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On the equational theory of submodule lattices. 

By Christian Herrmann 

Equational problems for modular lattices have been studied 
for a long time, although available results have been 
established only under significant syntactical difficulties 
(see e.g. the papers of RALPH FREESE and ALEIT MITSCHKE 
in this volume), Furthermore, they have been more or less 
partial in nature. For lattices of submodules things become 
surprisingly easy, by simply making use of well known alge-
braic facts. As a by-product algebraic results can be ex-
tended by lattice theoretic methods. §1-3 are based on 
joint work of the author and A.HUHN; the results in §4 
have been partially reported in [6]. 

§1 The two basic lemmas. 

For p prime, n < , k ̂  <*> , let L(p,k,n) be the lattice of 
subgroups of the n-th power of the cyclic group Z k of 

k order p or of the quasicyclic p-group Z . If MD is a p K 

unitary R-module, then L(MR) denotes the lattice of R-sub-
modules of M^. The lattice varieties generated by all nor-

n 
mal subgroup lattices of groups or subgroup lattices of 
abelian groups or complemented modular lattices will be 
written as J\f or $ or £ . X shall denote the variety 
generated by 
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Lemma 1. L(MR) is in the variety generated by all lattices 
k 

L(p,k,n) where k < u> , p divides the characteristic of R, 
and n is less than or equal to the cardinality of a gene-
rating set of the P-module M , where P is the subring of tr R generated by the unit element. 

Corollary 2. St is generated by the finite primary lattices 
L(p,k,n) (p prime, k,n 

Sketch of proof. L(MR) is a sublattice of L(Mp) and L(Mp) 
is in the variety generated by the submodule lattices of 
its finitely generated submodules. By the Homomorphism 
Theorem these are sublattices of the LfPn Now, if P p ' k 1 k m n is finite and IP|= px

 1•...-pm
 m , then P = X (Z ^.) 

n m i=1 pi i 
and L(P ) = X L(p.,k.,n) . If, finally, P is isomorphic 

P i= 1 
to the ring Z of integers, then we use the fact that 
a system of linear diophantine equations is solvable in 
iff it is solvable in all Z ^ and the following con-
struction: To each lattice polynomial w attach a system 
w(xi,y^,Xk) of linear equations in variables 
such that for any elements an , . . . a , bJ", . . . b m of a 1 n ' 1 ' n 
R-module Mr , ... an> R e ,. . .b^>R,. . /jp™, . . .b^>R) 
holds iff the system w(ai,b^,Ak) is solvable with values 
of the in R. This can be easily done by induction over 
the length of w. Hence, if all R-submodules of MD are 
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generated by at most n elements, the inequality w-v is 
valid in L(M^) if and only if, for any choice of con-
stants a. ,b-? in MD , the solvability of wfa. , L ) 1 1 K 1 1 K 
implies the solvability of , yyL over R . 

Lemma 3. If is the J-ultraproduct of the modules 
M. , then the T-ultraproduct of the lattices L(M. ) 
is a sublattice of L(MR), containing all finitely gene-
rated R-submodules. 
The proof is by the classical model theoretic method of 
correspondences between classes: consider the structures 
( M R , L ( M r ) , (f>) , (j) being the relation a t U on Mx L(M^) 
(c.f. MAKKAI, McNULTY [13]). 

Corollary 4. £ is generated by subspace lattices of 
finite projective geometries over prime fields and arbi-
trary nondesarguesian planes. 

§2 Lattices generated by a frame. 

In [ A.HUHN introduced the concept of an n-diamond in 
a lattice: a sequence s.̂ , ... an of elements such that 
any n-element subset is independent in the interval 
n n _ 

| TTa-, 2 a. ] . It is called a frame in L, if XTa-=0j 
l-i=o i=o 1 
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and ^ If L is modular, a frame in the usual sense 
can be derived and vice versa. 

Theorem 5. For n-3 there is a complete list of all sub-
directly irreducible lattices in jf which are generated 
by an n-diamond: 

the rational projective geometry L(QnQ); 
the lattices L(p,k,n), where p is prime and k ̂  oa ; 
the duals of the L (p, <*> ,n) , where p is prime. 

The generating n-diamond is given, up to automorphism, by 
the submodules eQ=(x,...,x), e^=(0,...,0,x,0 , . . . ,0) , 
with x in the i-th entry, for i=l,...n . 

