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Introduction 
A filter in a lattice L is a non-void subset F of L for 

which XA y e L whenever x,y e L, and y e L whenever y > x 
for some x e L. On the set of all filters F in L one has a 
naturally arising topology whose basis consists of the sets 
{F | a e F} where a e L; the resulting topological space is 
the filter space of the lattice L. 

If X is a topological space, with topology&X, we let 
$X = $jOX, the filter space of X3X viewed as a lattice (with 
set inclusion as its partial order). Each x e X determines 
the filter J5(x) = {U | x e U eflX} of its open neighbourhoods, 
and thus one has the map X $X given by X*»J3(X). This map 
is continuous for any X, an embedding for exactly the T0-
spaces X,and in general its image is the reflection of X in 
the subcategory, of the category of all topological spaces 
and continuous maps, given by the T0-spaces. In the following 
all spaces are taken to be T0. 

The fundamental significance of the embedding X $X 
lies in the fact that a large class of extensions E of a 
given space X can be realized within $>X, i.e. are such that 
the embedding X $X can be lifted to an embedding E $X. 
The E in question are exactly the strict extensions E 3 X, 
i.e. those in which the open sets 
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U* = u w (Xn W = U, W e «DE) 
form a basis forJ3E. This notion goes back to Stone [9]; a 
detailed account of the rôle of in this context is given 
in Banaschewski [1]. The main point about strict extensions 
of spaces is that many interesting types of extensions 
(e.g. compactifications, and various of their analogues) are 
of that kind and hence can be described as, or have actually 
been explicitly introduced as, suitable subspaces of $X. 

The use of $X in the study of extensions of X has a long 
history (not to be recalled here); of more recent origin is 
the result that certain onto maps E X can also be realized 
within $X, in such a way that E is embedded into $X and the 
given E •*> X corresponds to the operation of taking limits of 
filter bases in X (Iliadis [7], Banaschewski [2]). This is 
of importance in the context of projective covers, first 
introduced for compact and locally compact Hausdorff spaces 
in Gleason [6]. 

The purpose of this note is to give an account of the 
most recent use of the filter spaces $X. The notions we are 
concerned with in this case are the following: 

(i) Essential extensions: An extension E 2 X of a 
space X is called essential iff any continuous map f : E Y 
for which f | X is an embedding is itself an embedding. 

(ii) Injectivity: A space X is called injective (in 
the category of all T0-spaces and their continuous maps, 
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with respect to embeddings) iff any continuous map f: Y X 
lifts to any extension Z 2 Y. 

(iii) Injective hulls: An essential injective extension 
of a space X is called an injective hull of X. 

These concepts have been investigated, and indeed play 
an important rôle, in various areas of mathematics. As far 
as T0-spaces are concerned, a systematic discussion of 
injectivity was first given in Scott [8] where the relation-
ship between a particular class of lattices is analyzed in 
preparation for certain constructions of model theoretic 
import. Here, we are specifically concerned with the question 
of the existence of injective hulls and the properties of 
essential extensions, for which the filter spaces $X turn 
out to provide a natural setting. 

The proofs of the results discussed below are given 
in Banaschewski [3]. 

1. The Ad.iointness between Lattices and Spaces. 
The correspondence L *** from lattices to spaces is 

readily seen to be the object part of a cofunctor (= contra-
variant functor) from the categoryof all lattices and 
lattice homomorphisms to the category : For a lattice 
homomorphism h: L M, the map <&h: which takes each 
filter F c m to the filter h^CF) is continuous, and the 
correspondance h $h is functorial. Similarly, one has 
the "lattice of open sets" cofunctor J3 : where 0X, 
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as before, is the topology of X and £3f : £JY + J3X is again 
given, for any continuous f: X Y, by taking inverse images. 
$ and<0 are adjoint on the right, and the embedding X -»• $X 
introduced above is actually one of the adjunctions. Incident-
ally, this pair of cofunctors, or some variants of it, provide 
the starting point for certain studies of duality in Hofmann-
Keimel [5]. For the present purpose, the following properties 
of<0 and $ are worth noting: 

Lemma 1. A continuous map f is an embedding iff J5f is 
onto, and a lattice homomorphism h is onto iff $h is an 
embedding. 

By basic categorical principles, an immediate consequence 
of this is: 

Corollary 1. If a lattice L is projective then its 
filter space $L is injective. 

Now, for lattices one has the following facts: The two-
element chain 2 is projective, and every lattice is a homorphic 
image of a coproduct of two-element chains. It follows from 
this that the functor $ produces the corresponding "dual facts". 
Moreover, the filter space 4>2 is actually a familiar object, 
namely the Sierpinski space S, i.e. the two-point space with 
three open sets: 

points: 0,1 ; open sets: 0, {1}, {0,1}. 
Thus one has : 
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Corollary 2. S is injective, and every space X can be 
embedded into a power of S. 

