in all cases. 

Now suppose m = char(R) f 0 and n divides m. Let d = char(R/nR), 
so d divides n. To prove char(R/nR) = n, it suffices to show that 
k k p divides n implies p divides d, for any prime p and k > 0. 

k k Assuming that p divides n and using n divides m, let m = xp . 
k i 

Now char(R/p R) = pJ for some j, 0 < j < k. If j < k, then there 
exists r in R such that p*' = p^, by the above. But then 
xp-' = xp̂ r̂  ̂  = mr^ = 0 in R, contradicting m = char(R). Therefore, 
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char (R/p̂ R) = pk. Since nRC p̂ R because pk divides n, there is 
a ring homomorphism R/nR —>R/p R preserving 1, and so 
&(R/pkR)C X(R/nR) by Prop. 2. Therefore, pk divides d by 
Thm. 2, proving that char (R/nR) = n. 

We now prove that the predicate X(R) C £(S) can be evaluated for 
rings with the same nonzero characteristic if it can be evaluated for 
rings with the same prime power characteristic. 

k-. k̂  k. 
Theorem 4. Let char(R) = char(S) = n ï 0, and n = p1 p2 ... p r 

for distinct primes p^, p2, ... , pt and any positive integers 
k. 

k v k2, ... , kt. Then SC(R) C JC(S) if and only if 3C(R/pi1R) c 
k. k. k. k 

X (S/pi1S) and char(R/pi1R) = charCS/p^S) = pi
i for all i < t. 

Proof: Assume the hypotheses. Suppose 3C(R) C I(S), and let 
k k 

p = Pi and k = ki for some i, i < t. Then char(R/p R) = p 
by Prop. 10, and (R/pkR) C £(R) C tlS) by Prop. 2. Therefore, 
£(R/pkR)C £(S/pkS) and char(S/pkS) = pk by Thm. 3. 

Now assume that «R/p^)C £(S/pkS) for pk = p.\ all i < t. 
k 

To prove t£(R)C «C(S), use induction on t. If t = 1, n = p^ 
k 

and the result is trivial. Assume t > 1, and let a = p^ and 
k k 

b = n/a = p2
2 ... p^. If Rf = R/bR and S' = S/bS, then 

k. 
<C(R/pkR)C JC(S/pkS) implies XCR'/pV) C XCS'/p^*) for pk = p.1, 
i = 2, 3, ... , t. Since char(R') = char(S') = b by Prop. 10, and b 
has t - 1 prime factors, £(R/bR) = XCR^C 3C(S') = 3C(S/bS) C *(S), 
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by the induction hypothesis and Prop. 2. Since ^(R/aR)C £(S) by 
Prop. 2, <3t(R) C JC(S) by Prop. 9. This completes the proof. 

We turn now to consideration of some particular rings. Two types 
of ring are especially important: the homomorphic images Z n = Z/nZ 
of the ring Z of integers, and the unitary subrings of the field 
Q of rationals. 

Let P denote the set of prime numbers, and let PR denote the 
subset of P of primes invertible in R: 

-1 PR = {p £ P: p exists in R}. 

Given any subset PQ of P, let Q ( p g ) denote the unitary subring 
-1 

of Q generated by {p : p e PQ}. It is easily proved that the 
unitary subrings of Q are in one-one correspondence with the sub-
sets of P via the reciprocal bijections: 

R — P 0 — * Q ( P 0 ) . 

(That is, PQ = P Q ( P Q ) I £ P
0
 C P> 811(1 R = Q ( ? R ) i£ Z C R C Q.) 

In the next theorem, we give the basic lattice representability 
relationships between rings of these types, and some other relation-
ships between lattice representability by these special rings and 
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lattice representability for arbitrary rings satisfying certain tests. 
A proposition preparing for the use of Prop. 3 is inserted first. 

Prop. 11. Let M be a flat right R-module, and let kM denote 
im(k.lM) for k > 0. If R = Z n for some n > 2, then M is 
faithfully flat if dM ̂  M for every proper divisor d of n. 
If R = Q(Pq) for some PQ C P, then M is faithfully flat if 
pM f M for every prime p not in PQ. 