The following notation has been used: For k^, . . . k n in R 
and variables xn,... x not necessarily distinct we have 1 ' n 3 

(k1x1, . . . ,knxn) = {(k1a1,. . . ,knan) | M and x±=x.=*> ai = aj\> 
a submodule of . 
The proof consists of the following main steps: 
1) Reduction to vft : If the lattice of normal subgroups of 

G contains an n-frame (n-3), then G is abelian. 
2) If L is a sublattice of any L(p,k,n) (k < où ) generated 

by an n-diamond, then L is a £0,... n}-subdirect product 
(in the sense of WILLE [.18]) of lattices L(p^,k^,n), 
each generated by the diamond en,... e . 
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3) By Corollary 2 the lattice FA(P ) freely generated in 
vft by an n-diamond is a {0,... n̂ J -subdirect product 
of the lattices L(p,k,n) (p prime,k<oô) with genera-
tors eQ,...,en . 

4) Any subdirectly irreducible lattice in vft which is 
generated by an n-diamond is, using the Lemma in 
JONSSON [12], a homomorphic image of the sublattice 
M generated by (i=0,...n) in FA(p

n)/©^. 
for a suitable ultrafilter on the set 

{p̂ l p prime, k . Now, if p-^00 in ^ , then 
M= L(QnQ) is proved with the method of Lemma 3. If, 
on the other hand, k-^ 00 for fixed p, then M is a 
subdirect product of L(p,oo,n) and its dual. But the 
only nontrivial homomorphic image of these lattices is 
L(p,l,n). 

Corollary 6. The subdirectly irreducible lattices in C 
generated by an n-diamond are, for n^3, exactly those 
in the above list and , for n=3, those in the above list 
as well as nondesarguesian planes generated by four 
points. 
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§3 Applications to equational classes 

In order to apply Theorem 5 we need polynomials 
d^(xQ,..,x3) (i=0,..,3) such that in any modular lattice 
the following holds: For any choice of x , . . t h e 
d^(xQ,..,x3) (i=0,..,3) are equal to each other or form 
a 3-diamond; if x ,..,x- is a J-diamond, then x.=d.(x ' o ' ' 3 ' l lv o ' ' 
(i=0,..,3). Such polynomials are defined in A.HUHN C9"J : 

3 
dfx ,..,x-): = T T b.(x ,..,xT) + a (x ,..,x7) o v o ' ' h ^J^ îv o ' ' 3 o v o ' ' 3y 

3 
di(xQ, . . ,x3) := T T b. (x , . . ,x-) for i = 1,2 ,3 

j=1>j*i J 

3 3 
where a (x ,..,x3)=x . IE x a. (x , . . ,x ) = E L X j , 

i=1 3 = 1,3*1 J 

3 
V(XO,..,X3)=TT ao(xo,..,x3) + ai(xo,..,x3) 

3 3 
bi(xo,.,x3)=ai(xo,.,x3).v(xo,.,x )+ Z x . 2L- xk 

3 = 1 k = 1 , k = 3 
for i=1,2 , 3. 

Now we can define inductively w (x ,..,x,)=d,(x ,.. 0 O o o O «3 
wn +1 C xo"-' x3 ) = { [ W " ' 3 ^ + do ( xo>"> x3) ' d2 ( xo'"' x3 
[d1(xo,..,x3)+d2(xo,..,x3(l +do(xo,..(x3)} • 
[d2(xo>..,x3) + d3(xo,..,x3)] . 

3 
Lemma 7. w (e ,. . ,e = (0 ,nx ,x) in any module M„ . 
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Theorem 8. The lattice identity w (x ,.. .x~)=dTfx 7 nv o' ' 3̂  3V o' ' V 
is valid in L(MR) if and only if the greatest common divi-
sor of the additive orders of any three weakly independent 
elements of M divides n . 

Theorem 9. Each lattice L(p,k,n) k<£o) is splitting 
in M. . For k > 1 splitting universal disjunctions are "length^" 
o r d3^xo' ' ' "wpk(Xo'-' , X3^ d3 ( X0' ' * ,x3^ 'wpk"1 K ' " ,x3^ ' 
and for k=1, they are "length^3 and L(p,k,n) not order em-
beddable" or d 3 ( x Q , . . - w (xQ,..,x3)^ x . We remark that 
L(p,1,n) is neither projective nor finitely projected nor 
bounded epimorphic image of a free lattice. 