This is well-known (Cech [4], p.485), and can easily 
enough be proved directly. In the present context it seemed 
of interest to see how this can be viewed as the counterpart 
of the rôle of the two-chain among lattices, via the adjoint-
ness between and 

As far as the spaces are concerned, one can actually 
show much more than the above Corollary 1, but this requires 
reasoning about specifics rather than general principles. 
It turns out that the map from the power set of a lattice L 
to given by generation of filters is continuous if the 
former is viewed as a power of S; since products and retracts 
of injectives are injective this proves 

Lemma 2. The filter space of any lattice is injective. 

2. Essential Extensions 
Topologies are, of course, complete lattices, and for 

any continuous map f: X + Y the associated lattice homomor-
phism <0f : «0Y -> J3X does indeed respect some completeness 
properties - it preserves arbitrary joins. Thus, the lattice-
of-open-sets functor can also be considered as going from 
into the category 'fyC&L of complete lattices and their join-
complete homomorphisms. This viewpoint provides a duality 
for essential embeddings: 
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Lemma 3. A continuous map f: X Y in S7 is an essential 
embedding iff f: Y X is a coessential onto homomorphism 
in 

Here, coessential onto for a homomorphism h: L + M is 
to mean that h(K) = M iff K = L, for any sublattice K C L in 
the sense of i.e. closed with respect to arbitrary 
joins in L. 

A subspace of the filter space $L of a lattice L will 
be called separating iff its members distinguish the elements 
of L, i.e. for any two distinct elements of L there is a 
filter in the subspace containing one of them but not the 
other. 

Lemma 4. For separating subspaces L and P 2 E of a 
space $L, P is an essential extension of E iff each F e P 
is the join of all G Ç F in E. 

Putting these lemmas together, one then obtains, with a 
few additional arguments: 

Proposition 1. For any extension E 2 X of a space X, 
the following conditions are equivalent: 

(1) E is essential. 
(2) E is strict, and every trace filter of E on X is 

a join of filters<P(x). 
(3) E is superstrict. 
Here, the trace filters of E on X are the filters 

{Un X | U eJ3(y)> for the points y e E - X, and superstrict 
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means that any ring of sets Q <DE which yields a basis for 
OX by restriction to X is itself a basis forjDE. 

As a fairly direct consequence one obtains: 
Proposition 2. Every space X has a largest essential 

extension which is unique up to a unique homeomorphism over 
X, namely the strict extension XX given by the subspace of 
3>X consisting of all joins of filters J9(x). 

3. Infective Hulls. 
It is clear that the extension XX of a space X is the 

only possible candidate for being an injective hull of X, 
and thus X has an injective hull iff XX is injective. More 
generally, we first consider subspaces Z of filter spaces 

for an arbitrary lattice L, which are separating and 
closed with respect to taking joins of filters. Any such 
determines a kernel operator k: £ for which kF is the 
largest G e £ contained in F. For such E and k one then has: 

Lemma 5. The following conditions are equivalent; 
(1) £ is injective. 
(2) The kernel operator k is continuous. 
(3) The kernel operator k preserves updirected joins. 
(4) For each F e I, F « Vk(F a) (a e F) where 

Fa = {x | x £ a}. 
A topological criterion for the injectivity of XX which 

can be derived from this reads as follows: 
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Proposition 3. A space X has an injective hull iff, 
for any U e«Ô(x) (x c X) there exists a V e«D(x) such that 
Un rp V + 0, where T0 V = O T{z}(z £ V). 

This immediately leads to an "internal" characterization 
of injectivity itself, and can be used to obtain various 
further results. For instance: A T^-space has an injective 
hull iff it is discrete, and any open subspace of a space 
which has an injective hull also has an injective hull. 

4. Continuous Lattices. 
We conclude with some of the results in Scott [8] for 

which the present setting provides new proofs. 
With any partially ordered set S one can associate the 

space TS whose points are the elements of S and whose 
topology, the d-open end topology, consists of the ends 
U C s (i.e. x ^ y and y e U implies x e U) for which 
VA e U implies A n U 0 for any (up)directed subset A Ç S. 

On the other hand, any space X determines a partially 
ordered set PX whose elements are the points of X and whose 
partial order is such that x ̂  y iff <0(x)Ç £J (y). 

Finally, a partially ordered set S is called a continuous 
lattice iff S is complete and for any x e X, x -V(AU|Ue£D(x)} 
where iD =£îTS. 

Proposition 4. (Scott) For any continuous lattice S, 
TS is an injective space and S = PTS; similarly, for any 
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injective space X, PX is a continuous lattice and X = TPX. 
It should be added to this that the correspondances 

S a*î> TS and X-̂ > PX between continuous lattices and injective 
spaces can be extended to a category isomorphism, where the 
maps between the spaces are the continuous maps and the maps 
between the lattices are those which preserve updirected 
joins. 
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