Proof: Assume the hypotheses. To prove M is faithful, it 
suffices to show that M ® R R/u f 0 for every proper left ideal 
u of R. (If MQ is nonzero, there is an R-linear monomorphism 
R/u—MQ for some proper or trivial u. Since M is flat, 
M ® R R/u >M ® R Mq is a monomorphism. Since M ® R R « M f 0, 
M ® R R/u f 0 for all proper u implies M ® R MQ f- 0 whenever 
MQ f 0.) If R = Z N or R = Q(PQ), then every proper left 
ideal of R equals kR for some k > 1. But: 

M ® R R/kR«M ® R ( R ® Z Z k ) « ( M ® R R ) ® z Z K « M / M , 

using well-known properties of tensor products. So, it suffices to 
show that kM ̂  M if kR is a proper ideal of R. If R = Z n, 
every proper ideal of R equals dR for some proper divisor d of 
n. So, M is faithful if dM / M for such d. If R = Q (P ), 
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then kR is a proper ideal if there exists a prime p not in P̂  such 
that p divides k. But then kM C pM, so M is faithful if 
pM f M for every prime p not in PQ. This proves Prop. 11. 

Theorem 5. Suppose n, m > 2 and P̂  and are subsets of P. 
Then: 

CD £ ( Z n ) C £(Zm ) iff n divides m. 

(2) X(Z n) C i(Q(P1)) iff no prime in P divides n. 

(3) £ ( 0 ^ ) ) C £(Zn) is always false. 

(4) ÏCQfP^) C £CQ(P2)) iff => P2-

(5) If char(R) = n, then *(R) C XCZn). 

(6) If char(R) = n and n is a prime or a product of distinct 
primes, then Ï(R) = £(Zn). 

(7) If char(R) = 0, then 3t(R) C £(Q(PR)). 

(8) If R is torsion-free, then j£(R) = X(Q(PR)). 

(9) If char(R) = 0, then £(R) « X(Q(PR)) iff every prime p 
which is j-invertible in R for some j > 1 is invertible in 
R. 

(10) If some unitary subring of R is a field, then 3C(R) = £(Q) 
if char(R) =0, and 3C(R) = £(Z ) if char(R) = p, p prime. ir 
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Proof: Assume the hypotheses. If char(R) = n, then R has a 
unitary subring isomorphic to Z . If char(R) = 0, then R 
has a unitary subring isomorphic to Q(PD), since integers are JK 
central elements of R. Using Prop. 2 and Thm. 2, we can then verify 
parts (1), (3), (4), (5) and (7). If t ( Z C ^(QCP^), then 
each p in P^ is invertible in Z n by Thm. 2, and so p doesn't 
divide n. This proves half of (2); the converse follows from 
Prop. 2 and the observation that Q(P-L)/NQ(P1) is isomorphic to 
Z n if no prime in P^ divides n. 

Suppose char(R) = n, where n is prime or a product of 
distinct primes, and let M denote R considered as a bimodule 
(left R-module, right Z n-module). Now Z N is a semisimple 
ring [12: p. 71], hence it is a regular ring [12: Thm. 4.11, p. 78]. 
Therefore, M is flat as a right Zn-module [12: Thm. 4.24, p. 86]. 
Given a proper divisor d of n, d is not invertible in R and 
so dM f M. So, M is faithfully flat by Prop. 11. Therefore, 
X(Z n) C X(R) by Prop. 3, and then part (6) follows from part (5). 

Suppose R is tors ion-free, and let M denote R considered as 
a bimodule (left R-module, right Q(PR)-module). Now Q(PR) is a 
principal ideal domain, and so is a Priifer ring [12: p. 73]. There-
fore, M is flat as a right Q(PR)-module [12: Thm. 4.23, p. 85]. 
Given p prime not in PR, p is not invertible in R and so pM f M. 