Theorem 10. If jC is any class of lattices contained in JpL 

and containing all sublattices of lattices L(V^) where V^ 
is any five dimensional vector space over a field of charac-
teristic zero, then £ cannot be defined by a finite set 
of first order axioms. 

The proof is immediate by the following Lemma 11 and the 
fact that a nontrivial ultraproduct of Lp

 fs is embeddable 
in a L ( V k ) , (see [5]) . 

Lemma 1 1 . There is an identity valid in which does not 
hold, for p+q, in the Arguesian lattice L = [0,a^ vj ̂ b , "Q 
with b«a, [0,a] =L(p,1 ,3) , and [b , 1] =L (q, 1 , 3) -'cf. JONNSON [1 1̂ } . 
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§4 Lattices with four generators. 

In |J ] the authors asked for 
irreducible modular lattices 
solution is still distant. 

a complete list of subdirectly 
with four generators; the 

Lemma 12. Any 1 attice listed in Theorem 5 is generated by 
four elements. 
Furthe rmore, with the methods of £ 7] it is possible to con-
struct from a sufficently large partial sublattice of a 
lattice L(p,2,3) a nondesarguesian uniform Hjelmslevplane 
with four generators. 

The systems of generators and a partial converse of the lemma 
stem from the work of GELFAND and PONOMAREV [3] on linear 
spaces with four subspaces. 
If V is a linear space with subspaces V^, ... V^, then 

, ... V^) is called a quadruple. It is called indecompos-
able , if there is no nontrivial complementary pair A,B of 
subspaces such that AnV^ + BrjV̂  for i=1 , ...4 . 

Lemma 13. If L=<v-j , ... v ^ is subdirectly irreducible and 
can be embedded in the subspace lattice of a linear space of 
finite dimension, then there is an indecomposable quadruple 

, ... V^) (with V of finite dimension over an algebraically 
closed field F ) and an isomorphism of L onto the sublattice 

, ... V ^ o f L(Vp) mapping v^ onto V^ for i = 1 , ... 4 . 



Theorem 14. (GELFAND,PONOMAREV [3]) The indecomposable quadruples 
of finite dimensions over an algebraically closed field F are 
given (up to isomorphism, permutation, and duality) by the 
following list: 

1) (F2n, (xn,0n) , (0n,xn) , (xn,xn) , (x1 .y11'1 ,'Ayn"1*x1)) 
with % F-{0,1], 

2)a) C F 2 n + \ ( x n + \ o n ) > C O n + U n ) , ( x \ y V n ) , ( x I \ o \ x n ) ) , 
b) (F2n

)(xn
)0n)((0n

>xn))(x1,yn-1
>yn-1,01),(xn

>xn) , 
3) a) (F2n+1

((xn,0n+1))(0n,xn+1))(xn,xn
)01),(xn

>01
)xn) , 

b) (F ,(x ,0 ),(0 ,x ),(0 ,x ,x ,0 ),(x ,x ) , 
4) (F2n+1,(xn,0n+1),(0n,xn,01),(0,x1, .. xn_1,x1, .. xn,xn), 

(x-j , . . x n > 0 >x i » • • 

Let S(n,4) be the lattice of fig.1 and FM(j|) the modular 
lattcice freely generated by J^ (cf. fig.2 and £lQ ) . 

Lemma 15. V-j , ... V^ c. L(Vp) is in cases 1)-4) isomorphic to 
M4, S(m,4), L(Pmp) where m=2n+1 or m=2n and P the prime 
field of F, respectively. 

Theorem 16. If L is subdirectly irreducible in X, and generated 
by four elements, then L is isomorphic either to a nondes-
arguesian plane or one of the following lattices: 
M4, S(m,4), L(Pm

p) P a prime field, FM(jj) or its dual . 

Sketch of proof. Similarily as in the proof of Theorem 3 we 
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have to study ultraproducts of lattices listed in Lemma 15. 
As there is only a finite number of types, we may assume that 
all components are of the same type. In case 1) there is nothing 
to do; in 2) the untraproduct is again of breadth two, hence 
we may use the result of FREESE[2^J that any subdirectly irre-
ducible breadth two modular lattice with four generetors is 
S(m,4), FM(jj) or its dual. But the sublattice M generated by 
v^, ... v^ in the ultraptoduct can be visualized and decom-
posed in a straightforward manner. 

3) ,4): If m is fixed, then M=L(Pm
p) follows trivially. 

If m o o , then we consider structures 
(Pm

p,L(Pm
p) ,v1 , . . . ,v4,<j),I,J,K,K,'(),1I,1J,^I,^J) such that: 

(Pm
p,v1 , is the given quadruple; (j> is defined as in 

Lemma 3; 1= , J= £n+1 , ...,2n+lJ in case 3a), J= 
{n+1 , ...,2nJ' in cases 3b) and 4), K=0 in cases 3 a) and b) , 
and K=^2n+1^ in cases 4) ; I and J are equipped with the par-
tial poeration of taking the successor; »p is the mapping from 
I onto J with \p (i)=i+n ; K is the mapping from Pm*(IuJuK) 
into P such that i< (a,i) is the ith coordinate of a ; 1^—1 , 
1j=n+1 , oOj=n , <x>j=2n+1 in case 3a), and cOj = 2n in cases 3b) 
and 4) . 

In any of the cases 3a), 3b), and 4) we have formulas oc^ , . .. oc ^ 

in the first order language of these structurs such that for 
any m and P vi = ̂ xjxePm and0(i(x)] holds for i=1, ..4 . 

t T ir 
Now, in the ultraproduct we have a vector space V-F u u and 
vi=^x|xtV and cq (x) ̂  is valid as well. 
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Let I .J and be the subalgebras of IuJ generated by Uj'^jl 
resp., and = ( 1\jJ) - ( I -jul̂ ) . Define Ay = 

£fjféV and (f,i)=0 for all iel̂ -J , a subspace of V, for 
çtÇl ,*]. or |j-=jo and case 3a,b) ; A^'^f. i'féV and (f,i)=0 for 
all ifcl^uK^ in case 4) . 
Then A ^ , A k y i e l d a direct decomposition of the quadruple 
(V,v.j , ...v4) into three quadruples (A^v*, ... vj) 
thus a subdirect decomposition of M into three factors. 
But for $" = 1,* or œ and case 3a,b) ... vj together 
with 0 and V form a partial lattice ; hence they generate 
a lattice FM(J^) (cf.£lj). In case 4) from ... vj we 

4 
get a partial lattice J^ (fig.3) which generates a third 
subdirect power of FM(J^) (see[l4]). In any case, M is a 
finite subdirect power of FM(jj) and the only subdirectly 
irreducible epimorphic images of M are M^ and FM(J^) . 

§5 Word problems. 

HUTCHINSON[1CQ proved that in a quasivariety Gt of modular 
lattices such that L(RU3R)^Ct for a nontrivial ring R 
there is a finitely presented lattice with seven generators 
which has an unsolvable word problem (cf. FREESE[~2^, too). 
The attempts on the word problem for free modular lattices 
FM(n) by SCH0TZENBERGER[1and GLUHOVjj] may be regarded 
as unsuccessful (cf. WHITMAN jj 7 J and HERRMANN [8]) . The 
following solvability results do, however, hold. Here 
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m7Vtn denotes the class of all modular 
length ^n and primitive breadth ^m . 

lattices of primitive 

Theorem 17. (FREESE 2 ) In the word problem in four 
generators is solvable. 

Theorem 18. £ 7~] For né6 and m^3 or n <oc and m^2 the word 
problem in JVtn is solvable, m 

Theorem 19. In Ç the word problem in four generators is 
solvable. 

Theorem 20. The word problems for the free lattices F(f(n) 
and Fji( n) are solvable. 

Proof. By Theorem 16 any four generated lattice in C is em-
beddable in a complemented modular lattice. Hence a Horn 
formula in four variables is valid in C if and anly if it 
can be derived from the finite set of axioms of complemented 
modular lattices by a calculus of first order logic. On the 
other hand the four variable Horn formulas not valid in C 
are enumerable by Theorem 16, too. 

Theorem 20 is an immediate consequence of Corollaries 2 and 4 
and the fact that £ and SL can be defined by enumerable sets 
of identities. For "C these are just the identities derivable 
from the axioms of a complemented modular lattice; for Jt this 
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follows by the result of SCHEIN(_15 J that the class of lattices 
erabeddable in subgroup lattices of abelian groups can be 
recursively defined. 
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