Therefore, M is faithfully flat by Prop. 11, 
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and £(Q(PR)) C-XfR) by Prop. 3. Then part (8) follows from part (7) 

Suppose î£(R) = 3!,(Q(PR)) and p is a j-invertible prime in 
R for some j > 1. Then (pr - 1) = 0 for some r in Q(PR) 
by Thm. 2, and so p is invertible in Q(P

R) since pr - 1 must 
equal 0. Therefore, p is invert ible in R. Now suppose char(R) = 0 
and every j-invertible prime of R is invertible. Let t denote 
the two-sided ideal of all torsion elements of R ( r e t if 
nr = 0 for some positive integer n ), and let S = R/t. Then S 
is a nontrivial torsion-free ring, and clearly PR C P^. If 
p e Pg, then px = 1 + z for some x in R and z in t. So, 
k(px — 1) = 0 for some k > 0. Let k = p^m, where p and m 
are relatively prime. So, pu + mv = 1 for certain integers u and 
v. Let r = mvx + u in R. Then p̂  (pr - 1) = p-* (pmvx + pu - pu - mv) 
vk(px - 1) = 0. So, p is j-invertible in R, and therefore p e PR 

by hypothesis. That is, PR = Pg. But then 

*(Q(PR)) = *(Q(PS)) = X(S) C £(R) C £(Q(Pr)), 

by parts (7) and (8) and Prop. 2. This proves part (9). 

Part (10) follows immediately from parts (6) and (8). (If R 
contains a unitary subring which is a field of characteristic zero, 
then R is tors ion-free and Q(PR) = Q.) IMs proves Thm. 5. 
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For arbitrary n > 2, the author has been unable to establish a 
necessary and sufficient condition on R so that 3C(R) = <îC(Zn). 
However, the final result sheds some light on this problem. 

Prop. 12. Let char(R) = pu for prime p and u > 1. If there 
exist r1 and r2 in R and integers i, j and k such that 
1 < i, j, k < u - 1, i + j + k < 2u, r ^ = p1, p ^ = 0 

and pkr2 = 0, then j£(R) Ï <£(Z ). 

P 

Proof: Assume the hypotheses, and suppose aC(R) = <£(Z ). 

PU 

By Thm. 1, there exists an exact embedding F:Z -Mod(^ ) •R-Mod. 
PU 

Let M denote Z as an object of Z -Mod($ „). Since 
P PU 

(p11^-^, PK-1M) is exact, so is (pU~K'LF(M)> P^FCM)^ Let v 

k k be in F(M). Then p r2v = 0, since p r2 = 0 in R. So, 

pU~kvQ = r2v for some vQ in F (M). But then p ^ v = p11"1"^^ = 

u-l-i u-l-i u-k 2u-i--j-k-l i n . p rir2v = P rlP vq = P P rlv0 = ' using the 

hypotheses. Therefore, FCp11"1-!̂ ) = P^'lpQ^ = But p11"1-^ Ï 0, 

contradicting the embedding property for F. This proves Prop. 12. 

Given Pq C P and P̂  f P, one can easily construct a ring R 

with characteristic zero such that PR = PQ but «£(R) T 3T(Q (Pq)) • 
For example, choose a prime p not in PN and j > 1, and let R 
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denote the quotient of the polynomial ring Q(Pg)[y] divided by the 
principal ideal generated by (py - 1). Then char(R) =0, 
PR = PQ and p is j-invertible but not invertîble in R. So, 
£(R) F £(Q(P0)) by Thm. 5(9). 

Another family of counterexamples is related to Prop. 12. Suppose 
? 

n > 2 and n is not square-free, that is, n = p m for some prime 
p and integer m. Let R be the quotient ring of the polynomial 
ring Z n[y] divided by the ideal generated by the polynomials py 

2 

and y - pm. We omit the proof that R is a commutative ring with 
characteristic n and pn elements; each element of R is 
representable by a polynomial uy + v with 0 < u < p and 0 < v < n. 
Assume <£(R) = £(ZR), and construct an exact embedding F:Zn-Mod(&Q) •R-Mod. Let M equal Z n as an object of 
Zn-Mod(K0), and note that (pm-lp^, P'lpQ^) is exact because 

(pm-1̂ , p-ljyj) is exact. Suppose v e F(M): since pyv = 0 there 
exists VQ in F(M) such that pmVg = yv. But then pmv = y v = 

2 ypmvQ = 0, since pm = y and py = 0 in R. Then F(pm»l̂ ) = 

pm.lpQ^ = 0 and pm-l^ f 0 leads to contradiction. So, R is a 
ring with characteristic n but î£(R) f iC(Zn). We remark that 
this R is also a counterexample for the converse of Thm. 2. That 
is, the equation ax + b = 0 for integers a and b has a solution 
in R if and only if it has a solution in Z , but £(R) f £( Z ). 
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